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Big Data 

Every day, we create 2.5 quintillion bytes of data — so much 

that 90% of the data in the world today has been created in 

the last two years alone. This data comes from everywhere: 

sensors used to gather climate information, posts to social 

media sites, digital pictures and videos, purchase transaction 

records, and cell phone GPS signals to name a few. This 

data is big data.  
http://www-01.ibm.com/software/data/bigdata/ 



Big Data 

The notion of big data refers to data management loads for 

which conventional techniques fall short and that call for new 

approaches. 
 

 

 

 

 

 

 

 
 

 

• The amount of data 

Volume 

• The update loads or query latency or throughput requirements 

Velocity 

• The number and diversity of data sources 

Variety 



Outline 

• A briefing on recent and ongoing research in three areas 

of geo-spatial data management. 

 

• Keyword querying 

• Eco-routing in spatial networks 

• Managing high-velocity mobile location data 
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Outline: Keyword Querying 

• Motivation 

• Top-k spatial keyword queries 

• Collective queries 

• Group queries 



• A quickly evolving mobile Internet infrastructure 

 Mobile devices, e.g., smartphones, tablets, laptops, navigation 

devices, glasses 

 Communication networks and users with access 
 

• Mobile is a mega trend. 

 Google went “mobile first” in 2010. 

 Mobile data traffic 2020 = 2010 x 1000. 
 

• Increasingly sophisticated technologies enable the 

accurate geo-positioning of mobile users. 

 GPS-based technologies 

 Positioning based on Wi-Fi and other communication networks 

 New technologies are underway (e.g., GNSSs and indoor). 

 

 

The Mobile and Spatial Web 



Spatial Web Querying 

• Total web queries 

 Google: 2011 daily average: 4.7 billion 

• Queries with local intent 

 ”cheap pizza” vs. ”pizza recipe” 

 Google: ~20% of desktop queries; Bing: 50+% of mobile queries 
 

• Vision: Improve web querying by exploiting accurate user 

and content geo-location 

 Smartphone users issue keyword-based queries 

 The queries concern web content representing places (POIs) 
 

• Support different use cases 

 Nearest relevant POI – ”I want a bottle of water” 

 Exploratory or browsing behavior – ”I want a pair of shoes” 



• Objects:                       (location, text description) 

 

• Example:  

 

 λ = (56.158889, 10.191667) 

 

 ϕ = Den Gamle By Open-Air Museum 

  Den Gamle By - "The Old Town" – was 

  founded in  1909 as the world's first  

  open-air museum of urban history and  

  culture… 

 

 

 

Spatial Web Objects 
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Spatial Web Objects – Sources 

 • Web pages with location 
 

• Online business directories 

 Business name, location, categories,                                    

reviews, etc. 

 Example: Google Places 
 

• Geocoded micro-blog posts 

 Example: Twitter 

 Messages with up to                                                                     

140 characters 
 

• Foursquare, Facebook Places,                                         

Navigation Devices 

 



• Objects:                       (location, text description)                

• Query:                         (location, keywords, # of objects) 

 

• Ranking function 

 

 

 

 

 Distance: 

 Text relevancy: 

 Probability of generating the keywords in the query from the language 

models of the documents 
 

• Generalizes the kNN query and text retrieval 

10 

kq ,,

Top-k Spatial Keyword Query 
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Spatial Keyword Query Processing 

• How do we process spatial keyword queries efficiently? 

 

• Proposal 

 Prune both spatially and textually in an integrated fashion 

 Invent indexing to accomplish this 

 

• The IR-tree [Cong et al. 2009 ; Li et al. 2011; Wu et al. 2012] 

 Combines the R-tree with inverted files 

 R-tree: good for spatial 

 Inverted files: good for text 
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Object descriptions 

a: (R3, 4), (R4, 1) 

b: (R4, 4) 

c: (R3, 4), (R4, 4) 

d: (R4, 1) 

Inverted file 

a: (p7, 1) 

b: (p6, 4), (p7, 1) 

c: (p6, 3), (p7, 4) 

d: (p7, 1) 

Inverted file 

a: (p5, 4), (p9, 3) 

c: (p5, 4), (p9, 3) 

Inverted file 



Collective Spatial Keyword Querying 

• So far, the granularity of a result has been a single object 

 

• We may want to return sets of objects that collectively 

satisfy a query. 



The Collective Spatial Keyword Query 

• Query location:        (Kenmore Hotel, SF)  

• Query keywords: theater, gym 

 

city gym 

full care theater exercise gym 

performance theater 



The Collective Spatial Keyword Query 

• Objects:                            (location and text description)                

• Query:                              (location and keywords) 

 

• The result is a group of objects χ satisfying two conditions. 

   

 Cost(Q, χ) is minimized. 

 

•   

 C1(.,.) depends on the distances of the objects in χ to Q. 

 C2(.) characterizes the inter-object distances among objects in χ. 

 α balances the weights of the two components. 
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Collective Query Variants 

• Cost function:  

• Application scenario 

 The user wishes to visit the places one by one while returning to 

the query location in-between. 

 Go to the hotel between the museum visit and the jazz concert 

 NP-hard: proof by reduction from the Weighted Set Cover problem 
 

• Cost function:  

• Application scenario 

 Visit places without returning to the query location in-between 

 E.g., go to a movie and then dinner 

 NP-hard: proof from reduction from the 3-SAT problem 
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Top-k Groups Query Illustration 

• Query location:        (Kenmore Hotel, SF) 

• Query keyword: Restaurant 
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• Objects:                       (location, text description)                

• Query:                         (location, keywords, # of objects) 

 

• Ranking function 

 

 

 

 

                 and  

 Distance: 

 Diameter: 

 The text relevance function favors large groups and groups where 

the query keywords are distributed evenly among group objects. 

 Groups are disjoint 
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Problem Definition 

• Distance to the group 

 Distance to the nearest 

object 

 

 

 

• Group diameter 

 Maximum distance 

between two objects 

 Better than, e.g., area 

of the convex hull 
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Challenges 

• Structured queries and Amazon-style and social queries 

 Ample opportunities for much more customization of results 

• Build in feedback mechanisms 

 “Figuring out how to build databases that get better the more 

people use them is actually the secret source of every Web 2.0 

company”                                                        –Tim O’Reilly 

• Tractability versus utility 

 The area is prone to NP-hardness 

• Avoid parameter overload 

 Problem vs. solution parameters 

 Hard-to-set, impossible-to-set parameters – relevance decreases 

exponentially with the number of such parameters 

• User evaluation 

 If you can’t measure it, you can’t improve it. 

 Challenging – particularly for someone who used to study joins. 



Outline: Spatial Networks 

• Motivation 

• Setting 

• Challenges 



• The reduction of greenhouse gas (GHG) emissions from 

transportation is essential to combat global climate 

change. 

 EU: reduce GHG emissions by 30% by 2020.  

 G8: a 50% GHG reduction by 2050. 

 China: a 17% GHG reduction by 2015. 
 

• Eco-routing can reduce vehicular impact by up to 20%. 

Motivation – Eco-Routing 



Setting 

• Use an existing road network model 

 E.g., OpenStreetMap 

 Germany: 10 million edges (rough estimate) 

• Use tracking data from vehicles 

 E.g., GPS data 

• Use fuel consumption data from vehicles 



GPS Data 

• Data warehouse statistics (as of November 28, 2013) 

 Number of data sources (and NDAs): 17 

 Daily data from 4 (~1.6 million per day); irregular batches from 4 (2 

small and 2 big); finished projects: 9 

 Total number of fact table rows (before/after cleaning): 

2,386,420,008/2,372,212,609 

 Number of vehicles: 23,660 

 Number of trajectories (trips): 2,015,109 

 Rows with fuel data: 118,945,566 (~140,000 per day) 

 Rows from EVs: 110,663,568   

 Number of rows per year: (2000, 209,356), (2001, 40,912,564), 

(2002, 17,077,612), (2003, 4), (2004, 464,068), (2005, 380), (2006, 

33,491,547), (2007, 182,991,309), (2008, 161,383,000), (2009, 

92,795,488), (2010, 172,246,375), (2011, 221,223,905), (2012, 

674,314,285), (2013, 664,797,761) 

 



Setting 

• The setting may be modeled as a system of streams, one 

per edge 

 Spatial 

 Spatio-temporally correlated 

 Sparse 

• Real, unlike envisioned smart dust applications! 
 

• Infer eco weights of edges from the GPS data and a 

”lifted” 3D spatial network using vehicular environmental 

impact models. 



Deterministic vs. Uncertain Weights 

• Deterministic: Each interval has a deterministic weight. 

 E.g.: (0:00, 7:00]: 10 mg; (7:00, 9:00]: 18 mg; (9:00, 15:00]: 12 mg;… 
 

• Uncertain: Each interval has a random variable that is 

modeled by, e.g., a normal distribution or a histogram 

 E.g.: (0:00, 7:00]: 8 to 12 mg, N(9, 10); (7:00, 9:00]: 13 to 23 mg,         

N(18, 10); (9:00, 15:00]: 8 to 12 mg, N(10, 20); …  

Coverage Temporal 

Granularity 

Accuracy 

Deterministic 

Weights 

High  

(all edges) 

Coarse 

(e.g., pre-

defined PEAK) 

Good (better than 

speed limits) 

Uncertain 

Weights 

Low 

(only “hot” 

edges) 

Fine 

(e.g., 15-min 

intervals) 

High (capture the 

travel cost 

distributions) 
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a11
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Challenge: Spatial Network Lifting 

• Build a 3D road network 

from 3D laser scan data 

and a 2D road network.  

• Step 1: Create a 

Triangulated Irregular 

Network (TIN) from a 3D 

laser scan.  

• Step 2: Project 2D 

polylines to the TIN to 

obtain 3D polylines and 

thus a 3D road network. 

 

• Note: Big laser scan data... 



Challenges: Assigning Eco-Weights 

• Deterministic, static weights, all edges 

 Challenges: infer weights for “cold” edges – edges not covered by 

GPS data. 

 Graph weight annotation 

 Quantify edge similarities based on traffic flows derived from the topology 

of the road network.   

 Propagate the weights on hot edges onto similar cold edges.   
 

• Uncertain, static weights, hot edges 

 Capturing the weights of hot edges using time dependent histograms. 

 Challenges: compact representations of the histograms, histograms 

for routes. 
 

• Dynamic weights, hot edges 

 Inferring near-future weights of hot edges as GPS data streams in.  

 Challenges: correlated, sparse, heterogeneous.   



• Stochastic skyline route planning under time-varying 

uncertainty 

 Given a source, a destination, and a trip starting time, identify 

pareto-optimal routes considering multiple travel costs, e.g., 

travel times, GHG emissions, distances.  

 Account for probabilities 
 

• Continuous routing that supports real-time weight 

updates 

 Maintain up-to-date routes for vehicles according to the up-to-

date weights and the current vehicle locations.   

 

 

 

 

 

 

 

Challenges: Routing 



Next Steps 

• Automated trade-off between weight level of detail and 

available data. 

• Stochastic routing at 40 milliseconds. 

• Route-based weights instead of segment-based weights. 

• Modeling spatio-temporal congestion from data. 

• Detect “black spots” before they occur. 



High-Velocity Location Data: Outline 

• Workloads 

• Dual and single data structure approaches 

• Experimental study and findings 



Workloads 

• Specific scenario assumed: country-wide vehicle tracking 

and intelligent transport system services 

 10 million vehicles, 10 m/s speeds, 10 meter accuracy: 10 million 

updates/s 

 Plus queries, represented by range queries 
 

• A main memory problem 

• Exploit the parallelism offered by modern processors 
 

• Fast single-object updates (nanoseconds, roughly) 

• Relatively long-running queries (microseconds, roughly) 

• Handle interference between queries and updates 

 An update waiting for a query is analogous to a traveler on an 8 

hour trip being told that there is a slight delay so that the trip will 

take 8000 hours or ~1 year. 

 



Dual Data Structure Approaches 

• Idea: Isolate queries from updates using two copies of the 

data. 
 

• A static, indexed copy is used for querying. 

• A live copy is used for updates. 

 MOVIES: a log 

 TwinGrid: an up-to-date index 
 

• Frequently refresh (called snapshotting) the static copy 

used for querying so that query results are reasonably 

fresh. 

 



Single Data Structure Approach – PGrid 

• The snapshotting solutions have problems! 

• Stale query results 

• Stop-the-world problem 

• Waste of CPU cycles on frequent snapshotting 

• The snapshotting frequency is difficult to set. 
 

• Can we solve these problems? 

• Yes: use one copy for both updates and queries. 
 

• Allow insertions and deletions to happen concurrently with 

queries. 

• Make sure that updates are atomic. 

• Perform as little locking as possible. 

 



Experimental Study 

• Use a variety of multi-core platforms 
 

• Considered half a dozen main-memory indexes 
 

• Massive workloads 

 Simulated monitoring of up to 40M (10M default) moving objects in 

the road-network of Germany 
 

• Findings 

 Throughput varies from about 10 to about 30 million operations per 

second (predominantly updates, but also range queries). 

 PGrid is generally best. 



Challenges 

• kNN queries, continuous queries, joins 

• Integration with the handling of past states 

 These may not fit in memory. 

 Only the current states can be updated (partial persistence). 
 

• (Arbitrarily) fast enough at lowest cost 

 Use only as much main memory as currently needed. 
 

• Start thinking about self-driving vehicles 

 “…looking back and saying how ridiculous it was that humans 

were driving cars.” [Sebastian Thrun, TED2011] 

 Machines don’t make mistakes, human do. 

 

 



Summary 

• Briefing on ongoing research in three areas of geo-spatial 

data management 
 

• More data is becoming available 

• More devices are being networked 

• Increasing needs 
 

• Data driven research 

• Tight integration with empirical studies 
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