
Adaptive Optimization of Very Large Join
Queries

Reproducibility Submission Readme, SIGMOD 2018: mod066

Thomas Neumann (neumann@in.tum.de)
Bernhard Radke (radke@in.tum.de)

This readme describes how to reproduce the experimental results of the SIGMOD
2018 paper “Adaptive Optimization of Very Large Join Queries”. The original paper is
available at: https://dl.acm.org/citation.cfm?id=3183733.

TL;DR

1. download the ReproZip package from db.in.tum.de/˜radke/mod066/repro.rpz

2. extract the ReproZip package:
reprounzip docker setup repro.rpz <setupdir>

3. optionally, to run the “Other Systems” experiment for Figure 11 of the paper (see
Section 3 for details):

• download and extract db.in.tum.de/˜radke/mod066/other.tar.xz

• execute make in the extracted directory

• upload the resulting runtimes.csv into the container: reprounzip docker

upload <setupdir> runtimes.csv:runtimes.csv

4. run the experiments and generate the paper using the results of the experiments
(20 runs in total): reprounzip docker run <setupdir>

5. fetch the generated paper and review the new data:
reprounzip docker download <setupdir> main.pdf

1. Environment

We provide a ReproZip package containing the environment required to run the experi-
ments (db.in.tum.de/˜radke/mod066/repro.rpz). This package includes executables for
the various experiments as well as the workloads used for evaluation. The experiments

1

https://dl.acm.org/citation.cfm?id=3183733
http://db.in.tum.de/~radke/mod066/repro.rpz
http://db.in.tum.de/~radke/mod066/other.tar.xz
http://db.in.tum.de/~radke/mod066/repro.rpz


for Figure 11 of the paper (Other Systems) use themselves docker containers and are
therefore not included into the ReproZip package (see Section 3 on how to reproduce
this experiment).

To create a docker container from the ReproZip package, issue reprounzip docker

setup <setupdir>.

2. Experiments

The following experiments are carried out by the ReproZip package:

• measurement of optimization time and normalized costs for standard benchmarks
binary: bin/dp-master; input files: queries/<benchmark>/*

• measurement of optimization time and normalized costs for randomly generated
tree queries
binary: bin/dp-master; input files: queries/generated/*

• measurement of plan quality under different cost models
binaries: bin/dp-{seeking-truth,index}; input files: queries/generated/*

• measurement of normalized true costs for randomly generated tree queries with
noise on cardinality estimates
binary: bin/dp-noise; input files: queries/generated/*

• measurement of speedups achieved for the adaptive optimization framework using
the various bitset implementations described in the paper
binary: bin/dp-{128,var,sparse}; input files: queries/generated/*

• measurement of speedup of GOO and IKKBZ using the join lookup table
binary: bin/dp-joinlookup; input files: queries/generated/*

To run the experiments, issue reprounzip docker run <setupdir>. This will run
the experiments and generate a version of the paper (main.pdf) using the results of
the performed experiments. There are 20 different runs in total, that each generate a
plot or table. The last run (run 19) generates the complete paper. Issue reprounzip

docker download <setupdir> main.pdf to download the newly generated paper as
mod066.pdf into the current directory.

2.1. Details

There are 19 runs, each generating a different plot or table:

• Run 0 generates Figure 9 (times100.pdf)

• Run 1 generates Figure 10 (times1000.pdf)

• Run 2 generates Figure 11 (other.pdf, see Section 3)

2



• Run 3 generates Figure 12 (times5000.pdf)

• Run 4 generates Figure 13 (joinlookup.pdf)

• Run 5 generates Table 1 (benchmarks.tex)

• Run 6 generates Table 2 (costs-master.tex)

• Run 7 generates the inline table on the seeking the truth cost model in Section 6.4
(seek-summary.tex)

• Run 8 generates the inline table on the Cmm cost model in Section 6.4 (index-
summary.tex)

• Run 9 generates Table 3 (card-err-costs.tex)

• Run 10 generates the inline table on the quality of linearized DP in Section 6.7
(linearized-summary.tex)

• Run 11 generates Table 4 (bitset-summary.tex)

• Run 12 generates Table 5 (times-details-10.tex)

• Run 13 generates Table 6 (times-details-40.tex)

• Run 14 generates Table 7 (times-details-100.tex)

• Run 15 generates Table 8 (times-details-1000.tex)

• Run 16 generates Table 9 (times-details-5000.tex)

• Run 17 generates Table 10 (costs-seek.tex)

• Run 18 generates Table 11 (costs-index.tex)

• Run 19 generates the full paper (main.pdf)

Note that the individual runs are independent from each other. Each run will either
reuse the raw data from previous runs or run the required experiments, if they have not
been run yet. If you would like to run experiments again, the raw data of the experiments
has to be removed by clearing the container (reprounzip docker reset <setupdir>).
Further note that, due to gurobi licensing issues, we cannot provide an experiment that
reproduces the results of the MILP optimization. Therefore, there will be no numbers
of the MILP approach in Tables 1 and 2.

2.1.1. Runtime of the Experiments

Running all 20 reprounzip runs on a 12 core Intel(R) Core(TM) i7-6850K CPU @
3.60GHz with 64 GB of RAM took around 17 hours.

3



2.1.2. Note on normalized costs

As we calculate the normalized costs for each plan relative to the best known plan for
this query, there may be slight variations in the normalized costs that result from a
reprozip run. Depending on which algorithm runs into timeout during the experiment,
an algorithm that did not finish in the original experiment may finish in time and
give a better solution than the successful algorithms in the original experiment. Thus,
normalized costs of other algorithms for this query will become worse. The same could
of course happen the other way around: an algorithm that gave the best known solution
in the original experiment does not finish in the reproducibility run. In this case, the
normalized costs of this query will decrease for the other algorithms.

3. Other Systems (optional)

The experiment that lead to Figure 11 of the paper requires to run these other database
systems. We have setup shell scripts, Makefiles and sql code (schema as well as queries)
to create docker containers for PostgreSQL, MS SQL-Server and IBM DB2 and let these
systems optimize the queries. As the systems themselves are run in docker containers,
this experiment is not part of the main ReproZip package but can be downloaded from
db.in.tum.de/˜radke/mod066/other.tar.xz.

3.1. Environment

The experiment has to be run on a linux machine and requires bash, docker and make
to be installed.

3.2. Running the Experiment

To run the experiments, extract the tarball and run make in the extracted directory.
Optimization times are collected in runtimes.csv.

To upload the new measurements into the main ReproZip, issue reprounzip docker

upload <setupdir> <newly generated runtimes.csv>:runtimes.csv. To generate
Figure 11 with this new data, issue reprounzip docker run <setupdir> 2. To gen-
erate the complete paper again, incorporating the new data, issue reprounzip docker

run <setupdir> 19.
Running this experiment on a 12 core Intel(R) Core(TM) i7-6850K CPU @ 3.60GHz

with 64 GB of RAM took around 10 hours.

4. Plots and Tables

The following plots are generated by the ReproZip package:

• Figure 9: plots/times100.pdf

• Figure 10: plots/times1000.pdf

4

http://db.in.tum.de/~radke/mod066/other.tar.xz


• Figure 11: plots/other.pdf

• Figure 12: plots/times5000.pdf

• Figure 13: plots/joinlookup.pdf

The following tables are generated by the ReproZip package:

• Table 1: plots/benchmarks.tex

• Table 2: plots/costs-master.tex

• the two inline tables in Section 6.4: plots/{seek,index}-summary.tex

• Table 3: plots/card-err-costs.tex

• the inline table in Section 6.7: plots/linearized-summary.tex

• Table 4: plots/bitset-summary.tex

• Tables 5-9: plots/times-details-{10,40,100,1000,5000}.tex

• Tables 10 and 11: plots/costs-{seek,index}.tex

5. Hardware

The numbers in the original paper were optained by running the experiments on a 4
socket Intel(R) Xeon(R) CPU E7-4870 v2 @ 2.30GHz with 15 cores per socket and 1 TB
of main memory.

A. Detail on the executables

The binaries in bin are variants of the same program, each with slightly different imple-
mentation details:

• dp-128: always uses a 128 bit bitset for queries on up to 128 relations

• dp-index: uses the Cmm cost model

• dp-joinlookup: does not use the join lookup table

• dp-master: main implementation

• dp-noise: adds random noise to the cardinality estimates and investigates the
true costs (based on the true cardinalities) of the resulting plans

• dp-seeking-truth: uses the “seeking the truth” cost model

• dp-sparse: always uses the sparse bitset

5



• dp-var: always uses the variable sized bitset

All these binaries can be run using the following commandline variants (examples can
be seen in queries/Makefile and Makefile:

• bin/dp-master <algorithm> <output-file> <query>

optimize the given query using algorithm. Write the result into output-file.
algorithm: the optimization algorithm to run. One of: dphyp, dpsize, dpsizelin-
ear, ikkbz, ikkbzbushy (linearizedDP), goo, goodp (IDP with dphyp as inner DP),
goodp2 (IDP with linearizedDP as inner DP), quickpick, genetic, simplification,
adaptive, minsel
output-file: the file to write optimization time, plan costs and the final plan to
problem: a json representation of the query graph to optimize (see our workload
at queries/<workload>/* for examples)

• bin/dp-master collecttimes <files>

extract the optimization time from files. Writes one line per query and algorithm
to stdout
files: result files from running bin/dp-master <algorithm> ... (filenames
have to be of the form <query>-<algorithm>)

• bin/dp-master collectcosts <files>

extract the normalized costs from files. Writes one line per query and algorithm
to stdout. Costs are normalized to the costs of the best plan for the same query
in files
files: result files from running bin/dp-master <algorithm> ... (filenames
have to be of the form <query>-<algorithm>)

• bin/dp-master collectboth <files>

extract optimization times and normalized costs from files. Writes one line per
query and algorithm to stdout.
files: result files from running bin/dp-master <algorithm> ... (filenames
have to be of the form <query>-<algorithm>)

6


	Environment
	Experiments
	Details
	Runtime of the Experiments
	Note on normalized costs


	Other Systems (optional)
	Environment
	Running the Experiment

	Plots and Tables
	Hardware
	Detail on the executables

