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Umbra as a Time Machine: Adding a Versioning Type to SQL

Lukas Karnowski1, Maximilian E. Schüle2, Alfons Kemper3, Thomas Neumann4

Abstract: Online encyclopaedias such as Wikipedia rely on incremental edits that change text strings
marginally. To support text versioning inside of the Umbra database system, this study presents the
implementation of a dedicated data type. This versioning data type is designed for maximal throughput
as it stores the latest string as a whole and computes previous ones using backward diffs. Using this
data type for Wikipedia articles, we achieve a compression rate of up to 11.9 % and outperform
the traditional text data type, when storing each version as one tuple individually, by an order of
magnitude.

1 Introduction

Version management of texts is still an important issue due to various use cases. The
highlighted example is Wikipedia [Sc17], where people work decentrally on the creation
of articles. In order to review their work, version management is mandatory, as it allows
administrators to restore any previous version. As even versions of 2001—the founding
year of Wikipedia—are accessible, an efficient storage of the data is necessary. Such a data
storage should allow fast retrieval of previous versions, new versions to be inserted quickly
and consume as little memory as possible.

Temporal databases such TQuel [Sn87] or as included in the SQL:2011 standard [KM12]
restrict each tuple’s validity to an added time range. In contrast, systems for relational dataset
versioning such as Decibel [Ma16] lock on a higher granularity to track the history of whole
tables. VQuel [Ch15], OrpheusDB [Hu17] and LiteTree5 aim at combining SQL [Sc19] and
versioning, but do not compress similar text strings. A stand-alone system that includes text
compressing is Forkbase [Li20] but it is not interoperable with database systems.

CREATE TABLE wikidiff (title text, content difftext);

INSERT INTO wikidiff (SELECT 'example', BUILD('first', 'first␣version', 'second␣version'));

SELECT GET_CURRENT_VERSION(difftext) FROM wikidiff;

List. 1: Proposed data type DiffText for text versioning.

To measure the potential of compressing text strings, we have benchmarked storing strategies
on popular relational database systems using the Wikipedia page edit history. This work
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continues the study about versioning in main-memory database systems [SKS+19]: We
propose a versioning data type, that can be used as an SQL attribute to store multiple
versions of a text within one tuple (see List. 1). The developed data type for the Umbra
database system [NF20] is presented in Section 2 by considering the diff algorithm, the
memory layout and the implementation of the operations. Section 3 provides an evaluation
of the data type’s performance. Finally, Section 4 summarises the findings.

2 DiffText Data Type

In this section, we propose a DiffText data type to compress multiple versions of a text string
as one database attribute within a tuple. The data type is based on the BLOB or TEXT data
type that is available in many database systems to store byte sequences of any length. It thus
inherits their properties with regard to the memory layout. This includes flexible size within
a tuple to be enlarged as required, which is necessary when adding new versions. The data
type is used as an SQL attribute: its values are overwritten on updates and copied for each
occurrence as a column. This section presents the used algorithm for compressing strings,
the data type’s memory layout and necessary operations to retrieve versions out of a tuple.

2.1 Delta-Compression Algorithm

The DiffText data type applies delta compression to multiple versions of a string. It relies on
difference-based versioning as it stores at least the latest version as a snapshot and restores
the remaining ones using relative changes to the current version (backward diffs).

The idea is to access each byte of both versions only once. A function find_diff()

determines the first and the last differing byte between two consecutive versions. First, both
texts were compared from the beginning until the first differing byte has been found. The
process is then repeated from the end of the texts. All bytes between these two boundaries
found are called a patch and are part of the resulting diff even if they have bytes in common.

Example: The first step of the call find_diff(aacbb, adddbb) terminates after the second
byte (𝑎 ≠ 𝑑). The second step terminates after the third character from the back (𝑐 ≠ 𝑑).
The resulting diff is the string ddd, called patch, with the additional information that the
second and third characters in the first text must be replaced. A complete diff thus consists
of three parts, patch, start and end. The interval at which the patch must be applied is called
patchStart and patchEnd.

When more than two versions exist, an order must be defined in which direction the patches
will be applied. We decide in favour of backward diffs: The most current version is always
available as a complete text, whereas older versions are stored as the difference to the
version that was inserted afterwards.
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Example: Assuming a newer version 𝑇2 replaces the current one 𝑇1. Having two similar
text strings, the function find_diff() calculates the diff 𝐷𝑇2→𝑇1 =: 𝐷1, so that 𝑇1 can be
reconstructed out of 𝑇2 and 𝐷1. The entire text of 𝑇1 is then discarded and replaced by 𝐷1.
If another version 𝑇3 is added, the diff 𝐷𝑇3→𝑇2 =: 𝐷2 will be calculated and saved to replace
𝑇2. If we want to reconstruct 𝑇1, we will first apply 𝐷2 to get 𝑇2 and then apply 𝐷1 to get 𝑇1.

This process creates a chain of diffs that must be applied to restore older versions. Specifically,
the number of involved patches increases with the number of inserted versions. For this
reason, it is advisable to periodically save the complete version instead of calculating a
diff. This allows constant access times in O(1) to any version. Assuming that every third
version should be complete and two additional versions 𝑇4, 𝑇5 are inserted, the chain of diffs
would look like in Figure 1. Only two versions are complete and the remaining ones can be
restored using diffs.

𝐷𝑇2→𝑇1 𝐷𝑇3→𝑇2 T3 𝐷𝑇5→𝑇4 T5

Fig. 1: Chain of diffs, with every third version as a complete snapshot (bold).

2.2 Memory Layout

To enable efficient operations later on, all versions of a text string are stored as one object.
This leads us to the memory layout, which corresponds to the output of the presented
algorithm out of patches and corresponding ranges. The actual patch is saved separately
from the start and end of the diff. Figure 2 shows the schematic representation of the memory
layout of the DiffText data type and Figure 3 the associated code.

Current Offset + Length arraySize diffsToFullCount offset full patchStart patchEnd ... Patches   … Current Version Text

Header
Variable Length Data

Version Array Diffs and Full versions

Fig. 2: Structure of a DiffText tuple.

struct DiffTextRepresentation {

uint32_t currentOffset; // Offset of current version in data section

uint32_t currentLength; // Length of current version

uint32_t arraySize; // The size of the version pointer’s array

uint16_t diffsToFullCount; // Counter of diffs until next full version

struct { // Array of pairs, pointing into the data section

uint32_t offset; // Offset of version in data section

bool full; // Is this a full version?

uint32_t patchStart; // Start of patch

uint32_t patchEnd; // End of patch

} versionPointers[];

// Data section follows this struct immediately

};

Fig. 3: Source-code of the DiffText representation.
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The layout starts with a header that indicates the size of the subsequent area. This variable-
sized area contains all versions as diffs and is further divided into two parts: The first part
contains a version array out of an offset, a flag full, and a range (patchStart, patchEnd).
patchStart and patchEnd indicate the position that need to be changed in order to restore
the previous version. The offset acts as a pointer to the last area in which the associated
patch is located. Consequently, the last memory section is the concatenation of all patches
and complete versions from which any version can be restored.

Since the latest version is always stored as a complete snapshot, the header contains an offset
to the latest version in the data area in order to accelerate its access. The header also contains
the current number of diffs that must be applied to restore a version (diffsToFullCount).
Its value is incremented when a new version has been added. After reaching a predefined
number, instead of calculating a patch, a complete snapshot will be saved, as presented in
Section 2.1. This method ensures that each version can be extracted in O(1). As the text’s
length is not stored, the tag full in the version array indicates whether the corresponding
version has been stored as a complete snapshot instead of a patch.

For the offsets in the data area, 32 bit numbers have been used as Umbra’s text-based data
types are limited to 232 bytes. This restrains theDiffText data type as all versions concatenated
may not exceed a maximum size of 4 GiB. 16 bit was chosen for diffsToFullVersion, to
avoid diff chains longer than 65536 as the runtime increases linearly with the number of
patches.

Furthermore, only the offset is saved and the length of the patch is omitted. This is possible
as the offset of the subsequent diff determines the end of the previous one. An exception is
made for the current version, whose length is saved for fast retrieval.

2.3 Example for a DiffText object

For a better understanding of the memory layout, this section demonstrates the construction
of a DiffText object by the following example: The initial version “First” will be changed to
“First Version” by adding “Version”. Then the current version is set to “Second Version”.
The resulting DiffText objects are listed in Figure 4.
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currentOffset 0
currentLength 5
arraySize 0

diffsToFullCount 0
Data First

(a) One only version: “First”

currentOffset 0
currentLength 13

arraySize 1
diffsToFullCount 1

offset 0
full 𝑓 𝑎𝑙𝑠𝑒

patchStart 5
patchEnd 13

Data

First
␣Vers
ion

(b) First modification to “First Ver-
sion”.

currentOffset 5
currentLength 14

arraySize 2
diffsToFullCount 2

offset 0
full 𝑓 𝑎𝑙𝑠𝑒

patchStart 5
patchEnd 13
offset 0
full 𝑓 𝑎𝑙𝑠𝑒

patchStart 0
patchEnd 6

Data

First
Secon
d␣Ver
sion

(c) Second modification to “Sec-
ond Version”.

Fig. 4: States of a DiffText object when updating its entry with the following versions: (a) “First”,
(b) “First Version” and (c) “Second Version”. The current version is reconstructed out of the text
string in Data using currentOffset and currentLength.

Figure 4a shows the initial state with only one version. The version array is empty (arraySize
= 0) and the only content in the variable-sized memory area is the current version “First”.

After updating the entry, Figure 4b shows the second state with the version array containing
one entry. Since backward diffs are used, this entry contains information on how to restore
the previous version “First Version” from the current version “First”. In this case, the
content has to be cut off after “First”. Accordingly, the coded patch in the version is a
character string with a length of 0 (offset = 0). Since no length is stored in the version
array, the length is implicitly calculated from the start of the subsequent version. In this case
the following version is the current one, which is why the field currentOffset is considered.
The length of the patch is therefore currentOffset-versionPointers[0].offset=0. The
fields patchStart and patchEnd indicate at which point the patch must be inserted: In this
case, the interval [5, 13) corresponds to the added character string “␣version”.

Figure 4c depicts the final state after inserting “Second Version”. The version array now
contains two entries: the first entry remains unchanged, whereas the second specifies how
to restore “First Version” out of “Second Version”. This is done by replacing the word
“Second” with “First”, so the patch must contain the latter character string. The interval
[0, 5) results from the offset entry in the array and currentOffset in the header, i.e. the
first five characters in the data area (“First”). This patch is inserted in-between patchStart

and patchEnd in the area [0, 6) of the current version, which corresponds to the already
mentioned replacement of the first word.
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Also of interest is the field diffsToFullCount, which is equal to arraySize in our example.
If more versions are inserted and diffsToFullCount reaches a predefined threshold value,
a complete version will be saved, which is indicated by the tag full in the version array.
diffsToFullCount is then reset to 0 and the process starts again.

2.4 Implementation of the Corresponding Operations

Since the data type was developed in Umbra, which currently does not support UPDATE
operations, a copy of the previous state must be created for each operation. The data type
supports the following functions:

• BUILD(𝑇1, . . . , 𝑇𝑁 ) creates a DiffText object from a set of 𝑁 versions. 𝑇1 corresponds
to the oldest version and 𝑇𝑁 to the latest one. This can be used for recovery operations,
for example, when creating backups out of bare text strings.

• APPEND(𝐷,𝑇1, . . . , 𝑇𝑁 ) is a generalisation of the BUILD operation. It expects a DiffText
object 𝐷, to which the versions 𝑇1...𝑁 are appended.

• SET_CURRENT_VERSION(𝐷, 𝑇) is a specialisation of APPEND, as it modifies a single
version only, the standard operation for adding a new version.

• GET_VERSION_BY_ID(𝐷, 𝑁) extracts version 𝑁 from the given DiffText object. SQL
is typically indexed starting with 1, with lower numbers indicating older versions and
higher numbers corresponding to newer versions.

• GET_CURRENT_VERSION(𝐷) returns the latest version. If the data type contains 𝑀

versions in total, it is equivalent to GET_VERSION_BY_ID(𝐷, 𝑀). For performance
reasons, a separate and optimised operation is offered to retrieve the latest version.
The structure of the DiffText data type is designed to extract the latest version as
quickly as possible. This will be discussed later in more detail.

In addition, EXPAND(𝐷, 𝑀, 𝑁) is a unary database operator that extracts the versions within
the interval [𝑀, 𝑁] out of a single DiffText object. It expects a relation with a DiffText
column as input and returns 𝑁 − 𝑀 + 1 output tuples per input tuple. For performance
reasons, newer versions appear first (the output order is 𝑇𝑁 , 𝑇𝑁−1, . . . , 𝑇𝑀 ).

This subsection presents the implementation of the previously presented operations for the
DiffText data type.

2.4.1 Accessing Versions

Accessing an arbitrary version demands for the complete reconstructed text string. This
is trivial for GET_CURRENT_VERSION, which is stored as a snapshot. In addition, its access
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does not require to query the version array, only the offset and the length are read from the
header. Furthermore, instead of allocating memory for the returned string, a view to the
substring containing the snapshot is sufficient as return value.

The same optimisation will apply if the version requested by GET_VERSION_BY_ID is available
as a snapshot (full = true in Figure 3). If this is not the case, a new buffer must be created
for the return string. For performance reasons, the buffer size must be determined in advance.
This is not trivial, since any diffs in-between might increase, decrease or leave the length of
the resulting text unchanged. For this reason, GET_VERSION_BY_ID consists of 3 steps:

1. Finding the next complete version. This iterates from the requested version upwards
through the version array until a complete snapshot is found. This could also be the
latest version, this special case must be considered, since the most current version is
not contained in the version array.

2. Calculating the buffer size. This requires again an iteration but in reverse order. In
each step, the patchStart and patchEnd fields are used to calculate the resulting
buffer size. The required buffer size is the maximum of all sizes found during all
iterations.

3. Applying patches. In the last step, the version array is iterated downwards again and
the corresponding diff is applied in each step. After this process, the requested version
is available in the allocated buffer and ready to be returned.

This explains the separation into patchStart/patchEnd information and the actual patches
within the memory layout: The first two steps do not require the actual patch, but only the
meta information of each diff. This ensures optimal cache utilisation.

A further optimisation applies to EXPAND: Instead of iteratively calling GET_VERSION_BY_ID

for each requested version, the patch is applied incrementally, starting with the last requested
version. The implementation first calls GET_VERSION_BY_ID for the last requested version
and then uses a function getPreviousVersion(D,T) to determine the predecessors. This
implies that the order of the versions of the EXPAND operator is exactly counter-intuitive:
starting with newer and ending with older versions. For performance reasons, however, this
sequence is advantageous because only one step in the version array has to be carried out
for each tuple output.

2.4.2 Creating a DiffText object

The trivial case when creating a DiffText object is with exactly one existing version. For this,
the currentLength of the DiffTextRepresentation is set to the length of the single version.
The remaining fields are initialised with 0, the version array is empty and the variable data
area contains the current version only.
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If more than one version exists, the resulting object will hold all information for their
restoration. For this purpose, the diff is formed between two adjacent text strings by iterating
once over all bytes and forming the patch between the current and the subsequent version. If
the buffer already contains the text string to be inserted, no patches will be copied, but the
corresponding offsets have to be saved. After all patches have been created, the texts are
iterated again and the part relevant for the diff is copied into the data section of the newly
created DiffText object. Thus BUILD consists of two phases (1) Calculating the diffs and
(2) copying the patches to the final buffer.

APPEND is a generalisation of BUILD, because in addition to the new versions, an existing
DiffText object is specified, to which the versions are appended. Apart from this, APPEND
does not differ to BUILD, why it will not be discussed in more detail. The same applies to
SET_CURRENT_VERSION, the specialisation of APPEND, which reuses the two phases mentioned
above.

3 Evaluation

This section discusses the performance of the implementedDiffText data type. TheWikipedia
dumps from 09/01/2019 were used as test data, specifically pages 971896 to 972009. The
measurements have been conducted on an Ubuntu 18.04 LTS server with an Intel Xeon
CPU E5-2660 v2 processor with 2.20 GHz (20 cores) and 256 GiB DDR4 RAM.

The full dump has an uncompressed size of 119.9 MiB. First we evaluate the memory
consumption after all available versions have been inserted. We add all versions of all pages
in a DiffText object to better estimate the memory consumption. The result is shown in
Figure 6. Instead of a patch, a complete snapshot will be stored every 50th version. This
threshold, which restricts the chain length of patches, is referred to as 𝑋 in the following.
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Fig. 5: Memory consumption depending on the frequency of stored snapshots.

The full size of the DiffText object is 8.9 MiB, which is a reduction down to 15.2 % of the
original size. Figure 5 shows the total size of the DiffText object depending on the maximum
chain length. Once a value of 𝑋 = 20 has been exceeded, the memory consumption does
not improve significantly the longer the chains become.
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Header and Array1.27%

Snapshots

29.57%

Patches

69.16%

Fig. 6: Memory consumption with a
complete snapshot every 50th version.

The best improvement achieve a chain length of
𝑋 = 10000 with a reduction to 11.9 % of the original
size. Compared to a value of 𝑋 = 50, this means an
improvement of only 3.3 percentage points condon-
ing slower access to older versions. In [SKS+19] we
achieved a compression to 5 %, which could not be
reproduced in this work as the used Wikipedia dump
includes less versions per article.

Let us now consider the runtime of the operations. A
comparison with the normal TEXT data type is made by
inserting the same versions of a text into a table with
TEXT data as well as into a DiffText object. All revisions of one article are stored as one
single DiffText tuple, while each snapshot is stored individually as a tuple. The comparison
is therefore not representative as it compares different functions of the database system with
one another. Nevertheless, the same amount of information is stored in both cases and a
tenth of the memory is consumed in the case of the diff approach.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
Diff

Snapshot

Time in seconds

Insert (Compile) Insert (Execution) Select (Compile) Select (Execution)

Fig. 7: Comparison: Storing each version as a single snapshot or in one DiffText object.

The following query inserts data into DiffText objects and retrieves text strings out of them:
INSERT INTO t (text) VALUES (BUILD(T1, ..., TN)); SELECT EXPAND(text, 1, N) from t;

List. 2: Benchmark queries using the DiffText data type.

The snapshots of all texts are inserted into the database as follows and then queried again:
INSERT INTO t (rev_id, text) VALUES (1, T1), ..., (N, TN); SELECT text from t;

List. 3: Benchmark queries using one tuple for each version.

Figure 7 compares the cumulative compilation and execution times of both approaches.
The diff approach performs better than the snapshot approach in all metrics. The snapshot
approach creates a tuple for each version and requires significantly more operations to insert
the content.
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4 Conclusion

In this work an implementation of a diff-based data type was presented, which is required for
use cases like Wikipedia. New versions are created regularly, although older texts must still
be accessible. The data type presented is implemented for the Umbra database system and is
based on the normal text data type. The memory layout is designed for cache efficiency and
consists of a header, a version array and the data area with patches and complete versions.
The diff algorithm used is simple and can create diffs with just a single pass over the text.

The data type achieves a compression rate of up to 11.9 % of the original size for Wikipedia
articles and is faster than the direct comparison with normal texts in both compilation and
execution time. No other database system offers a similar data type so far, and research in
this area is rather limited. Possible future optimisations for the data type include a larger
storage capacity, storing older versions on background memory and a diff algorithm with
stronger compression.
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