
Recursive SQL for Data Mining
Maximilian E. Schüle

Technical University of Munich
m.schuele@tum.de

Alfons Kemper
Technical University of Munich

kemper@in.tum.de

Thomas Neumann
Technical University of Munich

neumann@in.tum.de

ABSTRACT
To implement algorithms within database systems beyond the de-
sign of SQL as a data query language, library functions or external
tools were used that require the extraction of data first. To eliminate
the need of data extraction out of database systems, we argue that
SQL-92 plus recursive tables is capable of expressing user-defined
algorithms. To underline this claim, we transform selected algo-
rithms out of graph mining, clustering and association rule analysis
into recursive common table expressions (CTEs). We compare their
performance to the one of user-defined functions and external tools.
Our evaluation shows a competitive performance when using re-
cursive CTEs to library functions either when using a disk-based
database systems or a modern in-memory engine.

ACM Reference Format:
Maximilian E. Schüle, Alfons Kemper, and Thomas Neumann. 2022. Re-
cursive SQL for Data Mining. In 34th International Conference on Scientific
and Statistical Database Management (SSDBM 2022), July 6–8, 2022, Copen-
hagen, Denmark.ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/
3538712.3538746

1 INTRODUCTION
The performance increase of database servers through modern
hardware allows database systems to be used for more than pure
data management tasks [2, 6, 9, 15, 19, 38, 40, 41]. Database systems
provide with SQL a declarative language to specify what to do
rather than caring about optimisation details. The platform inde-
pendence and reusability of SQL increases the incentive to execute
complex algorithms already in the database system [3, 7, 8, 17]. SQL
provides common table expressions (CTEs) that allow structuring
and modularising an SQL query and which are part of the holistic
query optimisation [6]. Furthermore, recursive CTEs compute the
transitive closure, which allow SQL-92 to be Turing-complete.

In order for database servers to take over more application logic,
database users should be able to develop algorithms independently
of systems developers. In a previous publication [34], we argued
that a domain-specific language with procedural constructs and
embedded SQL (HyPerScript) is needed to eliminate the need for de-
veloping an operator in each case. So we identified building blocks
to implement selected data mining algorithms as user-defined func-
tions (UDFs) [5, 20, 39, 42] in SQL.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SSDBM 2022, July 6–8, 2022, Copenhagen, Denmark
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9667-7/22/07. . . $15.00
https://doi.org/10.1145/3538712.3538746

In this study, we argue that transferring procedural constructs
into SQL-92 is possible. We start by converting each iteration within
a procedural loop into a recursion [12, 13, 16] to provide SQL-92
only implementations for clustering (DBSCAN, k-Means), graph
mining (PageRank) and association rule analysis (Apriori). We com-
pare their performance in PostgreSQL and HyPer [24, 25], an in-
memory database system [21, 22, 27, 32, 35], to their UDF counter-
parts and dedicated table-operators: MADlib [10] in PostgreSQL
and data mining operators in HyPer [11, 18, 31, 37].

This study’s contributions are data mining operators written in
SQL-92 only and a comprehensive evaluation to compare their per-
formance to existing library functions and procedural counterparts
as part of UDFs. This paper is structured as follows: Section 2 de-
scribes the implementation of data mining algorithms in SQL. The
evaluation in Section 3 measures the performance in dependency
on the input size and the number of available threads. Section 4
concludes by an outlook on further applications for recursive CTEs.

2 SQL FOR DATA ANALYSIS
This section presents a set of data analysis algorithms written in
recursive SQL: algorithms for association rule analysis (Apriori),
clustering (k-Means and DBSCAN) and graph metrics (PageRank).

2.1 PageRank
PageRank [4] is a graph mining algorithm designed to determine
the importance of web pages. Each web page is called a node 𝑛 ∈ 𝑁 ;
a link directing to another web page is called an edge (𝑠, 𝑑) ∈
𝑁 × 𝑁 . Initially, each node receives the same PageRank value 𝑝𝑟0
(Equation 1). In each iteration, each node 𝑠 distributes its own value
𝑝𝑟𝑖 (𝑠) equally to all outgoing edges (𝑠, 𝑑) ∈ 𝐸. The new PageRank
value 𝑝𝑟𝑖+1 (𝑛) of a node 𝑛 is the sum of the values of all incoming
edges (𝑠, 𝑛) ∈ 𝐸, possibly damped by a factor 𝛼 (Equation 2):

𝑝𝑟0 (𝑛) :=
1

|𝑁 | , (1)

𝑝𝑟𝑖+1 (𝑛) := 𝛼 ·
∑︁

(𝑠,𝑛) ∈𝐸

𝑝𝑟𝑖 (𝑠)
|{𝑑 | (𝑠, 𝑑) ∈ 𝐸}| +

1 − 𝛼

|𝑁 | . (2)

1 with recursive pagerank (iter ,node ,pr) as (
2 select 0, e.dst , 1:: float /(select count(distinct dst) from

prscript.edges)
3 from prscript.edges e group by e.dst
4 union all
5 select iter+1,dst ,0.1*((1:: float /(select count(distinct dst) from

prscript.edges)))+0.9* sum(b)
6 from (
7 select iter , e.dst , p.pr/(select count (*) from prscript.edges x

where x.src=e.src) as b
8 from prscript.edges e, pagerank p
9 where e.src=p.Node and iter < 100) i
10 group by dst , iter
11) select * from pagerank where iter =100;

Listing 1: PageRank in SQL with a recursive table pagerank
and 𝛼 = 0.9.

1

https://doi.org/10.1145/3538712.3538746
https://doi.org/10.1145/3538712.3538746
https://doi.org/10.1145/3538712.3538746

SSDBM 2022, July 6–8, 2022, Copenhagen, Denmark M. Schüle, A. Kemper, T. Neumann

Both equations can be described in SQLwith aggregations, where-
as for the iteration we need either loops of a scripting language
like HyPerScript or a recursive table (see Listing 1). We expect one
relation containing the edges. The base case (line 2/3) computes
the initial PageRank value 𝑝𝑟0. The recursive step first divides each
node’s PageRank value by the number of outgoing edges (line 7)
and assigns this fraction to the destination node dst. It then sums
up the fractions for each destination node (line 5-10).

2.2 Clustering
Clustering is an important area of data analysis that groups similar
tuples. We consider k-Means and DBSCAN [23], as both algorithms
are integrated into HyPer as operators.

k-Means assigns 𝑛-dimensional points 𝑥 ∈ 𝑃 ⊂ R𝑛 to 𝑘 clusters
𝐶 with 𝑘 points forming the initial centres 𝐶0 ⊂ 𝑃, |𝐶0 | = 𝑘 . A
point belongs to the closest located cluster 𝑐 ∈ 𝐶 based on a metric
like Euclidean distance (| |𝑐 − 𝑥 | |2, Equation 3 returns all points
of a cluster). In each iteration, the new centre is computed as the
average of all points (Equation 4):

𝑐𝑙𝑢𝑠𝑡𝑒𝑟 (𝑐) = {𝑥 |𝑥 ∈ 𝑃 : �𝑑 ∈ 𝐶 : 𝑑 ≠ 𝑐 ∧ ||𝑑 − 𝑥 | |2 < | |𝑐 − 𝑥 | |2},

(3)

𝑐𝑖+1 =
∑︁

𝑥 ∈𝑐𝑙𝑢𝑠𝑡𝑒𝑟 (𝑐𝑖)

𝑥

|𝑐𝑙𝑢𝑠𝑡𝑒𝑟 (𝑐𝑖) |
. (4)

Using a recursive table (see Listing 2), 𝑘 tuples are initially se-
lected as centres (line 2), whose coordinates get updated in each
iteration (line 4-8). The implementation for computing the centres
of k-Means is based on a window function that calculates a ranking
of the closest centres per point (line 5/6). The mean values of the
assigned points form the new centres (line 4).

1 with recursive clusters (iter , cid , x, y) as (
2 (select 0,id, x, y from kmeansscript.points limit 5)
3 union all
4 select iter+1,cid , avg(px), avg(py) from (
5 select iter , cid , p.x as px, p.y as py, rank() over (partition

by p.id
6 order by (p.x-c.x)*(p.x-c.x)+(p.y-c.y)*(p.y-c.y) asc , (c.x*c

.x+c.y*c.y) asc)
7 from kmeansscript.points p, clusters c) x
8 where x.rank=1 and iter <100 group by cid , iter
9)
10 select * from clusters where iter =100;

Listing 2: k-Means in SQL with a recursive table clusters:
𝑘=5, 100 iterations.

DBSCAN clusters points depending on a parameter 𝜖 , that de-
scribes the maximal distance between two points, and the minimal
number of points per cluster𝑚𝑖𝑛𝑃𝑜𝑖𝑛𝑡𝑠 > 1, declared as noise oth-
erwise. For every point within a cluster 𝑥 ∈ 𝐺 ⊂ 𝑃 ⊂ R𝑛 , another
point 𝑦 ∈ 𝐺 exists, whose distance to 𝑥 is less than 𝜖 :

∀𝑥 ∈ 𝐺 : ∃𝑦 ∈ 𝐺 : 𝑥 ≠ 𝑦 ∧ ||𝑥 − 𝑦 | |2 < 𝜖. (5)

When the database system supports aggregate functions within
recursive tables, the clusters can be expanded recursively (see List-
ing 3): First, each point forms its own cluster (line 2). Then, clusters
that are less than 𝜖 away are merged (line 4-7).

For comparison, we use the operators k-Means and DBSCAN
implemented in HyPer. As a special feature, both operators are writ-
ten directly in LLVM code, are compiled directly into the query and
avoid expensive function calls. Both operators are pipeline breakers,
but the centre calculation for k-Means does not require materialisa-
tion of the data points as it copies the underlying operator tree per
iteration.

1 with recursive dbscan(iter ,id,x,y,clusterid ,noise) as (
2 select 0,id,x,y,id,true from dbscanscript.points
3 union all
4 select iter+1,p.id,p.x,p.y, min(c.clusterid), count (*) < 3
5 from dbscanscript.points p, dbscan c
6 where iter <10 and (p.x-c.x)^2+(p.y-c.y)^2 <1.5^2
7 group by iter ,p.id,p.x,p.y
8) select * from dbscan where iter =10;

Listing 3: DBSCAN in SQL with a recursive table dbscan: 10
iterations, 𝜖 = 1.5,𝑚𝑖𝑛𝑃𝑜𝑖𝑛𝑡𝑠 = 3.

2.3 Association Rule Analysis
The Apriori algorithm [1], introduced in 1993, is the best-known
representative in the field of association rule analysis. It is based on
shopping cart data stored as tuples out of transaction number (tid)
and item (sales: {[𝑡𝑖𝑑, 𝑖𝑡𝑒𝑚]}). First, it selects frequent item sets
that occur with a minimum relative frequency, support, of at least
𝑠0 in all shopping carts, which are used to create association rules.
In each iteration, the item sets grow by one element, starting with
the one-element set. Here, the number of iterations and item sets to
be checked is limited by the apriori principle. The principle states
that an item set whose subsets do not occur frequently cannot be a
frequent item set.

The recursive implementation (see Listing 4) is based on an array
representation for frequent item sets, which are iteratively extended
with recursive SQL. Here, arrays are used as sets and expanded by
one element in each iteration. Then the support of each item set
is counted. For this purpose, each item set is compared with each
shopping cart using the set operator tuple <@ shopping cart
(line 13).

1 with recursive transactions (tid , bucket) as (
2 --one array per shopping cart
3 select tid , array_agg(item) from aprioriscript.sales group by tid
4 -- frequent item sets of size 1
5),sales_supp as (select item from aprioriscript.sales group by

item having count (*) >=10
6),frequentitemsets as (-- frequent item sets with support >= 10
7 -- with one element
8 (select distinct array[p.item]::int[] as items from sales_supp p)
9 union all (-- extend item sets recursively by one element
10 select distinct array_append(t.items ,p.item::int)::int[]
11 from frequentitemsets t, sales_supp p
12 where 10 <= (-- count support
13 select count (*) from transactions t2
14 where array_append(t.items ,p.item::int)::int[] <@ (t2.

bucket)
15) and t.items[(select count (*) from unnest(t.items))]<p.item
16))
17 select * from frequentitemsets;

Listing 4: Determining the frequent item sets for the Apriori
algorithm: a recursively growing relation calculates the
frequent item sets, starting with the one-element item sets
(each item as an array with one element).

The operator implemented inHyPer is based on storing the elements
in a prefix tree that grows with each iteration. Special features of
the implementation in HyPer are the parallelism per iteration step

2

Recursive SQL for Data Mining SSDBM 2022, July 6–8, 2022, Copenhagen, Denmark

and the handling of duplicates. Thus, the association rules consider
the support of identical elements within a shopping cart.

3 EVALUATION
The evaluation compares the performance of procedures created
with HyPerScript to table operators of HyPer and MADlib, recursive
tables in HyPer, PostgreSQL and Umbra, and PL/pgSQL procedures
(PostgreSQL 12.6 with MADlib 1.17.0 extension). All experiments
were measured on a Ubuntu 20.04 LTS machine with six Intel Core
i7-3930K CPUs running at 3.20 GHz and 64 GB DDR4 RAM.

For the Apriori algorithm, 100 different items and 1000 shopping
carts were synthetically generated. The number of items per shop-
ping cart varied between 0 and 10. For clustering, we generated 106
points whose x- and as y-coordinates were equally distributed in the
interval [0, 106]. The PageRank value was computed for 105 nodes
with the same number of edges. All experiments were repeated
three times and the median was taken for the measurements.

100908070605040302010

10−2

100

102

𝑠0 in%

Ru
nt
im

e
in

𝑠

HyPerScript Operator PL/pgSQL MADlib

Figure 1: Runtime for association rule analysis with Apriori
with twelve threads, depending on the minimum support 𝑠0
as a parameter of Apriori: The larger 𝑠0, the lower the num-
ber of frequent item sets and thus the lower the runtime.

For the Apriori algorithm, we varied the minimum support (the
larger, the less frequent item sets exist, see Figure 1). With increas-
ing minimum support, the runtime decreases as less frequent item
sets exist. Although the HyPer operator performs the best, the
implementation in HyPerScript is slower than its counterpart in
PL/pgSQL. This is caused by an implementation of the array set
operator within HyPer that unnests the array internally.

The runtimes of the clustering algorithms grow linearly with
the input size (see Figure 2a, 3). Although the integrated operators
perform the best, the k-Means implementation within HyPerScript
and using a recursive table (in HyPer, as Umbra’s support for win-
dow functions was in development at that time) show comparable
performance, both outperform the computations in PostgreSQL.
The recursive computation of DBSCAN in Umbra [14, 29, 30] (as the
other database systems do not support min as aggregate function
inside a recursive table) was as fast as the implemented operator.
The k-Means algorithm in HyPerScript computes 30 % faster with
each additional core (see Figure 2b), as the underlying database
system executes the SQL queries in parallel, whereas the k-Means
operator is explicitly parallelised. Neither DBSCAN as an operator
nor as a stored procedure support scaling. The SQL queries used in

101 103 105
10−4

10−1

102

Number of Points

Ru
nt
im

e
in

𝑠

HyPerScript HyPer Operator
HyPer recursive PL/pgSQL
PSQL recursive MADlib

(a) k-Means: Input size.

1 2 4
0

5

10

15

2.4
3.1

4.46

0.220.210.21

12.1712.2912.57

Number of Threads

HyPerScript HyPer Operator
HyPer recursive

(b) k-Means: Scalability.

Figure 2: Runtime for k-means (five centres, 100 iterations):
(a) Runtime depending on the input size with constant
twelve threads and (b) depending on the available threads
for 105 points.

101 102 103

10−4

10−2

100

Number of Points

Ru
nt
im

e
in

𝑠

HyPerScript HyPer Operator Umbra recursive PL/pgSQL

Figure 3: Runtime for DBSCAN with 𝜖 = 20, minPts = 2 and
100 iterations: Runtime depending on the input size with
constant twelve threads.

101 102 103 104
10−4

10−1

102

Number of Edges

Ru
nt
im

e
in

𝑠

HyPerScript HyPer Operator
HyPer recursive PL/pgSQL
PSQL recursive Umbra recursive

MADlib

(a) PageRank: Number of edges.

1 2 4
0

2

4

6
4.344.354.36

3.95 · 10−24.64 · 10−26.26 · 10−2
0.690.690.7

Number of Threads

HyPerScript HyPer Operator
HyPer recursive

(b) PageRank: Scalability.

Figure 4: Runtime for 100 iterations for calculating the
PageRank value with (a) increasing number of edges (twelve
threads) or (b) threads (105 edges).

the HyPerScript procedure scale poorly because only one tuple is
initialised as a new cluster per (non-parallelised) iteration.

All implementations of PageRank in HyPer outperform their
counterparts in PostgreSQL (see Figure 4). The implementations

3

SSDBM 2022, July 6–8, 2022, Copenhagen, Denmark M. Schüle, A. Kemper, T. Neumann

within a scripting language perform slightly worse than the cor-
responding query using a recursive table in PostgreSQL and Hy-
Per respectively. With few edges, the additional overhead of the
integrated operator in HyPer becomes apparent, since it creates
a dictionary for the nodes and stores edges in a sparse matrix
as Compressed-Sparse-Row (CSR). With an increasing number of
edges, the additional effort for the dictionary and the CSR data
structure is amortised, so that the operator calculates the PageRank
value faster than the script function.

4 CONCLUSION
This study showed how to express datamining algorithms in SQL-92
only by relying on recursive CTEs. For this reason, we implemented
four algorithms, namely k-Means, DBSCAN, Apriori and PageRank
in SQL and compared their performance to library functions and
UDFs. The evaluation revealed that the recursive implementation
performs worse than the operators in HyPer but due to the perfor-
mance of an in-memory database system similar toMADlib’s library
functions. When using recursive tables, the support of aggregate
and window functions is necessary to simplify the development of
data analysis algorithms. Aggregate functions in database systems
allow the implementation of further algorithms, for example, in
machine learning to average the gradient [26, 26, 28, 28, 33, 36]. Re-
ducing the number of computations per iteration step, for example
the ranking for k-Means, and the number of used array expression
(Apriori) would accelerate the performance further.

REFERENCES
[1] Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. 1993. Mining Associ-

ation Rules between Sets of Items in Large Databases. In SIGMOD Conference.
ACM Press, 207–216.

[2] Andrej Andrejev, Kjell Orsborn, and Tore Risch. 2020. Strategies for array data
retrieval from a relational back-end based on access patterns. Computing (2020).

[3] Róbert Beck, László Dobos, Tamás Budavári, Alexander S. Szalay, and István
Csabai. 2017. Photo-z-SQL: Integrated, flexible photometric redshift computation
in a database. Astron. Comput. 19 (2017), 34–44.

[4] Sergey Brin and Lawrence Page. 1998. The Anatomy of a Large-Scale Hypertex-
tual Web Search Engine. Comput. Networks 30, 1-7 (1998), 107–117.

[5] Bin Dong, Patrick Kilian, Xiaocan Li, Fan Guo, Suren Byna, and Kesheng Wu.
2019. Terabyte-scale Particle Data Analysis: An ArrayUDF Case Study. In SSDBM.
ACM, 202–205.

[6] Mehrad Eslami, Yicheng Tu, Hadi Charkhgard, Zichen Xu, and Jiacheng Liu. 2019.
PsiDB: A Framework for Batched Query Processing and Optimization. In IEEE
BigData. IEEE, 6046–6048.

[7] Abir Farouzi, Ladjel Bellatreche, Carlos Ordonez, Gopal Pandurangan, and Mi-
moun Malki. 2020. PandaSQL: Parallel Randomized Triangle Enumeration with
SQL Queries. In CIKM. ACM, 3377–3380.

[8] Marios Fragkoulis, Diomidis Spinellis, and Panos Louridas. 2015. An interactive
SQL relational interface for querying main-memory data structures. Computing
97, 12 (2015), 1141–1164.

[9] Ali Hadian, Ankit Kumar, and Thomas Heinis. 2020. Hands-off Model Integration
in Spatial Index Structures. In AIDB@VLDB.

[10] Joseph M. Hellerstein et al. 2012. The MADlib Analytics Library or MAD Skills,
the SQL. PVLDB 5, 12 (2012), 1700–1711.

[11] Nina C. Hubig, Linnea Passing, Maximilian E. Schüle, Dimitri Vorona, Alfons
Kemper, and Thomas Neumann. 2017. HyPerInsight: Data Exploration Deep
Inside HyPer. In CIKM. ACM, 2467–2470.

[12] Louis Jachiet, Pierre Genevès, Nils Gesbert, and Nabil Layaïda. 2020. On the
Optimization of Recursive Relational Queries: Application to Graph Queries. In
SIGMOD Conference. ACM, 681–697.

[13] Dimitrije Jankov, Shangyu Luo, Binhang Yuan, Zhuhua Cai, Jia Zou, Chris Jer-
maine, and Zekai J. Gao. 2019. Declarative Recursive Computation on an RDBMS.
Proc. VLDB Endow. 12, 7 (2019), 822–835.

[14] Lukas Karnowski, Maximilian E. Schüle, Alfons Kemper, and Thomas Neumann.
2021. Umbra as a Time Machine. In BTW (LNI, Vol. P-311). GI, 123–132.

[15] Sangchul Kim and Bongki Moon. 2018. Federated database system for scientific
data. In SSDBM. ACM, 33:1–33:4.

[16] Muideen Lawal, Pierre Genevès, and Nabil Layaïda. 2020. A Cost Estimation
Technique for Recursive Relational Algebra. In CIKM. ACM, 3297–3300.

[17] Seokki Lee, Sven Köhler, Bertram Ludäscher, and Boris Glavic. 2017. A SQL-
Middleware Unifying Why and Why-Not Provenance for First-Order Queries. In
ICDE. IEEE Computer Society, 485–496.

[18] Linnea Passing et al. 2017. SQL- and Operator-centric Data Analytics in Relational
Main-Memory Databases. In EDBT. OpenProceedings.org, 84–95.

[19] Magdalena Pröbstl et al. 2021. One Buffer Manager to Rule Them All: Using
Distributed Memory with Cache Coherence over RDMA. In ADMS@VLDB. 17–
26.

[20] Astrid Rheinländer, Martin Beckmann, Anja Kunkel, Arvid Heise, Thomas Stolt-
mann, and Ulf Leser. 2014. Versatile optimization of UDF-heavy data flows with
sofa. In SIGMOD Conference. ACM, 685–688.

[21] Josef Schmeißer, Maximilian E. Schüle, Viktor Leis, Thomas Neumann, and Alfons
Kemper. 2021. B2-Tree: Cache-Friendly String Indexing within B-Trees. In BTW
(LNI, Vol. P-311). GI, 39–58.

[22] Josef Schmeißer, Maximilian E. Schüle, Viktor Leis, Thomas Neumann, and Alfons
Kemper. 2022. B2-Tree: Page-Based String Indexing in Concurrent Environments.
Datenbank-Spektrum 22, 1 (2022), 11–22.

[23] Erich Schubert, Jörg Sander, Martin Ester, Hans-Peter Kriegel, and Xiaowei
Xu. 2017. DBSCAN Revisited, Revisited: Why and How You Should (Still) Use
DBSCAN. ACM Trans. Database Syst. 42, 3 (2017), 19:1–19:21.

[24] Maximilian E. Schüle et al. 2017. Monopedia: Staying Single is Good Enough -
The HyPer Way for Web Scale Applications. Proc. VLDB Endow. 10, 12 (2017),
1921–1924.

[25] Maximilian E. Schüle et al. 2019. In-DatabaseMachine Learning: Gradient Descent
and Tensor Algebra for MainMemory Database Systems. In BTW (LNI, Vol. P-289).
GI, 247–266.

[26] Maximilian E. Schüle et al. 2019. ML2SQL - Compiling a Declarative Machine
Learning Language to SQL and Python. In EDBT. OpenProceedings.org, 562–565.

[27] Maximilian E. Schüle et al. 2020. ARTful Skyline Computation for In-Memory
Database Systems. In ADBIS (Communications in Computer and Information
Science, Vol. 1259). Springer, 3–12.

[28] Maximilian E. Schüle, Matthias Bungeroth, Alfons Kemper, Stephan Günnemann,
and Thomas Neumann. 2019. MLearn: A Declarative Machine Learning Language
for Database Systems. In DEEM@SIGMOD. ACM, 7:1–7:4.

[29] Maximilian E. Schüle, Tobias Götz, Alfons Kemper, and Thomas Neumann. 2021.
ArrayQL for Linear Algebra within Umbra. In SSDBM. ACM, 193–196.

[30] Maximilian E. Schüle, Tobias Götz, Alfons Kemper, and Thomas Neumann. 2022.
ArrayQL Integration into Code-Generating Database Systems. In EDBT. Open-
Proceedings.org, 1–12.

[31] Maximilian E. Schüle, Jakob Huber, Alfons Kemper, and Thomas Neumann. 2020.
Freedom for the SQL-Lambda: Just-in-Time-Compiling User-Injected Functions
in PostgreSQL. In SSDBM. ACM, 6:1–6:12.

[32] Maximilian E. Schüle, Lukas Karnowski, Josef Schmeißer, Benedikt Kleiner, Alfons
Kemper, and Thomas Neumann. 2019. Versioning in Main-Memory Database
Systems: From MusaeusDB to TardisDB. In SSDBM. ACM, 169–180.

[33] Maximilian E. Schüle, Harald Lang, Maximilian Springer, Alfons Kemper, Thomas
Neumann, and Stephan Günnemann. 2021. In-Database Machine Learning with
SQL on GPUs. In SSDBM. ACM, 25–36.

[34] Maximilian E. Schüle, Linnea Passing, Alfons Kemper, and Thomas Neumann.
2019. Ja-(zu-)SQL: Evaluation einer SQL-Skriptsprache für Hauptspeicherdaten-
banksysteme. In BTW (LNI, Vol. P-289). GI, 107–126.

[35] Maximilian E. Schüle, Josef Schmeißer, Thomas Blum, Alfons Kemper, and
Thomas Neumann. 2021. TardisDB: Extending SQL to Support Versioning. In
SIGMOD Conference. ACM, 2775–2778.

[36] Maximilian E. Schüle, Maximilian Springer, Alfons Kemper, and Thomas Neu-
mann. 2022. LLVM Code Optimisation for Automatic Differentiation. In
DEEM@SIGMOD. ACM.

[37] Maximilian E. Schüle, Dimitri Vorona, Linnea Passing, Harald Lang, Alfons
Kemper, Stephan Günnemann, and Thomas Neumann. 2019. The Power of SQL
Lambda Functions. In EDBT. OpenProceedings.org, 534–537.

[38] Tarique Siddiqui, Surajit Chaudhuri, and Vivek R. Narasayya. 2021. COMPARE:
Accelerating Groupwise Comparison in Relational Databases for Data Analytics.
Proc. VLDB Endow. 14, 11 (2021), 2419–2431.

[39] Kurt Stockinger, Nils Bundi, Jonas Heitz, and Wolfgang Breymann. 2019. Scalable
architecture for Big Data financial analytics: user-defined functions vs. SQL. J.
Big Data 6 (2019), 46.

[40] Sebastián Villarroya and Peter Baumann. 2020. On the Integration of Machine
Learning and Array Databases. In ICDE. IEEE, 1786–1789.

[41] Ying Yang, Niccolò Meneghetti, Ronny Fehling, Zhen Hua Liu, and Oliver
Kennedy. 2015. Lenses: An On-Demand Approach to ETL. Proc. VLDB Endow. 8,
12 (2015), 1578–1589.

[42] Chao Zhang and Farouk Toumani. 2020. Sharing Computations for User-Defined
Aggregate Functions. In EDBT. 241–252.

4

	Abstract
	1 Introduction
	2 SQL for Data Analysis
	2.1 PageRank
	2.2 Clustering
	2.3 Association Rule Analysis

	3 Evaluation
	4 Conclusion
	References

