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Abstract. Availability is an important security property for Internet
services and a key ingredient of most service level agreements. It can
be compromised by distributed Denial of Service (DoS) attacks. In this
work we propose a formal pattern-based approach to study defense mech-
anisms against DoS attacks. We enhance pattern descriptions with for-
mal models that allow the designer to give guarantees on the behavior
of the proposed solution. The underlying executable specification for-
malism we use is the rewriting logic language Maude and its real-time
and probabilistic extensions. We introduce the notion of stable availabil-
ity, which means that with very high probability service quality remains
very close to a threshold, regardless of how bad the DoS attack can get.
Then we present two formal patterns which can serve as defenses against
DoS attacks: the Adaptive Selective Verification (ASV) pattern, which
enhances a communication protocol with a defense mechanism, and the
Server Replicator (SR) pattern, which provisions additional resources on
demand. However, ASV achieves availability without stability, and SR
cannot achieve stable availability at a reasonable cost. As a main re-
sult we show, by statistical model checking with the PVeStA tool, that
the composition of both patterns yields a new improved pattern which
guarantees stable availability at a reasonable cost.

Keywords: formal patterns, meta-object pattern, rewriting logic, avail-
ability, denial of service, statistical model checking, cloud computing.

1 Introduction

On December 8, 2010 at 07:53 AM EDT, MasterCard issued a statement that
“MasterCard is experiencing heavy traffic on its external corporate website [. . . ].
There is no impact whatsoever on our cardholders ability to use their cards for
secure transactions” [19]. In fact, by that time, a distributed Denial of Service
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attack (DoS) brought the website down and made their web presence unavailable
for most customers for several hours. Availability is an important security prop-
erty for Internet services and a key ingredient of most service level agreements.

DoS defense mechanisms help maintaining availability; nevertheless even when
equipped with defense mechanisms, systems will typically show performance
degradation. Thus, one of the goals of security measures is to achieve stable
availability, which means that with very high probability service quality remains
very close to a constant quantity, which does not change over time, regardless of
how bad the DoS attack can get. Cloud Computing, by offering the possibility
of dynamic resource allocation, can be used to leverage stable availability when
combined with DoS defense mechanisms. Service-oriented systems such as the
MasterCard service are distributed systems operating in a dynamically changing
environment. They need to cope with changing numbers of user demands and
with hostile attacks. To be used/operated safely, services have to satisfy func-
tional as well as non-functional requirements and it is not a priori clear what is
the best realization of a service in each particular situation. Model-driven ap-
proaches to service development offer the possibility of tackling these issues at a
high level of abstraction during early stages of system analysis and design. In par-
ticular, design patterns have been successfully used for improving programming
solutions in several domains, including object-orientation [13], service-oriented
computing [17,12] and security [25]. Patterns are general, reusable solutions to
commonly occurring problems in software design; they clearly define the pro-
gramming context, the problem and the advantages and disadvantages of design
solutions (see e.g., [13,25]).

In this work, we introduce formal patterns which, in addition to “normal” pat-
terns, come with formal guarantees and enable automated pattern composition,
often resulting in semi-automatic construction of new models with improved
properties. We use this pattern-based approach to study defense mechanism
against DoS attacks in a model-based setting. We present two formal patterns
which can serve as defenses against DoS attacks: the Adaptive Selective Verifica-
tion (ASV) [15] pattern defending against DoS attacks, and the Server Replicator
(SR) pattern in a cloud setting. As underlying executable specification formalism
we use the rewriting logic language Maude and its real-time and probabilistic
extensions. The ASV protocol is a well-known defense against DoS attacks in the
typical situation that clients and attackers use a shared channel where neither
the attacker nor the client have full control over the communication channel [15].
The ASV protocol adapts to increasingly severe DoS attacks and provides im-
proved availability. However, it cannot provide stable availability. By replicating
servers one can dynamically provision more resources to adapt to high demand
situations and achieve stable availability; but the cost of provisioned servers
drastically increases in a DoS attack situation. These two patterns are modeled
in Maude and then formally composed to obtain the new improved ASV+SR
pattern. As a main result we show, by analyzing the quantitative properties of
ASV+SR with the statistical model checker PVeStA, that ASV+SR guarantees
stable availability at a reasonable cost.
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Outline. The paper is structured as follows: Sect. 2 introduces the notion of
stable availability and gives a short account of the prerequisites on rewriting
logic, Maude, and the statistical model checking of quantitative properties with
the PVeStA tool in Maude. In Sect. 3 we present the concept of formal patterns
and give three examples: (i) the general meta-object pattern (Sect. 3.1), (ii) the
ASV pattern (Sect. 3.2), and (iii) the SR pattern (Sect. 3.3). In Sect. 4 we
present the ASV+SR composition pattern and validate the properties of the
composed system using the PVeStA tool. We conclude by discussing related
work, summarizing our results and sketching further work.

2 Prerequisites

2.1 Rewriting Logic and Maude

Rewriting logic [21] is a simple computational logic to specify concurrent and
object-oriented systems as rewrite theories, that is, as triples (Σ,E,R), where
(Σ,E) is an order-sorted equational theory with syntax and type structure spec-
ified by the signature Σ, and with (possibly conditional) Σ-equations E; and
where R is a set of (possibly conditional) rewrite rules of the form t→ t′ if cond ,
with t, t′ Σ-terms, and cond the rule’s condition.

The Maude system [9] executes rewrite theories, with a self-explanatory type-
writer syntax almost isomorphic to the mathematical syntax. The key concept
in Maude is that of a module. An object-oriented module defines a class named
K and attributes a1 . . . , an. An object o in a given state can be represented as
a term of the form 〈o : K | a1 : v1, . . . , an : vn〉 where v1 . . . , vn are the cor-
responding values stored in those attributes. A message addressed to object o
with contents d can be represented as a term (o ← d); and all messages in a
system are then terms of sort Message . The distributed systems we consider in
this paper are systems, made up of objects that communicate with each other
by asynchronous message passing. The distributed state of such a system is a
multiset or “soup” of objects and messages, called a configuration. Mathemati-
cally, this is specified by declaring a sort Configuration with subsort inclusions
Object ,Message < Configuration , and an associative and commutative multi-
set union operator with empty syntax: : Configuration Configuration −→
Configuration and with identity element null .

For example, a simple client class may have name Client ; a simple server class
may have name Server and an attribute bf for storing the received messages
in a buffer. In a simple request-response message exchange pattern (cf. [27])
a client c sends request packets (req(c)) to the server. In response, the server
sends response packets (ack ) back to the client. The following term defines a
configuration containing one server object s with a request from c1 in the buffer,
two client objects and one message addressed to c1 .

〈s : Server | bf : req(c1)〉 〈c1 : Client |〉 〈c2 : Client |〉 (c1← ack)

The following rewrite rule defines the reaction of any server object s upon receipt
of a request (s← req(c)) from any client c.
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rl (s← req(c)) 〈s : Server | bf : b〉 → 〈s : Server | bf : b req(c)〉 (c← ack) .

The server adds req(c) to the buffer and sends an acknowledgement (c ← ack)
back to the client c. Although not illustrated by the rule above, upon receiving
message an object can send several messages to other objects, and can create
new objects.

Rewriting logic can naturally model concurrent systems, which can be both
real-time and probabilistic. Real-Time systems are supported by rewrite theories
(Σ,E,R) whose underlying equational theory (Σ,E) includes among its types
an algebraic data type Time representing time instants (which may be either
discrete or continuous), and whose global states are pairs of the form (t, r),
with t a term representing a “discrete” state, and r a time value of sort Time
representing the global clock. The rewrite rules in R can then be either instan-
taneous rules, which do not change the global clock, or tick rules, which advance
the global time (see [24]). Probabilistic concurrent systems, which may also be
real-time systems, are modeled by probabilistic rewrite rules of the form

l : t(x)→ t′(x,y) if cond(x) with probability y := πl(x)

where the righthand side term t′ has new variables y disjoint from the variables
x appearing in t which make the application of the rule non-deterministic. The
probabilistic nature of the rule is expressed by the probability distribution πl(x)
with which values for the extra variables y are chosen; where πl(x) is in general
not fixed, but parametric on the righthand side variables x. In this paper, we
use the PMaude [4] notation for probabilistic rewrite rules.

A parameterized module M [X :: P ] has a formal parameter X satisfying a
parameter theory P ; M can be instantiated by another module Q via a theory
interpretation V : P −→ Q, called a view, with the usual pushout semantics (see
[9]). We denote the resulting module by M [V ] or shorter by M [Q] if V is clear
from the context.

2.2 Statistical Model Checking of Quantitative Properties

Temporal logic properties of a probabilistic system can be model checked either
by exact model checking algorithms or, in an approximate but more scalable way,
by statistical model checking (see, e.g., [26,29,4]). The idea of statistical model
checking is to verify the satisfaction of a temporal logic property by statistical
methods up to a user-specified level of statistical confidence. For this, a large
enough number of Monte-Carlo simulations of the system are performed, and
the formula is evaluated on each of the simulations.

Current statistical model checking algorithms assume that the system is purely
probabilistic, i.e., that there is no nondeterminism in the choice of transitions.
Using the methodology presented in [4] and further extended in this work to the
case of reflective “Russian dolls” architectures, a wide class of object-oriented
probabilistic real-time distributed systems can be expressed as purely probabilis-
tic systems. In particular, all the distributed systems considered in this paper
fall within this broad class.
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To analyze the behavior of systems with respect to quantitative properties
related to performance and QoS, a quantitative temporal logic, where the result
of evaluating a formula is not a Boolean true/false value, but a real number,
can be used. For this purposes we use the QuaTEx quantitative temporal logic
[4], and the PVeStA [6] parallelization of its associated VeStA tool and model
checking algorithm [4]. In Sect. 4.2 we will present several QuaTEx expressions
formalizing crucial quantitative properties related to DoS protection and will
model check them in PVeStA. We refer the reader to [4] for a detailed descrip-
tion of QuaTEx expressions and their model checking algorithm. In this paper,
we will compute the expected value of a path expression based on definitions
of the form F (t) = if time() > t then EXP else © (F (t)), where © is the
next operator, time() is a state function returning the global time, and EXP is
a real-valued state function.

2.3 Stable Availability

Availability is a key security property by which a system remains available to its
users under some conditions. This property can be compromised by a DoS at-
tack, which may render a system unavailable in practice. What all DoS defense
mechanisms have in common is the goal of protecting a system’s availability
properties in the face of a DoS attack. But availability properties are quantita-
tive properties: some DoS defense mechanisms may provide better QoS proper-
ties and therefore better availability properties than others. In fact, even when
protected against DoS, performance degradation will typically be experienced
in some aspects of system behavior such as, for example, the average Time To
Service (TTS) experienced by clients, the success ratio with which clients man-
age to communicate with their server, or the average bandwidth (or some other
cost measure) that a client needs to spend to successfully communicate with its
server. Obviously, an ideal DoS protection scheme is one that renders the system
to a large extent impervious to the DoS attack, no matter how bad the attack
can get.1 That is, up to some acceptable and constant performance degradation,
the system behaves in a “business as usual” manner: as if no attack had taken
place, even when in fact the attack worsens over time. We call this property sta-
ble availability. As we shall show in Sect. 4, stable availability can be achieved in
some cases by using an appropriate meta-object architecture for DoS protection.

More precisely, the stable availability of a system assumes a shared channel
[14], where DoS attackers can at most monopolize a maximum percentage of the
overall bandwidth. Under these circumstances, stable availability is formulated as
a requirement parameterized by explicitly specified and quantifiable availability
properties such as, for example, TTS, success ratio, average bandwidth, and so
on. The system is then said to be stably available with respect to the specified

1 In the shared channel model of [14], attackers can have a potentially very large but
not absolute share of the overall bandwidth, so that honest users will still have some
bandwidth available. This is a realistic assumption in most situations, and a key
difference between DoS attackers and Dolev-Yao attackers, who, having full control
of the channel, can always destroy all honest user messages.
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quantities if and only if, with very high probability, each such quantity q remains
very close (up to fixed bounds ε) to a threshold θ (| q − ε |< θ), which does not
change over time, regardless of how bad the DoS attack can get within the
bounds allowed by the shared channel assumption.

3 Formal Patterns

Pattern-based approaches have been successfully introduced to help develop-
ers choose appropriate design and programming solutions [13]. However, these
informal patterns typically offer limited help for assessing the required func-
tional and non-functional properties. This is particularly important in the case
of distributed systems, which are notoriously hard to build, test, and verify. To
ameliorate this problem we are proposing to enhance pattern descriptions with
executable specifications that can support the mathematical analysis of qualita-
tive and quantitative properties; thus allowing the designer to give guarantees
on the behavior of the proposed solution.

A formal pattern Pat is structured in the usual way (cf. e.g. [25,12]) in context,
problem, solution, advantages and shortcomings (and other features such as
forces, related patterns which we mostly omit here for simplicity); but instead of
using UML or Java we describe the solution formally as a parameterized module
M [S] in Maude (with parameter theory S) and draw many of the advantages and
shortcomings of a pattern from formal analyses. Moreover, the context typically
describes also the assumptions of the parameter theory S.

Pattern composition Pat + Pat ′ of two patterns Pat and Pat ′ formalized as
parameterized Maude modules P [S] and P ′[S′] can be achieved by an appropri-
ate “parameterized view” (see [9]) connecting both patterns. For example, we
may instantiate S′ to P [S], yielding the composed pattern P ′[P [S]]. The prob-
lem statement and context of Pat+Pat’ can then be systematically derived from
those of Pat and Pat′.

In the following we present several formal patterns which can be very useful
to make distributed systems adaptable to changing and potentially hostile envi-
ronments, and show how to design and analyze such systems in a modular and
predictable way.

3.1 The Meta-object Pattern

Concurrency is not the only challenge for distributed systems: adaptation is
just as challenging, since many distributed systems need to function in highly
unpredictable and potentially hostile environments such as the Internet, and
need to satisfy safety, real-time and Quality of Service (QoS) requirements which
are essential for their proper behavior. To meet these adaptation challenges and
the associated requirements, a modular approach based on meta-objects can be
extremely useful. A meta-object pattern MO is defined as follows:

Context. A concurrent and distributed object-based system.
Problem. How can the communication behavior of one or several objects be

dynamically mediated/adapted/controled for some specific purposes?
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Fig. 1. Application of the ASV meta-object on a client-server request-response service

Solution. A meta-object is an object which dynamically mediates/adapts/con-
trols the communication behavior of one or several objects under it. In rewriting
logic, a meta-object can be specified as an object of the form 〈o : K | conf : c, a1 :
v1, . . . , an : vn〉, where c is a term of sort Configuration , and all other v1 . . . , vn
are not configuration terms. The configuration c contains the object or objects
that the meta-object o controls. Thus the parameterized module MO [X ] intro-
duces the meta-object constructor; the parameterX specifies the sorts s1, . . . , sn
and attributes a1, . . . , an of the controlled system.

Advantages and Shortcomings. MO defines a general control and wrapper
architecture; but may add communication indirection and the requirement for
language specific object visibility.

There are many different MO patterns: If c contains a single object, the meta-
object o is sometimes called an onion-skin meta-object [2], because o itself could
be wrapped inside another meta-object, and so on, like the skin layers in an onion.
More generally, cmaynot only contain several objects o1 . . . , om inside: it may also
be the case that some of these oi are themselves meta-objects that contain other
objects, which may again be meta-objects, and so on. That is, the more general re-
flective meta-object architectures are so-called “Russian dolls” architectures [22],
because each meta-object can be viewed as a Russian doll which contains other
dolls inside, which again may contain other dolls, and so on.

In the following we will present meta-object patterns that illustrate both the
onion-skin case, and the general Russian dolls case.

3.2 The ASV DoS Protection Meta-object Pattern

The ASV protocol [15] is a cost-based, DoS-resistant protocol where bandwidth
is used as currency by a server to discriminate between good and malicious users;
that is, honest clients spend more bandwidth by replicating their messages.

Context. Client-server request-reply system under DoS attack, shared channel
attacker model [14].

Problem. How can the system be protected against DoS attacks?
Solution. Informally described, the server and the clients are wrapped by

meta-objects with the following key features: The client wrappers attempt to
adapt to the current level of attack by exponentially replicating the client re-
quests up to a fixed bound. The server wrapper adapts to the level of the attack
by dropping randomly packets, with a higher probability as the attack becomes
more severe. Only the remaining requests are processed by the server.
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Fig. 1 illustrates the ASV meta-object pattern.
A first modularized formalization of the ASV protocol was given by AlTurki

in [5]. In this work we extend this specification by making its modularization
more explicit using parametrized modules. The modularized ASV meta-object
specification (ASV [S]) is parametric in the client-server system S. In particular,
we assume that S indicates the maximal load maxLoad per server. Clients have
a time-out window (which is set to the expected worst case round-trip delay
between the client and the server) and a replication threshold, i.e. the maximum
number of times a client tries to send requests to the server before it gives up.

We present only the behavior of the server wrapper in a little more detail.
The wrapper counts the incoming requests and places them in a buffer buf .
If the buffer length of the servers exceeds maxLoad , a coin is tossed to de-
cide whether an incoming message should be dropped or not, i.e., it is ran-
domly decided according to a Bernoulli distribution Ber with success probability
floor(maxLoad)/(cnt + 1.0). If the message is not dropped, a position of buf is
randomly chosen with uniform distribution Uni and the new message is stored
at this position (replacing another message).

crl (s← c) 〈s : asvServer | count : cnt , buf : L〉 →
if (y2) then 〈s : asvServer | count : cnt + 1.0, buf : L[y1] := c〉
else 〈s : asvServer | count : cnt + 1.0, buf : L〉 fi
if float(L.size) ≥ floor(maxLoad)

with probability y1 := Uni(L.size)

and y2 := Ber (floor (maxLoad) /(cnt + 1.0)).

In addition, the server wrapper periodically empties its buffer and sends the
contents to the wrapped server. Answers of the server are forwarded to the
client.

Advantages & Shortcomings. The ASV protocol has remarkably good proper-
ties, such as closely approximating omniscience [15]: although only local knowl-
edge is used by each protocol participant, ASV’s emergent behavior closely
approximates the behavior of an idealized DoS defense protocol in which all rel-
evant parameters describing the state of the attack are instantaneously known
to all participants. However, it cannot provide stable availability [11,23].

3.3 The Server Replicator Meta-object

In high-demand situations, Cloud-based services can benefit from the scalabil-
ity of the Cloud, i.e., from the dynamic allocation of resources. The Server
Replicator meta-object (SR) is a simple pattern that adapts to high-demand
situations by leveraging the scalability of the Cloud [11,23].

Context. Client-server request-reply system; possibility of provisioning addi-
tional resources.

Problem. How can the system adapt to an increasing amount of requests, e.g.,
caused by a DoS attack?
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Solution. The SR wraps instances of servers that provide a service, dynami-
cally provisions new such instances to adapt to an increasing load, and distributes
incoming requests among them.

The meta-object SR (SR[S]) is parametric in the client-server system S, whose
servers (of class (Server )) it creates instances of. In order to be replicable, the
servers in S need to fulfill a theory which specifies how a server instance is created
(replicate) and initialized (init); and how many requests it can handle within
a specific timeframe (maxLoadPerServer ). Additional parameters in S specify
a replication strategy which determines the overloading factor which must be
exceeded before a new server is provisioned.

SR performs the following tasks:

Provisioning New Instances of the Server. SR periodically evaluates its
replication strategy and, if necessary, spawns a new server instance. The behavior
of spawning a new server is described by the rewrite rule

crl (sr ← spawnServer ) 〈sr : ServerReplicator | server -list : SL, config : NG C〉
→ 〈sr : ServerReplicator | server -list : (sa; SL),

config : (NG.next) C replicate(sa) init(sa)〉
if sa := NG.new .

Removing Instances of the Server. SR winds down the number of replicated
servers when the load decreases. We do not model this behavior. One solution
would be to synchronize the communication between SR and a server instance
by using a buffer. SR sets a server instance it wants to remove as inactive and no
longer forwards requests to it. When an inactive server has processed all requests
in its buffer, it removes itself from the configuration.

Distribution of Incoming Messages. SR randomly distributes incoming re-
quests among its servers in a uniform way using the rule

rl (sr ← CO) 〈sr : ServerReplicator | server -list : SL, config : C〉 →
〈sr : ServerReplicator | server -list : SL, config : (y1 ← CO) C〉
with probability y1 := Random(SL) .

where Random randomly chooses a server from a list of servers.

Forwarding Messages to the Outside. Additionally, SR specifies rules to
forward messages that address client objects located outside its boundary.

Advantages & Shortcomings. SR can provide stable availability. However, the
cost of provisioning servers drastically increases in high-demand situations.

4 Stable Availability under Denial of Service Attacks
through Formal Patterns

How can meta-object patterns be used to make a Cloud-based client-server
request-response service resilient to DoS attacks with minimum performance
degradation, that is, achieving in fact stable availability at reasonable cost?
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Fig. 2. Application of the ASV+SR meta-object composition on a Cloud-based client-
server request-response service

We propose to investigate this question by composing a client-server system
S with appropriate meta-object patterns.

4.1 ASV+SR Meta-object Composition Pattern

Combining the ASV and SR meta-object patterns into ASV+SR enables us to
overcome their respective shortcomings while keeping their advantages.

Context. Client-server request-reply system under DoS attack, shared channel
attacker model [14]; possibility of provisioning additional resources.

Problem. How can the system be protected against the DoS attack and provide
stable availability at reasonable cost?

Solution. The application of the meta-object composition on S, SR[ASV [S], ρ],
(where ρmaps the formal parameter (Server ) to (asvServer ) and (maxloadServer )
to (maxLoad)) protects the service against DoS attacks in two dimensions of adap-
tion: (i) the ASV mechanism; and (ii) the SR replication mechanism. Fig. 2 gives
an overview of the composition.

We define the factor k that proportionally adjusts the degree of ASV protec-
tion in the meta-object composition, i.e., k reflects how much the ASV mecha-
nism is used compared to the SR replication mechanism. An overloading factor
of k = 1 means that the ASV mechanism remains nearly unused, while an over-
loading factor of k =∞ means that the replication mechanism is unused. Thus,
we propose an overloading factor of 1 < k <∞.

The replication strategy for computing the number of server replicas γ is
defined as

γ(m, t) = max

(
1,

m

maxLoadPerServer (t) · k
)

where m denotes the number of messages that have been received by the SR up
to time t; and maxLoadPerServer(t) is defined as

maxLoadPerServer (t) =

⌊
t

T

⌋
·maxLoadS

where T is the ASV server timeout period and maxLoadS denotes the buffer size
of the ASV server.
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Advantages & Shortcomings. We will show that the ASV+SR composition
provides stable availability under DoS attacks at the cost of provisioning a pre-
dictable amount of instantiated servers given by the overload factor.

4.2 Statistical Model Checking Analysis

We use the Maude-based specification of the ASV+SR meta-object pattern
with a client-server system to perform parallelized statistical quantitative model
checking on 20 to 40 cluster nodes using PVeStA. The expected values of the
following QuaTEx path expressions were computed with a 99% confidence in-
terval of size at most 0.01:

Client Success Ratio. The client success ratio defines the ratio of clients that
receive an acknowledgement from the server.

successRatio(t) = if time() > t then countSuccessful()/countClients()

else © (successRatio(t))

where countClients() and countSuccessful() respectively count the total number
of clients, and the number of clients with “connected” status.

Average TTS. The average TTS is the average time it takes for a successful
client to receive an acknowledgement from the server.

avgTTS (t) = if time() > t then sumTTS ()/countSuccessful()

else © (avgTTS (t))

where sumTTS () is the sum of the TTS values of all successful clients.

Number of Servers. The number of servers represents the number of ASV
servers that are spawned by the SR meta-object.

servers(t) = if time() > t then countServers()

else © (servers(t))

where countServers() is the number of replicated servers.
For statistical model checking purposes we set the parameters of the ASV and

SR meta-objects as follows:

ASV. The mean server processing rate is set to 600 packets per second, the
timeout window of the clients to 0.4 seconds, the retrial span of the clients to 7,
and the client arrival rate to 0.08.

SR. The check period is set to 0.01 seconds and we vary the overloading fac-
tor k (4, 8, 16, 32). Forward and replication delays are not considered in our
experiments.

The properties are checked for a varying number of attackers (1 to 200).
Each attacker issues 400 fake requests per second. It is of note that 1.5 attackers
already overwhelm a single server. The values of the ASV and attack parameters
correspond to the values chosen in [7,15]. Additionally, an initial generation delay
of 0.05 seconds is introduced and the duration of a simulation is set to 30 seconds.
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Fig. 4. Expected number of servers using the ASV+SR protocol

In the following, we will consider two general cases in which the SR can
provision: (i) an unlimited number of servers, and (ii) servers up to a limit m of
5 or 10 servers, because, due to economical and physical restrictions, resources
are limited. The results in (i) will indicate how many servers are needed to
provide stable service guarantees, while the results in (ii) will indicate what
service guarantees can still be given with limited resources.

Unlimited Resources. Fig. 3 shows the model checking results for a varying
overloading factor k with no resource limits. As indicated by Fig. 3(a), ASV+SR
can sustain the expected client success ratio at a certain percentage. Even for an
overloading factor of k = 32, a success ratio around 95% can be achieved. Com-
pared to an overloading factor of k = 4, a 7-fold decrease in provisioned servers is
observed (Fig. 4(a)), achieving a stable success ratio of only around 3% less. Fig.
3(b) shows that the same is true for the average TTS. ASV+SR outperforms the
ASV protocol, and furthermore achieves stable availability, for all performance in-
dicators. However, this comes at the cost of provisioning new servers. Fig. 4(a)
shows how many servers are provisioned. The results indicate that the factor k
defines a trade-off between the cost and the performance of stable availability.
SR by itself (k = 1) with unlimited resources (not shown in the figures) would
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Fig. 5. Performance of the ASV+SR protocol with a load factor of k = 4 and limited
resources

provide stable availability at a level as if no attack has happened, but would pro-
vision 134 servers for 200 attackers. Note that fluctuations in the results, e.g., the
average TTS in case of 60 attackers being lower than the average TTS in case of
40 attackers, are due to the provisioning of a discrete number of servers.

Limited Resources. Fig. 5 shows the model checking results for an overloading
factor of k = 4 and a limitm of either 5 or 10 servers that the SR meta-object can
provision. As indicated by Fig. 5(a), the success ratio can still be kept at a high
level under the assumption of limited resources. In fact, the protocol behaves just
as in the case of unlimited resources up to the point where more servers than
the limit would be needed to keep the success ratio stable. After that point, the
protocol behaves like the original ASV protocol (but with the equivalent of a
more powerful server) and the success ratio decreases. Nevertheless, it decreases
more slowly since now 5, respectively 10, servers handle the incoming requests
compared to the single server in the ASV case. Fig. 5(b) shows that the average
TTS behaves in a way similar to that of the success ratio. We only checked these
properties for an overloading factor of k = 4; for higher values of k, the attack
level at which stable availability is lost is higher and the rate at which the quality
subsequently decreases differs by a constant factor.

5 Related Work and Concluding Remarks

Here we discuss related work on defenses against DoS attacks and their formal
analysis. Related work on modular meta-object architectures for distributed sys-
tems, and on statistical model checking and quantitative properties has been
respectively discussed in Sects. 2.1 and 2.2.

There exist several approaches to formal patterns (see e.g. [10]); ours is dif-
ferent by focusing on executable specifications, quantitative analysis, and the
combination of formal and informal aspects. The standard book on security pat-
terns [25] does not discuss DoS defenses, although some of its patterns (such as
reflection, replication and filtering) can be related to our patterns.
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Defenses against DoS attacks use various mechanisms. An important class of
defenses use currency-based mechanisms, where a server under attack demands
payment from clients in some appropriate “currency” such as actual money,
CPU cycles (e.g., by solving a puzzle), or, as in the case of ASV, bandwidth. The
earliest bandwidth-based defense proposed was Selective Verification (SV) [14].
Adaptive bandwidth-based defenses include both ASV [15], and the auction-
based approach in [28].

Regarding formalizations and analyses of DoS resistance of protocols, a gen-
eral cost-based framework was proposed in [20]; an information flow charac-
terization of DoS-resistance was presented in the cost-based framework of [16];
and [1] used observation equivalence and a cost-based framework to analyze the
availability properties of the JFK protocol. Other works on formal analysis of
availability properties use branching-time logics [30,18]. Our own work is part
of a recent approach to the formal analysis of DoS resistance using statistical
model checking. The first paper in this direction used probabilistic rewrite the-
ories to analyze the DoS-resistance of the SV mechanism when applied to the
handshake steps of TCP [3]. ASV itself, applied to client-server systems, was
formally specified in rewriting logic and was analyzed this way in [7]. The for-
malization of ASV in rewriting logic as a meta-object was first presented in [5].
Likewise, cookies have been formalized in rewriting logic as a meta-object for
DoS defense in [8].

In this paper we have presented a formal pattern-based approach to the de-
sign and mathematical analysis of security mechanisms of Cloud services. We
have shown that formal patterns can help deal with security issues and that
formal analysis can help evaluate patterns in various contexts. In particular, we
have specified dynamic server replication (SR) and the ASV protocol as formal
patterns in the executable rewriting logic language Maude. By formally com-
posing the two patterns we have obtained the new pattern ASV+SR. We have
analyzed properties of the ASV+SR pattern using the statistical model checker
PVeStA, and were able to show as our main result that, unlike the two original
patterns, ASV+SR achieves stable availability in presence of a large number of
attackers at reasonable cost, which can be predictably controlled by the choice
of the overloading parameter.

Our current results rely on two simplifications: The client-server communica-
tion consists of a stateless request-reply interaction and the replication of servers
is only able to add but not to delete servers. As next steps, we plan to refine the
patterns to cope with the winding-down of resources at the end of a DoS attack
and with more complex client-server interactions where the server has to pre-
serve state. Moreover, in this paper we have only studied quantitative properties
of the patterns; it would be very interesting and useful to analyze also qualita-
tive properties. In [8] it is shown that adding cookies to a client-server system
preserves all safety properties. We conjecture that the same holds for the ASV
and ASV+SR protocols. Finally, we plan to continue with our pattern-based
approach and to build a collection of formal patterns for security mechanisms.
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