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Abstract The large performance gap between main

memory and secondary storage accounts for many de-

sign decisions of traditional database systems. With the

upcoming availability of Non-Volatile Memory (NVM),

which has latencies in the same order of magnitude

as DRAM, is byte-addressable and persistent, a com-

pletely new type of technology is added to the mem-

ory stack. This changes some basic assumptions such as

slow storage, block granular access, and that sequential

accesses are much faster than random accesses. New

ideas are therefore needed to efficiently leverage NVM.

Although several new approaches can be found in the

literature, the exact role of NVM is not yet clear. In

this paper, we survey recent work in this area and clas-

sify the existing approaches. We focus on two key chal-

lenges: (1) integration of NVM into the memory hierar-

chy and (2) the design of NVM-aware data structures.

We contrast the different approaches, highlight their ad-

vantages and limitations, and make recommendations.
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1 Introduction and Motivation

With manufacturers finally getting close to releasing

Non-Volatile Memory (NVM)1, it has gained a lot of

popularity recently. This new storage technology is a

hybrid between DRAM and flash (SSD): It combines

byte-addressability and low read latencies (similar to

those of DRAM) with the persistence and density of

SSDs. In addition, the monetary cost per GB of NVM

is predicted to be between that of DRAM and SSDs.

Thus, it would be possible for NVM to replace one

or both of these technologies. However, there are also

drawbacks such as the limited write endurance and the

higher write latency compared to DRAM as well as

smaller capacities than disks. Therefore, NVM might

not be the all-in-one solution, but instead a new layer in

the memory hierarchy. In the first part of this work, we

present possible server architectures for NVM together

with their opportunities and limitations. After that, we

survey software solutions for these architectures.

Traditional DBMSs are typically optimized to deal

with the trade-offs of fast, volatile memory and slow,

persistent storage. NVM disrupts this assumption and

opens up new possibilities for many components of a

database system. As highlighted in [62], a lot of poten-

tial is lost when simply treating NVM like DRAM or

disk and reusing traditional abstractions. Hence, there

is a need for new techniques to fully leverage NVM.

The most obvious starting points are a faster recov-

ery and the utilization of efficient random accesses [10,

14, 19, 35, 50, 63]. Much of the recent work examines

primary data and index structures such as B+-trees

[16, 20, 52, 61] or log-structured merge trees [27, 42, 43].

1 Also known as Persistent Memory (PM), Non-Volatile
Random Access Memory (NVRAM), or Storage Class Mem-
ory (SCM)
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Our goal is to discuss recent work in the area of data

management on NVM and to give a perspective for fu-

ture research. We, therefore, focus on the storage com-

ponent of data management systems, i.e., which data

placement strategies would be possible and in which

aspects of data management is NVM appropriate.

We first give an overview of NVM characteristics

in Section 2. After that, Section 3 discusses how NVM

hardware can best be added to current systems and

then survey previously proposed storage engines in Sec-

tion 4. Finally, we summarize our findings and give an

outlook on future research directions in Section 5.

2 NVM Basics

2.1 History

In the early 70s, Leon Chua predicted the existence of

the memristor [21], a fundamental circuit element ca-

pable of storing and retaining a state variable. In the

late 2000s, a team at HP Labs discovered the mem-

ristor in the form of Resistive RAM (RRAM) [29, 60].

Since then, other memory technologies that exhibit the

memristor property, i.e., the ability to store and retain a

state variable, have been identified, e.g., Phase-Change

Memory (PCM) [38] and Spin Transfer Torque Mag-

netic RAM (STT-MRAM) [33]. In the industry, these

novel memory technologies are grouped under the um-

brella term Storage-Class Memory (SCM) or Persis-

tent Memory (PM). Here, we use the term Non-Volatile

Memory (NVM).

After decades of research, the advent of NVM seems

to be imminent. Intel has recently announced availabil-

ity of its Optane DC Persistent Memory large-capacity

DIMMs (Dual Inline Memory Module), based on a

new NVM technology called 3D XPoint [3], for devel-

opers with a broad commercial availability for early

2019 [7]. Furthermore, there have been recent break-

throughs in the industry efforts to standardize differ-

ent Non-Volatile DIMMs (NVDIMMs) form factors [1].

Moreover, Microsoft Windows [37] and Linux [8] have

both announced support for NVDIMMs.

2.2 Properties

NVM promises to combine the low latency and byte-

addressability of DRAM, with the density, non-volatility,

and economic characteristics of traditional storage me-

dia. Regarding byte-addressability, even if both DRAM

and NVM could be accessed one byte at a time, modern

CPU architectures still access them in “blocks” referred

to as cache-lines (typically 64 Bytes). However, a more

Table 1 Comparison of the characteristics of DRAM with
those of three NVM candidates [45].

Parameter DRAM PCM STT-MRAM RRAM

Read Latency 50 ns 50 ns 10 ns 10 ns
Write Latency 50 ns 500 ns 50 ns 50 ns

Endurance >1015 108–109 >1015 1011

Density Low Medium Low High

important aspect of byte-addressability is the possibil-

ity of the device being directly accessed by the CPU

through its caches, unlike most storage devices. More-

over, most NVM technologies exhibit asymmetric laten-

cies, with writes being noticeably slower than reads. Ta-

ble 1 summarizes the characteristics of three NVM can-

didates, RRAM, PCM and STT-MRAM, and compares

them with those of DRAM. Like Flash Memory, NVM

supports a limited number of writes; yet, from a mate-

rial perspective, some NVM candidates promise to be as

write-enduring as DRAM. We anticipate that the issue

of NVM’s limited write endurance will be addressed at

the hardware level, such as already proposed by previ-

ous work [44, 57]. These candidates also promise to fea-

ture even lower latencies than DRAM. However, while

its manufacturing technology matures, we expect the

first few generations of NVM to exhibit higher laten-

cies than DRAM, especially for writes. Given its non-

volatility, idle NVM cells do not consume energy, con-

trary to DRAM cells that constantly consume energy to

refresh their state. Consequently, NVM has the poten-

tial to reduce energy consumption, albeit, except for

embedded systems where NVM chips are simple and

have much lower power leakage than DRAM [34], this

potential has yet to be shown for NVM DIMMs which

embed complex logic and buffers to optimize for access

latency and bandwidth. The aspect of economic costs

combined with typical access characteristics was first

discussed in the context of the five-minute rule [31],

which states that disk pages accessed every five min-

utes or less should be cached. Thirty years later, this

rule was revisited and also briefly considers upcoming

NVM technologies, but with more focus on SSDs [12].

In terms of security, it is often imperative that only

encrypted data becomes persistent. Therefore, Optane

DC Persistent Memory, for example, offers encryption

as a built-in hardware feature [7].

2.3 NVM Access Model

The SNIA (Storage Networking Industry Associa-

tion) recommends to manage NVM devices through a

file system, similar to HDD and SSD [2]. Based on that,

applications can access an NVM device via two dif-

ferent methods, as seen in Figure 1. In the first one,
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Fig. 1 Basic access methods to NVM device.

files on NVM can be accessed through standard system

calls such as open, read, write, etc. This enables exist-

ing systems to take advantage of NVM performance to

a certain extent, without requiring additional integra-

tion effort, since the file system interface is kept the

same. Furthermore, file systems already provide most

of the functionality required for managing a storage

device: naming, corruption handling, persistent alloca-

tion, etc. Several general purpose NVM-aware file sys-

tems were proposed to better leverage NVM properties

while maintaining the same interface to applications.

Some examples of such file systems are: BPFS [23],

PMFS [26], HiNFS [48], SCMFS [65], and NOVA [67].

In the second case, given NVM’s byte-addressability

and low latency, data in NVM can be accessed via load

and store instructions through the CPU caches with-

out buffering it in DRAM. Specialized applications like

databases usually implement their own management

of resources and might desire to leverage load/store

semantics. To enable that, the file system must offer

zero-copy (i.e., without any DRAM buffering) memory

mapping of files residing on NVM to the application’s

virtual memory space. As an example, this feature is

supported by ext4 [5] on Linux kernels 4.7 and above

under the name Direct Access (DAX) [4]. Any load and

store operation issued to an address inside the specified

memory mapped region will access the NVM device di-

rectly. While this access method loses the benefits of

transparent memory defragmentation and swapping en-

abled by the duality of device and DRAM pages, the

virtual memory indirection still provides benefits such

as: process isolation, position independent code/data,

and memory sharing between processes. Without vir-

tual memory, applications relying on these functionali-

ties would have to be reconsidered.
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Fig. 2 Volatility chain in a 2-core x86-like processor.

2.4 NVM Programming Challenges

With the unique opportunities brought by NVM comes

a set of novel programming challenges: (1) data consis-

tency, (2) data recovery, (3) persistent memory leaks,

(4) partial writes, and (5) persistent memory fragmen-

tation. We briefly discuss these challenges in the follow-

ing.

Data Consistency. NVM can be accessed directly with

load and store semantics. The path from NVM to CPU

registers is long and mostly volatile, as illustrated in

Figure 2. It includes store buffers and CPU caches,

over all of which software has little control. Addition-

ally, modern CPUs implement complex out-of-order ex-

ecution and either partial store ordering (Intel x86) or

relaxed-memory ordering (ARM, IBM Power). Conse-

quently, memory stores need to be explicitly ordered

and persisted to ensure consistency. Current x86 CPUs

provide the clflush, mfence, sfence, and non-temporal

store instructions (movnt) to handle memory ordering

and data durability. Additional instructions, namely

clflushopt and clwb, have been announced for future

platforms [6]. clflush evicts a cache line and writes it

back to memory. It is a synchronous instruction and

does not require a memory fence to be serialized. sfence

is a memory barrier that serializes all pending stores,

while mfence serializes both pending loads and stores.

Non-temporal stores bypass the cache by writing to a

special buffer, which is evicted either when it is full,

or when an sfence is issued, as shown in Figure 2.

clflushopt is the asynchronous version of clflush; it is

not ordered with writes, which improves its through-

put. Finally, clwb writes back a cache line to memory,

but without evicting it from the CPU cache, thereby

benefiting performance when data is accessed shortly

after it is persisted. clwb executes asynchronously and

is not ordered with writes. Both clflushopt and clwb

require two sfences to be serialized, as illustrated in
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Figure 2; the first sfence ensures that the latest version

of the data is flushed, while the second sfence ensures

that the flushing instruction finishes executing.

Data Recovery. When a program restarts, it loses

its previous virtual address space, including its mem-

ory mappings, invalidating any stored virtual pointers.

Given that NVM is addressed using virtual pointers

(just like DRAM), there is a need to devise ways of dis-

covering and recovering data stored in NVM. Using a

file system on top of NVM provides a way of discov-

ering data after a restart. Reads and writes to a file

created and memory mapped by an NVM-aware file

system are made with direct load and store instruc-

tions. Hence, NVM-aware file systems should not have

a negative performance impact on the application’s per-

formance. Therefore, a potential solution would be to

create one file per data object. However, database sys-

tems can have millions of objects of different sizes, rang-

ing from a few bytes to several gigabytes, making this

solution unrealistic. Therefore, as an alternative, NVM-

aware allocators [18, 47, 53, 59] have been introduced

which use offsets instead of virtual pointers to support

restarts and re-mappings of the address space.

Non-Volatile Memory Leaks. Memory leaks pose

a greater problem with persistent memory than with

volatile memory: they are persistent. Additionally, NVM

faces a new class of memory leaks resulting from soft-

ware or power failures. To illustrate this problem, con-

sider the example of a linked list. If a crash occurs dur-

ing an append operation after a new node was allocated

but before it was linked to the tail node, the NVM allo-

cator will remember the allocation while the data struc-

ture will not, leading to a persistent memory leak, as

depicted below:

5 12 9 Failure-induced
persistent memory leak

Partial Writes. We define a p-atomic store as one

that is retired in a single CPU cycle, i.e., a store that is

immune to partial writes. Current x86 CPUs support

only 8-byte p-atomic stores; larger write operations are

prone to partial writes since the CPU can speculatively

evict a cache line at any moment. For example, suppose

we want to write the string below to NVM:

              V  o  l  a  t   i   l  e 

M e m o  r  y

CL1

CL2
Cache

If a failure occurs during the write operation, assum-

ing we write 8-bytes at a time, the corresponding NVM

string location might be in one of the following states:

(1) “”; (2) “Volatile”; (3) “\0\0\0\0\0\0\0\0Memory”;

(4) “Volatile Memory”. Cases 2 and 3 can result, for

instance, from the writing thread being descheduled.

Meanwhile, the CPU might speculatively flush the first

or the second cache line due to a set conflict. A fail-

ure at this time would corrupt the string in NVM. A

common way of addressing this problem is to use flags

that can be written p-atomically to indicate whether a

larger write operation has completed.

Non-Volatile Memory Fragmentation. While a

restart remains a valid, but last-resort way of defrag-

menting volatile memory, it is not effective in the case

of NVM – objects stored in NVM survive restarts. This

is a similar problem to that of file systems. However,

file system defragmentation solutions cannot be applied

to NVM because file systems have an additional indi-

rection layer: they use virtual memory mappings and

buffer pages in DRAM, which enables them to transpar-

ently move physical pages around to defragment mem-

ory. In contrast, NVM mappings give direct physical

memory access to the application layer without buffer-

ing data in DRAM. Hence, NVM cannot be transpar-

ently moved as it is bound to its memory mapping.

From the above challenges, we conclude that there is

a need for novel programming models for NVM, which

must provide data discovery and recovery mechanisms,

a data consistency model, and prevent failure-induced

memory leaks. A recent tutorial elaborated in detail on

existing techniques to fulfill each one of these require-

ments [49]. These techniques are usually provided in

libraries that serve as an interface between NVM and

the programmer. Among many libraries, Intel’s Persis-

tent Memory Development Kit (PMDK) [9] is emerging

as a common standard.

3 NVM in the Hardware Landscape

NAND (flash) SSDs were introduced in the early 90s

and by the beginning of the 2000s they were already

common in servers and data centers. While they differ

from classical HDDs in their internal operation, the in-

terface exposed to the user application is very similar,

i.e., a block-based interface. Therefore, whenever talk-

ing to the storage device, the application must convert

data from its logical domain (e.g., an object) residing

in DRAM to a serialized format to be stored in per-

sistent devices. Due to the common interface, better

performance, and initially higher cost, SSDs have nat-

urally found their place between DRAM and HDD in

the modern storage hierarchy.

Not only systems rely on SSDs to implement a per-

sistent cache to HDDs, but also hybrid devices were

common even in a consumer-level, due to the initial

high costs of SSDs. Nowadays SSDs have evolved to a

point where they offer a much higher performance, im-

proved reliability, and lower cost compared to the first

models released. It is therefore not unrealistic that SSDs



[Preprint] Data Management on Non-Volatile Memory: A Perspective 5

CPU CPU

DRAM

SSD
NVM

DRAM

SSD

NVM

CPU CPU CPU CPU

NVM

Fig. 3 Placement strategies for NVM in the hardware land-
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NVM-only.

will largely replace HDDs in the near future – with the

exception of archival data.

With this brief history of SSDs in mind and watch-

ing all the advancements and buzz going on around

upcoming NVM technologies, one is to wonder if there

is really any reason for excitement or if history is going

to simply repeat itself. While bandwidth, latency, reli-

ability, and density of upcoming NVM devices promise

to be much better than modern top-tier SSDs, these

aspects have little impact on the way we design sys-

tem architectures when compared to the aspect of byte-

addressability. In this survey, whenever we refer to byte-

addressability the focus is the direct access aspect, rather

than the granularity in which the access occurs. This

single characteristic enables a much higher degree of

flexibility regarding the placement of NVM devices in

the modern storage hierarchy.

In the following subsections, three strategies for in-

tegrating NVM devices into modern and future hard-

ware landscapes are categorized, as seen in Figure 3 and

similarly discussed in [54]. While approaches can be

easily combined and extended, we consider that these

basic categories offer a common ground to initially clas-

sify existing systems.

3.1 NVM below DRAM

A first option for placing NVM devices in the storage

hierarchy is to follow the intuitive approach and use

them as middle-tier between DRAM and SSD. Such a

design is justified by the fact that the expected initial

NVM performance and price falls exactly in between

the gap of these devices. This allows systems with NVM

to implement a persistent caching for SSDs [27, 43].

Two other alternatives are: statically placing data

in NVM or SSD based on the application logic, or al-

low data to dynamically move between these devices

based on a certain policy. Both approaches differ from

caching by the fact that only a single persistent copy

of data exists, either in NVM or SSD. However, based

on the assumption that the initial cost per GB of SSDs

will remain much lower than that of NVM, saving space

on SSD is probably not advantageous if that would in-

troduce non-trivial complexity to the data placement

algorithm.

Regarding the interaction with DRAM, in this place-

ment strategy, NVM is seen as a storage device. Similar

to SSD, data is always copied from NVM to DRAM be-

fore being read or written by the CPU, but possibly in

a much smaller granularity (one or a few cache-lines).

Therefore, well-known techniques for defining page sizes

can still be applied to optimize data movement between

devices [17]. Such an approach allows the developer to

control when data is made persistent, e.g., via buffer

pools, independent of the operating system or the hard-

ware, which significantly reduces the implementation

complexity required for guaranteeing consistency.

According to [25], NVM can also act as an anti-

cache [24], with data being moved from DRAM to the

lower NVM layer when the amount of data exceeds a

certain threshold. Such an anti-cache is based on the

ideas that exactly one copy of a data element exists at

any time and that no synchronization mechanisms are

required between a cached and a major copy.

3.2 NVM side-by-side with DRAM

With NVM being directly accessed by the CPU through

the memory bus, leveraging the opportunity of low la-

tency direct access, while non-trivial, has potential to

improve the performance of systems. On the one hand,

systems with high performance requirements, like OLTP,

will still run mainly on faster DRAM. On the other
hand, in cost-efficient scenarios one might decide for

slightly lower performance if that means considerably

lower hardware costs. Nevertheless, assuming that the

latency of DRAM will still be lower than NVM, a care-

ful placement of data is required to achieve the best of

both worlds. In that regard, the placement of data in

either DRAM or NVM could be static or dynamic.

A static placement of data implies that system de-

velopers or users explicitly choose the most appropriate

device. Examples of that are hybrid data structures,

such as B+Trees placing the leaf nodes in NVM and

inner nodes in DRAM [52]. Different node sizes can be

employed to better leverage the characteristics of either

DRAM or NVM and optimize data movement to CPU

caches. This approach offers benefits such as low DRAM

consumption (since inner nodes are only a small fraction

of the total number of nodes) and recovery simplicity

(as leaf nodes do not have to be recovered). Another

example is the proposal to extend the SQL standard

to expose the underlying hardware landscape and al-



6 Philipp Götze et al.

low the user to explicitly specify if a table, column, or

partition should be DRAM-based or NVM-based [13].

Statically placing data, while simpler, has the lim-

itation of not being able to adapt to changes in the

workload and hardware. Abstractions well known to

database systems, such as buffer policies, can be used to

dynamically decide where data is placed. For example, a

leaf-node of a B+-Tree being frequently accessed could

be placed in DRAM to leverage its lower latency and

higher bandwidth. Cost functions to evaluate and pre-

dict access patterns should be used to decide how and

when movement of data is advantageous. One impor-

tant thing to consider in such a scenario is that, while

data in HDD/SSD must always be loaded to DRAM,

in a side-by-side scenario data in NVM can either be

read directly or transferred to DRAM prior to the ac-

cess. As an example, sequential scans could access data

directly in NVM, thereby avoiding trashing the DRAM

buffer and hiding higher NVM latencies through hard-

ware pre-fetching.

3.3 NVM-only

A third scenario extrapolates the expectations of up-

coming technologies and considers that NVM can be

used as universal memory, eliminating the boundaries

between volatile and persistent devices. In such case,

NVM devices would have to provide performance char-

acteristics equal or better than other volatile memory

technologies. While this scenario might be unrealistic

in the short and midterm, thinking about the design of

systems in such a context raises interesting discussions.

Algorithms for storage and recovery of databases

having non-volatile main memory have already been

discussed for a long time [10]. More recently the discus-

sion was re-ignited [14] in view of modern technologies

announced by hardware vendors [3]. While the concept

of non-volatile and byte-addressable main-memory is

common to most works, algorithms vary depending on

the assumptions made about the characteristics of the

underlying hardware, such as write endurance, latency,

and persistence guarantees.

In an even more extreme scenario, CPU caches and

registers could also be made persistent to a point where

volatility is completely eliminated from the hardware

system. CPUs would require additional support for deal-

ing with such an architecture in the case of power fail-

ures. It is not intuitive, however, to think about sys-

tems for a landscape where volatility is completely elim-

inated. Even if data is always persistent and available,

modern systems still present a clear separation between

data that makes sense only during runtime and data

that has to be persistent. As an example, consider that

persisting the state of a reference counter or of a latch

would require the application to guarantee that a dead-

lock never occurs since the state cannot be reset by

rebooting. While challenging, designing a system that

fully leverages persistency in a consistent way could re-

sult in a never-stopping/no-recovery system with sig-

nificantly improved availability.

4 NVM-aware Data Structures and Engines

In this section, we evaluate storage engines for NVM-

based hardware architectures, as introduced in Section 3.

We define a storage engine as the part of a data manage-

ment system that provides transactional semantics on

top of the underlying hardware; i.e., the atomicity, con-

sistency and durability aspects of the ACID principle.

We focus on tree-like structures due to their ubiquity

in database systems [22].

In the following, we select representative existing

techniques and categorize them depending on how they

use NVM into two groups: First, NVM-direct en-

gines (Section 4.1), which use NVM as their primary

working memory and build on the introduced NVM-

only and NVM + DRAM hardware architectures. They

perform updates directly on NVM, without buffering in

DRAM. Thus, making all changes immediately persis-

tent, which is a double-edged sword: On the one hand

it allows for instant restarts and a single layer architec-

ture, but on the other hand, poses significant challenges

in ensuring failure atomicity.

The second group (Section 4.2) introduces buffered

engines that avoid this issue by updating data in a

DRAM buffer before writing it back to NVM. In addi-

tion, they are able to bundle multiple writes together,

thus reducing the wear and amount of high latency

writes. The downside is that they need to perform ad-

ditional work to manage the DRAM buffer.

4.1 NVM-direct Engines

Storage engines of this category place and work on data

directly in NVM. Thus, they essentially use NVM as a

traditional random access memory (i.e., DRAM), which

is also durable. At a first glance, working directly and

exclusively on NVM is very promising:

Instant Restart. On block-based devices, it is not

possible to update individual data items (hundreds of

Bytes), but only entire blocks (several thousand Bytes).

Therefore, it is infeasible to write back individual data

records. Instead, these random writes are buffered and

a write-ahead log [46] is used to ensure durability. Dur-
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ing restart, the log is used to redo changes that have

not been written back (recovery phase).

The byte-addressability of NVM makes it feasible to

persist individual records immediately. Thus, eliminat-

ing the need for a DRAM-resident buffer and making

it possible to maintain an up-to-date state on durable

storage (NVM). The advantage is two-fold: (1) data is

only written once (no log) and (2) restart times are

greatly reduced (no recovery phase).

Single Layer. Around 40 % of the work done by a tra-

ditional database system is caused by logging and buffer

management [32]. An NVM-direct engine can immedi-

ately avoid this due to its one layer architecture.

NVM Capacity. Due to the high density of NVM

(compared to DRAM), NVM-direct engines can han-

dle much larger workloads than main memory engines.

However, there is no free lunch and NVM-direct en-

gines also pose new challenges. In the remainder of this

section, we summarize the existing literature on this.

4.1.1 Failure Atomicity

NVM-direct engines are able to immediately persist up-

dates and thereby avoid costly restart procedures. How-

ever, there is a flip side to this coin: Even intermediate

and potentially inconsistent changes to a data struc-

ture might be persisted because it is not possible to

prevent writes from being propagated to NVM (cf. Sec-

tion 2). Therefore, it is necessary that data structures

are always in a consistent state or there is additional in-

formation (e.g., logs) that can be used to restore them.

This property is called failure atomicity.

Conceptually, failure atomicity can either be accom-

plished with in-place updates and logging or with shad-

owing [10]. However, for efficiency reasons, multiple tech-

niques have been proposed to implement and (some-

times) combine these concepts:

Atomics. Atomic operations (e.g., compare-and-swap)

serve as a building block for all following techniques.

The NV-Tree [68] uses them to build unsorted B-Tree

nodes: The data is first written into an empty slot

and flushed to NVM. Afterwards, a flag is atomically

swapped to indicate that the new slot is valid and oc-

cupied. To reduce the search overhead (linear scan),

the FPTree [52] adds a fingerprinting array which uses

hashing to avoid costly scans. Additionally, this tech-

nique has been used to construct a radix tree directly

on NVM called WORT [39]. Note, that failure atomicity

does not imply thread safety: Two threads could con-

currently write to an unoccupied slot, thus corrupting

each other’s data.

Multi-Word Atomics For performance reasons, B-

Tree nodes often use sorted arrays, which, however,

cannot be updated atomically due to the limited size

of atomic operations on modern CPUs (8 Byte). To

circumvent this, the PMwCAS [64] operation has been

introduced. It is a software abstraction that provides

a multi-word compare-and-swap operation with failure

atomicity. It buffers changes and then atomically ap-

plies these via a descriptor (cf. [64]) in a thread-safe

fashion. The operator successfully hides the complexity

of dealing with NVM and has been used to construct a

high performance, latch free B-Tree [16].

Indirection & Shadowing. The PMwCAS is widely ap-

plicable, however more problem specific approaches can

outperform it by handling failure atomicity and thread

safety manually. One way to achieve this is by moving

larger data chunks (like the sorted array) out of the

node and addressing via a pointer instead. In case of

an update, a copy of the array is created and updated.

Once the array is flushed to NVM, the pointer to it is

atomically swapped. Lee et al. [39] use this technique to

re-design the adaptive radix tree (ART) [40] for NVM

to create the two persistent ART variants WOART and

ART+CoW. The latter does not only move individual

parts out of a node, but always copies and swaps the en-

tire node (also known as shadowing or copy-on-write).

Invalidation. However, moving data out of the node

causes additional cache misses (pointer chasing) and

thereby might reduce performance. The wB-Tree [20]

avoids this by keeping the slots unsorted but adding

an additional array to store the slot indexes in sorted

order. Whenever this array is updated a flag is set first

to indicate that an update is in progress. If this flag is

set during restart, the index array can be reconstructed.

Reconstruct. Simply detecting and then reconstruct-

ing corrupted data does not solve the failure atomicity

problem. However, it provides a simple and efficient way

to handle secondary data and has been driven further

in the NV-Tree [68] and FPTree [52]: In a B-Tree all

primary data is stored on the leaf pages, inner nodes

do not contain additional information, but are merely

a way to access leaf nodes faster. Hence, inner nodes

can simply be reconstructed during recovery and do

not need to be failure atomic.

Write-Ahead Logging. A more traditional way to

ensure failure atomicity is by using a write-ahead log:

Before any data is updated on the node itself, a log

record is created and persisted. The failure atomicity

of the log itself (append only) can easily be ensured by

using the previously introduced atomics. During restart

the log can be used to recover corrupted nodes. Unlike

logging in traditional systems, this log can be transac-

tion local and discarded once the actual data has been

flushed. Due to the complexity of writing atomic data

structures that also provide failure atomicity, some sys-
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tems (wB-Tree [20] and FPTree [52]) fall back to log-

ging for difficult operations (e.g., node splits). Other

approaches [28] rely solely on undo-logs. They can avoid

expensive NVM writes by using multi-dimensional clus-

tering instead of multiple secondary indexes.

Write-Behind Logging. Contrary to the traditional

ARIES-style write-ahead logging, [15] propose write-

behind logging to better leverage the byte-addressability

of NVM. Whenever a tuple is updated, a new version

is created and written to NVM. At commit time, all

changed tuples are persisted. After that, a log entry is

written to set the new versions valid. This can greatly

reduce the amount of data being written compared to

write-ahead logging, where each change is potentially

recorded twice: (1) in the log and (2) in the data page.

However, it incurs many random writes which is slow

and wastes NVM endurance.

4.1.2 Hybrid Data Structures

As laid out in Section 3, NVM will likely not replace

DRAM, but exist alongside to it and have a higher

latency and lower bandwidth. Therefore, some of the

NVM direct systems additionally utilize DRAM to im-

prove their performance. The most prominent example

is the FPTree [52], which is a B+-Tree that places its

inner nodes in DRAM while keeping the leaf nodes on

NVM. In case of a restart, the inner nodes can be recon-

structed using the information from the leaves. A fur-

ther example is HiKV [66], which implements an NVM-

resident hash table and keeps a B+-Tree in DRAM to

support range scans. The failure atomicity of the hash

table is maintained with atomic operations and the B+-

Tree can be reconstructed upon restart. These designs

reduce the implementation effort of complicated opera-

tions (node splits) by moving them onto DRAM. Thus,

trading performance for restart time.

4.1.3 Media Failure

A storage engine does not only need to handle system

failures (e.g., power loss) but also media failures (e.g.,

broken NVM DIMMs):

Logging & Snapshots. Traditional storage engines

write a log and take periodic snapshots of the database.

In case of a failure, the latest snapshot is retrieved and

the log is used to replay all changes, thus bringing the

snapshot up to the most recent state. For failures of

individual DIMMs, a technique called instant recov-

ery [30] can be used to restore individual pages (or in

this case a set of pages) “on-demand”.

Replication. Alternatively, one could run additional

backup instances of the storage engine, which perform

the same work, thus serving as a replica. In case of a

media failure, one of the standby servers can take over.

There has been little work on this topic and it would

be interesting to see how the introduced storage engines

can be extended to cope with this problem.

4.2 Buffered Engines

As shown in Section 4.1, performing updates directly

on NVM requires careful engineering. In addition, the

need to access NVM reduces performance compared to

a main memory database engine as DRAM cannot be

fully utilized. Therefore, we are considering alternative

systems in this section that use a DRAM-resident buffer

to perform updates. Thus solving the problem of leaking

inconsistent state to durable storage. We will first look

at ways to extend traditional (buffer-managed) engines

and then investigate some novel engine designs.

4.2.1 Buffer-managed Engines

The most straightforward approach is to replace the

SSD-based storage with NVM. This greatly improves

the speed of page transfers between memory and stor-

age, the logging latency (and therefore commit latency)

and the restart time. From an engineering point of view,

it is simple to realize and should mainly affect the stor-

age layer of a well-designed database engine.

One of these systems is FOEDUS [36]. It uses fixed-

size pages to transfer data from NVM to DRAM, where

it is processed. An asynchronous process is used to

merge changes back into the persistent NVM state us-

ing the logging information. It performs well as long as

the hot data fits into DRAM but suffers once NVM is

frequently accessed because it needs to transfer entire

pages, unlike the NVM direct systems of Section 4.1,

which can transfer individual tuples.

This issue is solved by a technique called cache-line-

grained loading [58]: The idea is to keep a bit set for

each DRAM-resident page indicating which cache lines

have already been loaded. This way, only cache lines

which are actually used are loaded. Thereby, the system

can compete with NVM direct systems for NVM-sized

workloads and even outperform these depending on the

buffer pool size and the skewness of the workload.

Traditionally, buffer management is thought to be

a heavy-weight component. However, recent work has

shown that buffer-manged systems can compete with

main memory engines [41] when designed under the as-

sumption that most data fits in DRAM. Utilizing such

lightweight buffer management techniques, a buffer-

managed system can outperform NVM direct systems,
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as long as data fits into DRAM and (in the case of

HyMem) stay competitive for larger workloads.

Additionally, the page-oriented memory layout of

buffer-managed systems can be utilized to re-add an

SSD without significant overheads. Thus ending up with

a three-layer system (DRAM, NVM, SSD) that per-

forms well for small workloads, but is still capable of

using the high capacities of SSDs (or even HDDs). Com-

pared to buffer-managed systems (DRAM+SSD), the

additional NVM layer servers as a cache in SSD-sized

workloads and provides a significant speedup.

In summary, lightweight buffer management in com-

bination with cache-line-grained loading can be utilized

to extend a traditional buffer-managed engine to build

a system that is more efficient or at least competitive

for various workload sizes.

Buffer management has also been investigated in

the context of log-structured merge-trees (LSMs) [55]

on NVM. The LSMs are append-only systems and im-

plement separated buffers for writing (MemTable) and

reading (block cache). Due to its append-only nature,

guaranteeing the failure atomicity of LSMs on NVM

is less complex than in update-in-place systems. Fur-

thermore, a block-cache policy has also been proposed

to dynamically identify hot blocks and move them to

DRAM, while still allowing cold blocks to be directly

read from NVM without any additional transfer over-

head [42].

4.2.2 Novel Engines

Besides an NVM-aware buffer manager, more radical

designs have also been proposed. First of which is the

SOFORT database engine [50, 51]. It uses a copy-on-

write architecture where all primary data is stored and

processed directly on NVM. Thus, it is possible to al-

most immediately restart after a crash or planned shut-

down. It also eliminates the warm-up phase because no

data needs to be re-loaded. The user can decide on the

placement of secondary data (e.g., indexes). In addi-

tion, it allows placing secondary data (e.g., indexes) on

DRAM, thus trading throughput for restart time.

The SAP HANA database has already been extend-

ed to integrate NVM [11]. HANA’s delta-merge archi-

tecture is well suited for NVM: All recently changed

data resides in a small, write-optimized delta store.

Periodically, the delta is merged into the large, read-

optimized store. In the NVM adoption, the main store is

placed on NVM while the delta store is kept in DRAM.

This greatly extends the storage capacity and allows

for faster restarts. However, point lookups in the main

store suffer from the high NVM latency.

Another approach is the Peloton [56] in-memory

database engine. While mainly designed as a fast self-

driving DBMS, it also utilizes NVM with write-behind

logging [15]. The idea is to write all changed tuples in-

place to NVM at commit time. Once persisted, a single

log entry is written to set the tuples atomically to a

valid state.

5 Summary & Research Directions

We now summarize our findings from the previous sec-

tions to give an overview of representative existing ap-

proaches in the field of NVM-aware data structures. In

addition, we formulate general recommendations and

problems that have not yet been sufficiently discussed

in the literature. Table 2 gives a brief overview of exist-

ing NVM-based data structures proposed in the liter-

ature. It covers the approaches applied to achieve fail-

ure atomicity (cf. Section 4) and concurrency, how the

NVM properties were exploited (cf. Section 2), as well

as data placement (cf. Section 3).

Failure Atomicity. In Section 4 we have already dis-

cussed the various techniques for achieving failure atom-

icity. We have seen, that all of them come with their

advantages and disadvantages and thus there is no ulti-

mate method. Libraries such as PMDK [9] may be able

to bypass programming complexity. However, in some

cases they unnecessarily double the costs of NVM writes

due to logging. This is why most of the approaches cur-

rently try to control failure atomicity and recovery on

their own. In the long term, we think new hardware

features or specialized libraries will decrease the costs

and complexity for guaranteeing failure atomicity, of-

fering the best of both worlds: good performance and

easy programming interface.

Concurrency. Only some of the approaches considered

supporting concurrency. Others further assume that this

is controlled in higher levels of a DBMS. Therefore con-

currency is not dicussed extensively in the previous sec-

tions. We could envisage a combination of hardware

and software-based concurrency schemes. After a lim-

ited number of retries, a hardware transaction could fall

back to the programmer-defined approach as demon-

strated with the FPTree [52]. Apart from PMwCAS [16]

there is no true ”compare, swap, and persist” opera-

tion, so one has to fall back on locks for the software-

based transaction. However, it is not recommended to

use standard locks on a persistent medium, as this can

lead to persistent deadlocks or corrupted regions.

NVM Utilization. Basically, there are three aspects

to be considered when utilizing NVM: reducing writes

or general access to NVM, saving space, and fast recov-

ery. The corresponding column in the table states how
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Table 2 Overview of existing NVM-based data structures.

Failure Atomicity Concurrency NVM Utilization Placement

CDDS-
Tree [61]

· versioning + atomics
· shadowing (split,merge)

· only multiple-reader,
single-writer model

· re-using dead versions NVM-only

NV-Tree [68] · append-only + atomics
· reconstruction

· latches on modification
· less locks due to append-

only character

· unsorted leafs
· cache-optimized format
· selective consistency

NVM-only

wB-Tree [20] · indirection + invalida-
tion

· redo-only logging
(split,merge)

N/A · unsorted nodes
· binary search by sorted

slot array

NVM-only

FP-Tree [52] · indirection + invalida-
tion

· lightweight logging

· hardware-based + fine-
grained locks

· reduced footprint
· unsorted leafs
· hashing
· group allocation

NVM + DRAM

WO[A]RT/
ART+CoW [39]

· indirection + atomics
· shadowing + atomics

N/A · avoid key comparisons
and tree rebalancing

NVM-only

HiKV [66] · shadowing + atomics · hardware-based for tree
· locking within hash par-

titions

· avoids costly structure
operations

NVM + DRAM

Bz-Tree [16] · persistent multi-word
CaS operation (PMw-
CAS)

· PMwCAS + spinning
· optimistic protocol (in-

sert)

· near-instantaneous
recovery

NVM-only

BDCC+
NVM [28]

· undo logging through
PMDK

N/A · clustering instead of ad-
ditional indexes

· unsorted blocks
· instant recovery

NVM + SSD

this is achieved. One of the most common optimization

steps, at least for trees, is to leave the nodes unsorted to

avoid unnecessary writes caused by shifting records. An

obvious drawback of this is the impact on sorted-scans,

which are an important use case in databases. For re-

covery, it seems to be the trade-off between fast restart

but general higher latencies and rebuilding secondary

data with faster general access. So far there is little con-

sideration for the limited capacity of NVM compared

to SSDs or HDDs. The saving of NVM capacities, how-

ever, also depends on the general data placement.

Data Placement. The prevailing architectures as-

sumed in the literature are the following: NVM beside

DRAM and NVM below DRAM (in case of caching).

As already mentioned above, NVM is not deemed as a

replacement, but is integrated into the architecture. Re-

garding the data placement, however, many of the pre-

sented approaches considered single-level systems in-

stead of thinking about hybrid structures to overcome

the limits of each technology. Nevertheless, we expect

that in the future there will be more hybrid data struc-

tures that dynamically place data on DRAM, NVM,

and disk, given their properties and application require-

ments. The actual placement also depends on the cost

of NVM. If it is much cheaper than DRAM, one would

limit the amount of data in DRAM and store the major-

ity on NVM. However, if NVM becomes comparatively

expensive, one will rely more on DRAM and SSD.

In conclusion, first efforts to port existing struc-

tures to NVM unveiled unprecedented programming

challenges, making the gains vs. development trade-

off non-trivial. Hence, it is important to become aware

of the new properties of the technology and to exploit

them efficiently. Particularly in the areas of failure atom-

icity, concurrency, and data placement, new challenges

arose which still need to be resolved in the future. In

order to support a transactional system in principle,

there seems to be no alternative to certain primitives,

such as logging, shadowing, or locking. In the end, the

actual role and usage of NVM still remains open and

can ultimately only be decided when real hardware is

available.
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