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ABSTRACT
To implement algorithms within database systems beyond the de-
sign of SQL as a data query language, library functions or external
tools were used that require the extraction of data first. To eliminate
the need of data extraction out of database systems, we argue that
SQL-92 plus recursive tables is capable of expressing user-defined
algorithms. To underline this claim, we transform selected algo-
rithms out of graph mining, clustering and association rule analysis
into recursive common table expressions (CTEs). We compare their
performance to the one of user-defined functions and external tools.
Our evaluation shows a competitive performance when using re-
cursive CTEs to library functions either when using a disk-based
database systems or a modern in-memory engine.
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1 INTRODUCTION
The performance increase of database servers through modern
hardware allows database systems to be used for more than pure
data management tasks [2, 6, 9, 15, 19, 38, 40, 41]. Database systems
provide with SQL a declarative language to specify what to do
rather than caring about optimisation details. The platform inde-
pendence and reusability of SQL increases the incentive to execute
complex algorithms already in the database system [3, 7, 8, 17]. SQL
provides common table expressions (CTEs) that allow structuring
and modularising an SQL query and which are part of the holistic
query optimisation [6]. Furthermore, recursive CTEs compute the
transitive closure, which allow SQL-92 to be Turing-complete.

In order for database servers to take over more application logic,
database users should be able to develop algorithms independently
of systems developers. In a previous publication [34], we argued
that a domain-specific language with procedural constructs and
embedded SQL (HyPerScript) is needed to eliminate the need for de-
veloping an operator in each case. So we identified building blocks
to implement selected data mining algorithms as user-defined func-
tions (UDFs) [5, 20, 39, 42] in SQL.
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In this study, we argue that transferring procedural constructs
into SQL-92 is possible. We start by converting each iteration within
a procedural loop into a recursion [12, 13, 16] to provide SQL-92
only implementations for clustering (DBSCAN, k-Means), graph
mining (PageRank) and association rule analysis (Apriori). We com-
pare their performance in PostgreSQL and HyPer [24, 25], an in-
memory database system [21, 22, 27, 32, 35], to their UDF counter-
parts and dedicated table-operators: MADlib [10] in PostgreSQL
and data mining operators in HyPer [11, 18, 31, 37].

This study’s contributions are data mining operators written in
SQL-92 only and a comprehensive evaluation to compare their per-
formance to existing library functions and procedural counterparts
as part of UDFs. This paper is structured as follows: Section 2 de-
scribes the implementation of data mining algorithms in SQL. The
evaluation in Section 3 measures the performance in dependency
on the input size and the number of available threads. Section 4
concludes by an outlook on further applications for recursive CTEs.

2 SQL FOR DATA ANALYSIS
This section presents a set of data analysis algorithms written in
recursive SQL: algorithms for association rule analysis (Apriori),
clustering (k-Means and DBSCAN) and graph metrics (PageRank).

2.1 PageRank
PageRank [4] is a graph mining algorithm designed to determine
the importance of web pages. Each web page is called a node 𝑛 ∈ 𝑁 ;
a link directing to another web page is called an edge (𝑠, 𝑑) ∈
𝑁 × 𝑁 . Initially, each node receives the same PageRank value 𝑝𝑟0
(Equation 1). In each iteration, each node 𝑠 distributes its own value
𝑝𝑟𝑖 (𝑠) equally to all outgoing edges (𝑠, 𝑑) ∈ 𝐸. The new PageRank
value 𝑝𝑟𝑖+1 (𝑛) of a node 𝑛 is the sum of the values of all incoming
edges (𝑠, 𝑛) ∈ 𝐸, possibly damped by a factor 𝛼 (Equation 2):

𝑝𝑟0 (𝑛) :=
1

|𝑁 | , (1)

𝑝𝑟𝑖+1 (𝑛) := 𝛼 ·
∑︁

(𝑠,𝑛) ∈𝐸

𝑝𝑟𝑖 (𝑠)
|{𝑑 | (𝑠, 𝑑) ∈ 𝐸}| +

1 − 𝛼

|𝑁 | . (2)

1 with recursive pagerank (iter ,node ,pr) as (
2 select 0, e.dst , 1:: float /( select count(distinct dst) from

prscript.edges)
3 from prscript.edges e group by e.dst
4 union all
5 select iter+1,dst ,0.1*((1:: float /( select count(distinct dst) from

prscript.edges)))+0.9* sum(b)
6 from (
7 select iter , e.dst , p.pr/( select count (*) from prscript.edges x

where x.src=e.src) as b
8 from prscript.edges e, pagerank p
9 where e.src=p.Node and iter < 100 ) i
10 group by dst , iter
11 ) select * from pagerank where iter =100;

Listing 1: PageRank in SQL with a recursive table pagerank
and 𝛼 = 0.9.
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Both equations can be described in SQLwith aggregations, where-
as for the iteration we need either loops of a scripting language
like HyPerScript or a recursive table (see Listing 1). We expect one
relation containing the edges. The base case (line 2/3) computes
the initial PageRank value 𝑝𝑟0. The recursive step first divides each
node’s PageRank value by the number of outgoing edges (line 7)
and assigns this fraction to the destination node dst. It then sums
up the fractions for each destination node (line 5-10).

2.2 Clustering
Clustering is an important area of data analysis that groups similar
tuples. We consider k-Means and DBSCAN [23], as both algorithms
are integrated into HyPer as operators.

k-Means assigns 𝑛-dimensional points 𝑥 ∈ 𝑃 ⊂ R𝑛 to 𝑘 clusters
𝐶 with 𝑘 points forming the initial centres 𝐶0 ⊂ 𝑃, |𝐶0 | = 𝑘 . A
point belongs to the closest located cluster 𝑐 ∈ 𝐶 based on a metric
like Euclidean distance (| |𝑐 − 𝑥 | |2, Equation 3 returns all points
of a cluster). In each iteration, the new centre is computed as the
average of all points (Equation 4):

𝑐𝑙𝑢𝑠𝑡𝑒𝑟 (𝑐) = {𝑥 |𝑥 ∈ 𝑃 : �𝑑 ∈ 𝐶 : 𝑑 ≠ 𝑐 ∧ ||𝑑 − 𝑥 | |2 < | |𝑐 − 𝑥 | |2},

(3)

𝑐𝑖+1 =
∑︁

𝑥 ∈𝑐𝑙𝑢𝑠𝑡𝑒𝑟 (𝑐𝑖 )

𝑥

|𝑐𝑙𝑢𝑠𝑡𝑒𝑟 (𝑐𝑖 ) |
. (4)

Using a recursive table (see Listing 2), 𝑘 tuples are initially se-
lected as centres (line 2), whose coordinates get updated in each
iteration (line 4-8). The implementation for computing the centres
of k-Means is based on a window function that calculates a ranking
of the closest centres per point (line 5/6). The mean values of the
assigned points form the new centres (line 4).

1 with recursive clusters (iter , cid , x, y) as (
2 (select 0,id, x, y from kmeansscript.points limit 5)
3 union all
4 select iter+1,cid , avg(px), avg(py) from (
5 select iter , cid , p.x as px, p.y as py, rank() over (partition

by p.id
6 order by (p.x-c.x)*(p.x-c.x)+(p.y-c.y)*(p.y-c.y) asc , (c.x*c

.x+c.y*c.y) asc)
7 from kmeansscript.points p, clusters c) x
8 where x.rank=1 and iter <100 group by cid , iter
9 )
10 select * from clusters where iter =100;

Listing 2: k-Means in SQL with a recursive table clusters:
𝑘=5, 100 iterations.

DBSCAN clusters points depending on a parameter 𝜖 , that de-
scribes the maximal distance between two points, and the minimal
number of points per cluster𝑚𝑖𝑛𝑃𝑜𝑖𝑛𝑡𝑠 > 1, declared as noise oth-
erwise. For every point within a cluster 𝑥 ∈ 𝐺 ⊂ 𝑃 ⊂ R𝑛 , another
point 𝑦 ∈ 𝐺 exists, whose distance to 𝑥 is less than 𝜖 :

∀𝑥 ∈ 𝐺 : ∃𝑦 ∈ 𝐺 : 𝑥 ≠ 𝑦 ∧ ||𝑥 − 𝑦 | |2 < 𝜖. (5)

When the database system supports aggregate functions within
recursive tables, the clusters can be expanded recursively (see List-
ing 3): First, each point forms its own cluster (line 2). Then, clusters
that are less than 𝜖 away are merged (line 4-7).

For comparison, we use the operators k-Means and DBSCAN
implemented in HyPer. As a special feature, both operators are writ-
ten directly in LLVM code, are compiled directly into the query and
avoid expensive function calls. Both operators are pipeline breakers,
but the centre calculation for k-Means does not require materialisa-
tion of the data points as it copies the underlying operator tree per
iteration.

1 with recursive dbscan(iter ,id,x,y,clusterid ,noise) as (
2 select 0,id,x,y,id,true from dbscanscript.points
3 union all
4 select iter+1,p.id,p.x,p.y, min(c.clusterid), count (*) < 3
5 from dbscanscript.points p, dbscan c
6 where iter <10 and (p.x-c.x)^2+(p.y-c.y)^2 <1.5^2
7 group by iter ,p.id,p.x,p.y
8 ) select * from dbscan where iter =10;

Listing 3: DBSCAN in SQL with a recursive table dbscan: 10
iterations, 𝜖 = 1.5,𝑚𝑖𝑛𝑃𝑜𝑖𝑛𝑡𝑠 = 3.

2.3 Association Rule Analysis
The Apriori algorithm [1], introduced in 1993, is the best-known
representative in the field of association rule analysis. It is based on
shopping cart data stored as tuples out of transaction number (tid)
and item (sales: {[𝑡𝑖𝑑, 𝑖𝑡𝑒𝑚]}). First, it selects frequent item sets
that occur with a minimum relative frequency, support, of at least
𝑠0 in all shopping carts, which are used to create association rules.
In each iteration, the item sets grow by one element, starting with
the one-element set. Here, the number of iterations and item sets to
be checked is limited by the apriori principle. The principle states
that an item set whose subsets do not occur frequently cannot be a
frequent item set.

The recursive implementation (see Listing 4) is based on an array
representation for frequent item sets, which are iteratively extended
with recursive SQL. Here, arrays are used as sets and expanded by
one element in each iteration. Then the support of each item set
is counted. For this purpose, each item set is compared with each
shopping cart using the set operator tuple <@ shopping cart
(line 13).

1 with recursive transactions (tid , bucket) as (
2 --one array per shopping cart
3 select tid , array_agg(item) from aprioriscript.sales group by tid
4 -- frequent item sets of size 1
5 ),sales_supp as (select item from aprioriscript.sales group by

item having count (*) >=10
6 ),frequentitemsets as ( -- frequent item sets with support >= 10
7 -- with one element
8 (select distinct array[p.item ]::int[] as items from sales_supp p)
9 union all ( -- extend item sets recursively by one element
10 select distinct array_append(t.items ,p.item::int)::int[]
11 from frequentitemsets t, sales_supp p
12 where 10 <= ( -- count support
13 select count (*) from transactions t2
14 where array_append(t.items ,p.item::int)::int[] <@ ( t2.

bucket )
15 ) and t.items[( select count (*) from unnest(t.items))]<p.item
16 ))
17 select * from frequentitemsets;

Listing 4: Determining the frequent item sets for the Apriori
algorithm: a recursively growing relation calculates the
frequent item sets, starting with the one-element item sets
(each item as an array with one element).

The operator implemented inHyPer is based on storing the elements
in a prefix tree that grows with each iteration. Special features of
the implementation in HyPer are the parallelism per iteration step
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and the handling of duplicates. Thus, the association rules consider
the support of identical elements within a shopping cart.

3 EVALUATION
The evaluation compares the performance of procedures created
with HyPerScript to table operators of HyPer and MADlib, recursive
tables in HyPer, PostgreSQL and Umbra, and PL/pgSQL procedures
(PostgreSQL 12.6 with MADlib 1.17.0 extension). All experiments
were measured on a Ubuntu 20.04 LTS machine with six Intel Core
i7-3930K CPUs running at 3.20 GHz and 64 GB DDR4 RAM.

For the Apriori algorithm, 100 different items and 1000 shopping
carts were synthetically generated. The number of items per shop-
ping cart varied between 0 and 10. For clustering, we generated 106
points whose x- and as y-coordinates were equally distributed in the
interval [0, 106]. The PageRank value was computed for 105 nodes
with the same number of edges. All experiments were repeated
three times and the median was taken for the measurements.
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Figure 1: Runtime for association rule analysis with Apriori
with twelve threads, depending on the minimum support 𝑠0
as a parameter of Apriori: The larger 𝑠0, the lower the num-
ber of frequent item sets and thus the lower the runtime.

For the Apriori algorithm, we varied the minimum support (the
larger, the less frequent item sets exist, see Figure 1). With increas-
ing minimum support, the runtime decreases as less frequent item
sets exist. Although the HyPer operator performs the best, the
implementation in HyPerScript is slower than its counterpart in
PL/pgSQL. This is caused by an implementation of the array set
operator within HyPer that unnests the array internally.

The runtimes of the clustering algorithms grow linearly with
the input size (see Figure 2a, 3). Although the integrated operators
perform the best, the k-Means implementation within HyPerScript
and using a recursive table (in HyPer, as Umbra’s support for win-
dow functions was in development at that time) show comparable
performance, both outperform the computations in PostgreSQL.
The recursive computation of DBSCAN in Umbra [14, 29, 30] (as the
other database systems do not support min as aggregate function
inside a recursive table) was as fast as the implemented operator.
The k-Means algorithm in HyPerScript computes 30 % faster with
each additional core (see Figure 2b), as the underlying database
system executes the SQL queries in parallel, whereas the k-Means
operator is explicitly parallelised. Neither DBSCAN as an operator
nor as a stored procedure support scaling. The SQL queries used in
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(a) k-Means: Input size.
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Figure 2: Runtime for k-means (five centres, 100 iterations):
(a) Runtime depending on the input size with constant
twelve threads and (b) depending on the available threads
for 105 points.
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Figure 3: Runtime for DBSCAN with 𝜖 = 20, minPts = 2 and
100 iterations: Runtime depending on the input size with
constant twelve threads.
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(a) PageRank: Number of edges.
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(b) PageRank: Scalability.

Figure 4: Runtime for 100 iterations for calculating the
PageRank value with (a) increasing number of edges (twelve
threads) or (b) threads (105 edges).

the HyPerScript procedure scale poorly because only one tuple is
initialised as a new cluster per (non-parallelised) iteration.

All implementations of PageRank in HyPer outperform their
counterparts in PostgreSQL (see Figure 4). The implementations
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within a scripting language perform slightly worse than the cor-
responding query using a recursive table in PostgreSQL and Hy-
Per respectively. With few edges, the additional overhead of the
integrated operator in HyPer becomes apparent, since it creates
a dictionary for the nodes and stores edges in a sparse matrix
as Compressed-Sparse-Row (CSR). With an increasing number of
edges, the additional effort for the dictionary and the CSR data
structure is amortised, so that the operator calculates the PageRank
value faster than the script function.

4 CONCLUSION
This study showed how to express datamining algorithms in SQL-92
only by relying on recursive CTEs. For this reason, we implemented
four algorithms, namely k-Means, DBSCAN, Apriori and PageRank
in SQL and compared their performance to library functions and
UDFs. The evaluation revealed that the recursive implementation
performs worse than the operators in HyPer but due to the perfor-
mance of an in-memory database system similar toMADlib’s library
functions. When using recursive tables, the support of aggregate
and window functions is necessary to simplify the development of
data analysis algorithms. Aggregate functions in database systems
allow the implementation of further algorithms, for example, in
machine learning to average the gradient [26, 26, 28, 28, 33, 36]. Re-
ducing the number of computations per iteration step, for example
the ranking for k-Means, and the number of used array expression
(Apriori) would accelerate the performance further.
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