Centrum Wiskunde & Informatica

Vortex Y P

- . -

i ad: - @é)oa

Vectorwise-on-Hadoop 0 6B P o
‘, o
<@

Peter Boncz °¢
TUM workshop, February 11, 2016

» o A\

I®Rctan

' New SIGMOD Paper:

Centrum Wiskunde & Informatica

= www.cwi.nl/~boncz/vortex-sigmod2016.pdf

Vortex: taking SQL-on-Hadoop to the next level

Andrei Costea! Adrian lonescu! Bogdan Raducanu! Michat Switakowskit Cristian Barct

Juliusz Sompolskit Alicja tuszczak* Michat Szafrafskit

Giel de Nijs*

Actian Corp.?

ABSTRACT

Vortex is a new SQL-on-Hadoop system built on top of the
fast Vectorwise analytical database system. Vortex achieves

fault tolerance and scalable data storage by relying on HDF'S,

extending the state-of-the-art in SQL-on-Hadoop systems by
instrumenting the HDFS block replication policy to ensure
local reads under most circumstances. Vortex integrates
with YARN for workload management, achieving a high de-
gree of elasticitv. Even though HDFS is an append-only

Peter Bonczt
CWIE

consist of relatively few very heavy queries — compared to
transactional workloads — that perform heavy scans, joins,
aggregations and analytical SQL, such as SQL’2003 win-
dow functions based on PARTITION BY, ROLL UP and
GROUPING SETS. That said, these workloads are by no
means read-only, and systems must also sustain a continuous
stream of voluminous updates under limited concurrency.
In the past decade, analytical database systems have seen
the rise of (i) columnar stores — which reduce the amount of

I®ctian W
I Centrum Wiskunde & Informatica

Vortex origin: Vectorwise

= 2005: invented as MonetDB/X100

» Vectorized query processing

= Reducing interpretation overhead, exploiting SIMD cidrO5

= vectorized decompression (formatsPFOR,PDELTA,PDICT) icde06

= Cooperative Scans & Predictive Buffer Manager vidb07&12
= Mixing NSM and DSM in the query pipeline damon08
= Positional Delta Trees — for updates sigmod10
= Compilation &&-|| Vectorization damonll
= Run-time adaptation: “micro-adaptivity” sigmod13
= Advanced Table Clustering (= new BDCC paper) vidbj16

= Vectorized Scans in Hyper sigmodl16

= 2008: spin-off company
= 2010: product released, top TPC-H benchmarks

PhD thesis of Spyros Blanas (2013)

2w00__+|BM
§ A Microsoft
£ 10000 -{ © Oracle
. * VectorWise
8 5000 * Other vendors '
g Saw
S 2000 - R & Ao0n*a @
= A Py 3 A #*
2 1000 2 a A
£ A 0 o
3
o
s
-

per hour. VectorWise is a new database system that has been designed from scratch
to better utilize modern hardware [80].

Figure 1.1: Performance per thread for transaction processing and deci-
sion support workloads. The thick gray line denotes peak performance per
thread among the three established database software vendors.

Centrum Wiskunde & Informatica

Industries & solutions Services Products Support & downloads My IBM

@ctian

the relational DB2 with BLU Acceleration R
IndUStry IS Breakthrough analytics performance ”‘

trying to adopt

vector processing...

A Technical Best Practices Tour with ColumnStore
index
Susan Price

Senior Program Manager

SAP HANA® Solution
Redefines In-memory Computing

1

Columnar store scans and lo

C(._.}lumnqr relevant data based on columr

resulting in faster processing.
stor@

rformance

on

Optimizing Transaction and Query Pe

. Tisesactions run faster on row format

et O Query § MBS Oroer
Faxt procesug e OWE My (ORI

+ Anaiytics ren faster on Column format
Wpcrt OF ket XANA by Atate

i@ctian

I Centrum Wiskunde & Informatica

H |Ve g ets The Stinger Initiative: Making Apache Hive 100x Faster

It too!

Apache Hive

Base Optimizations

Generate simplified DAGs
In-memory Hash Joins

Vector Query Engine Query Planner

Optimized for modern Intelligent Cost-Based
processor architectures Optimizer

Deep Analytics

Hive Query Server

Pre-warmed Containers
Low-latency dispatch

50L Compatible Types
50L Compatible Windowing

r© ™
Hive/Stinger
Phases

Buffer Caching Tez

Express data processing
tasks more simply
Eliminate disk writes

Optimized for vector engine

ORCFile YARN

Column Store
High Compression
Predicate / Filter Pushdowns

Next-gen Hadoop data
processing framework

O
Apache Hadoop

ction " i
|lﬁ SQL on Hadoop w

= Big Data processing pipelines on Hadoop

 Unstructured =» Structured
= Unstructured: Data Mining, Pattern Matching (MapReduce)

= Structured: Cleaner data, bulk loads into warehouse

« Do we have to buy/manage two clusters??
1. Hadoop/MapReduce
2. MPP SQL warehouse

The case for SQL on Hadoop:
= Reduced hardware cost (1 cluster)
= Agile: no more data copying data between Hadoop and SQL
= Broaden access to Hadoop data through a wealth of SQL apps
= Standardize cluster admin skills on Hadoop (human resources)

Inroducing Vortex: Vector-on-Haddo
Key Features

= compressed vector data formats work natively on HDFS

IActian
]

Vortex

Centrum Wiskunde & Informatica

Hadoop Features :

= Automatic HDFS block placement

@ctian

Vortex Architecture

p
i@cten VECtor

X100
backend

X100
backend

i@cten Ve Ctor

processes

(@ction VECtor

backend

{@cton VeCctor

backend

Y4)
@ctionyvector xo

backend

session master

{@cton VeCtor X

backend

%/

running on the worker set

SQL

query
plan_!i@ction Ve Ctor fomend

Vortex
“worker-set”

N e o

(@9 HOES;

datanodes -

~

name
node

Actian Director
for Management

10

IQctian
: Storage W

= Data Format

« Vector native compressed data formats

Fixed-size blocks, one table per block-file

Horizontal splits for garbage collection; tail-file to stage small appends

HDFS block placement: we decide were the replicas are

Tables are either hash-partitioned or global (i.e. non-partitioned)

Global File System
m All /O is through HDFS

m Achieved in an append-only file system

m Any worker can read any table partition

m Responsibilities for handling partitions is decided at session start
m Optimization algorithm assigns partitions to nodes that have the file local

m 100% HDFS “shortcut reads”, also when the node that wrote the partition is down

11

I®Rctan

HDFS “shortcut reads”

Vortex Architecture

p
i@cten VECtor

X100
backend

i@cten Ve Ctor

backend

processes

Y4)
@ctionyvector xo

backend

(@ction VECtor

backend

session master

{@cton VeCtor X

backend

ﬁ

{@cton VeCctor

backend

running on the worker set

write ahead log
WAL

%obal table

partitioned table

HDFS block placement hints

©T T ©T ©

[]~ I
s

==

AY

Vortex
“worker-set”

HEIFS

datanodes

name
node

Centrum Wiskunde & Informatica

AN
o\

N e o

~

12

IQctian Coe .
| Minimizing Data Transfer W

= Storage

« Co-located partitions (local partitioned hash-joins)

* Replicated tables (local shared-HashTable hash-joins)
« Co-partitioned clustered indexes (local merge-joins)

« MinMax indexes for predicate pushdown (correlates over merge-joins)

Parallel Cost Model

m Distributed joins, distributed query optimizer considers:
m Both key-partitioned and shared (broadcast) HashJoin
m Local broadcast Hashloin for replicated tables

m Distributed GroupBy, distributed query optimizer considers:
m Both key-partitioned and global re-aggregated GroupBy

m Local early aggregation followed by partitioned aggregation

13

@ctian E!i-
I Centrum Wiskunde & Informatica

Example Query Plan

SELECT FIRST 10 s_suppkey, s _name, count(*) as 1 count
FROM lineitem, orders, supplier
WHERE 1 orderkey=o orderkey
AND o orderdate BETWEEN ’'1995-03-05" AND "1997-03-05'
AND 1 suppkey=s_suppkey
AND 1 discount>0.03
GROUP BY s _suppkey, s name
ORDER BY 1 count

TopN (final) [|_count]

DxchgUnion
TopN (parl;iaI] [I_count]
hggr (final) [s_sup;;:key,s_name][l_munt]
Dldlgﬂaslﬂ;plitls_wppkeﬂ
Bagr (partial) [s_wlmkev.s_mmem_m1|
lhﬂhhﬂﬂ%hmmﬂnhm
XchgHashSplit [cuppkey]] [XehgHashSpiit (s suppker]
|mmummmmMmMnmmmw] Scanlsupplir] (replicated]

ISelect [1_t -::Imuunt:-ﬂ 03] ISaIaq:t[ﬂ_ﬂrderdalae in .
Scan[lineitem] (parht}nned) Suan[nrd:ars] (partitioned)

14

t
I\Ec o Resource Mgmt W

= YARN integration

» Ask YARN which nodes are less busy, when enlarging the worker set
* Inform YARN of our usage (CPU, memory) to prevent overload
» Placeholder processes to decrease and increase YARN resources

Workload management
m Workload monitoring to gradually determine Hadoop footprint
m Choose (# cores, RAM) for each query, given the current footprint
m Choose to involve all or just the minimal subset of workers
Elasticity

m Scale down to minimal subset of nodes, one core each

m Scale up to all nodes, all cores

15

I®Rctan

Hadoop & Vortex resource info

Vortex Architecture

p
i@cten VECtor

X100
backend

(@ction VECtor

Y4
@cton yeCctor xwo

backend backend

session master

query
plan

HDFS “shortcut reads”

@Ctl(\nvector backend @Ctl@nvector i)(;glfend @Ctlonvector ij(;n(:)l?end g erte ahead Iog
\—— =
5 %obal table
2
. 8| partitioned table
processes running on the worker set s P
a P N W (63}
I
Vortex ¥

“worker-set”

AN
~

HEIFS

datanodes

-

maximal YARN footprint

name
node

Centrum Wiskunde & Informatica

e e o P

~

16

i@ctian _ W
| Data Ingestion

= Connectivity
» Fast Parallel Loader, executes in parallel on all worker nodes

» Spark Integration
= to read and write Hadoop Formats; push computation into Spark

Updates (DML)

m Support for Insert, Modify, Delete, Upsert
m Modify, Deleted, Upsert use Positional Delta Trees (PDTs)
m Combination of distributed WAL and master WAL
m 2PC coordinated by the session master
m Partitioned Tables partition DML to all nodes in worker set
m Updates go to distributed WAL(s) — unless transaction is small
m Replicated Tables execute DML on the session master

m Session master broadcasts all PDT changes to all worker nodes
17

I®ctian W
I Centrum Wiskunde & Informatica

Vortex: contributions

= Performance

e TPC-H 1000GB — 10 node Hadoop cluster (16-core, 256GB RAM, 24 disks)
« How many times faster is Vortex, compared to..? (well-tuned, same everything)

1000 mHAWQ mSparkSQL mimpala mHive
100 -

10 |

1 -

Q1 Q2 Q3 Q4 @5 Qb Q7 Q8 Q9% Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q1% Q20 Q21 Q22

|Vortex [1.34]|1.20]3.15] 0.18 [1.94|0.19{2.37| 1.8 [11.77|1.21|1.28]|0.37|3.69(1.13[1.56]1.73| 1.21 |1.63]1.29|2.47[1.99|2.96 |
(Vortex numbers = latency in seconds)

18

I®ctian W
I Centrum Wiskunde & Informatica

A New Red Book

Readings
in
Database
Systems

Fifth Edition

edited by

Peter Bailis

Joseph M. Hellerstein
Michael Stonebraker

“The advantages of a column executor are
persuasively discussed in [2], although it is
“down in the weeds” and hard to read.”

References:
[1] Batory, D.S. On searching transposed files. ACM Transactions on Database Systems

(TODS). 4, 4 (Dec. 1979).
[2] Boncz, P.A., Zukowski, M. and Nes, N. MonetDB/X100: Hyper-pipelining query

execution.CIDR, 2005.

19

I®Rctan

Vectorwise: scan performance

= Fast vectorized decompression

a) Query time (hot)

[impala(parquet) B presto(orc)
[0 presto(parquet) 1 vortex

=
=2

second

L=y

public static long readUnsignedVInt(InputStream inputStream)
throws IOException
{
long result = @;
int offset = @;
long b;
do {
b = inputStream.read();
if (b == -1) {

throw new OrcCorruptionException("EOF while reading un

¥
result |= (b & 8b8111 1111) << offset;

offset += 7,
} while ((b & ©blo@e_0eee) != @);
return result;

Centrum Wiskunde & Informatica

3 GtHub, Irc. [US] | https://g thub.com/facebook/presto/blob/master/presto-orc/src/mzin/java/com/facebook/presto/orz/stream/LongDecode.jave

Parquet/ORC

Data formats inspired by
Vectorwise work (et al)

Implemented without any
vectorization.. ®

(30x slower)

I®Rctan

I Centrum Wiskunde & Informatica

Vortex: contributions

= Performance

= HDFS locality

22

I®ctian W
I Centrum Wiskunde & Informatica

HDFS locality

= Partitioned tables R,S (12 partitions)
= Co-located on S.FK=>R.PK

* local joins
= 3-way HDFS replication
= One node (of 3) is “responsible” (bold)

* handles updates to that partition — and most queries

nodel node2 node3 node4d
{01 [H H RO4/RO5 |RO6 | ROTIROS8|/R09 | R10 R11 R12
ﬁﬂ 508509 | S10 S11 S12
S10a S11a S12
S10a S1la S12a|}S01afS02a f503all S04afS05aS06aflS07al SO8alS09a
RO7b RO&b R0O9b|[R10bR11bR12b EEE EEE
- »

SO07b S08b S09b|[S10b S11b S12b

23

@ctian E!i-
I Centrum Wiskunde & Informatica

HDFS locality

= Partitioned tables R,S (12 partitions)

= Co-located on S.FK=>R.PK

* local joins

= 3-way HDFS replication

= One node (of 3) is “responsible” (bold)

* handles updates to that partition — and most queries

nodel

node2

node3

RO1 R0O2 RO3
S01 S02 S03
R10aR1lla R12a
S10a S1lla S12a
RO7b RO8b R09b
S07b SO08b S09b

R04 R0O5 RO6
S04 S05 S06
ROla R02a R03a
SO0la S02a S03a
R10bR11bR12b
S10b S11b S12b

RO7 RO8 R09
S07 S08 S09
R04a R05a R06a
S04a S05a S06a
R0O1bR02bR03b
S01b S02b S03b

24

HDFS locality

= Partitioned tables R,S (12 partitions)

= Co-located on S.FK=>R.PK

* local joins

= 3-way HDFS

replication

= One node (of 3) is “responsible” (bold)

@ctian E!i-
Centrum Wiskunde & Informatica

* handles updates to that partition — and most queries

nodel

node2

node3

R0Ola R02a RO3
S0la S02a S03
R10 R11 R12
S10 S11 S12
RO7b RO8b R09b
S07b S08b S09b

R04 RO05 RO6a
S04 S05 S06a
RO1 RO2 RO3a
S01 S02 S03a
R10bR11bR12b
S10b S11b S12b

RO7 RO8 RO09
S07 S08 S09
R04a R05a R06
S04a S05a S06
R0O1bR02bR03b
S01b S02b S03b

R04b R0O5b R06b

|1S04b SO5b S06b|

R0O7a R08a R09a

[SO07a S08a S09a|

R10aR11laR12a

|1S10a Sl1lla S12a)|

noded

re-replicated
partitions

I®Rctan

Centrum Wiskunde & Informatica

Vortex: contributions

= Performance

= HDFS locality
= YARN integration

26

I®Rctan

Centrum Wiskun

Vortex: contributions

= Performance O/RMax on O\

2O N0

v

0/RMax

dbAgent :

Negotiates #nodes, #cores and RAM in Hadoop for Vortex

= HDFS |Oca|ity D"H"”a" 21 0/PCap
= YARN integration E%HME.;.E \QD/;; '

Needs to work around YARN limitations (long-term tasks)

Determines which nodes<>data mapping

Reacts to YARN priority scheduling

Algorithms based on min-cost network flows

27

de & Informatica

I®Rctan

Vortex: contributions

= Performance

= HDFS locality
= YARN integration
= Updates

Centrum Wiskunde & Informatica

28

@ctian

SID

N W N R O

STORE PROD NEW QTY

London | chair N 30

London | stool N 10

London | table N 20

Paris rug N 1

Paris stool N 5
TABLE,

A W N R O

RID

Centrum Wiskunde & Informatica

Positional Delta Trees (PDTSs)

“Positional Update Handling in Column Stores” — SIGMOD 2010

INSERT INTO inventory VALUES('Berlin’, ‘table’, Y, 10)
INSERT INTO inventory VALUES('Berlin’, ‘cloth’, Y, 20)
INSERT INTO inventory VALUES('Berlin’, ‘chair’, Y, 5)

PDTs enable fine-grained updates on append-only data (HDFS)

SID

type
value

0 0
ins ins
(Berlin, | (Berlin,
chair, cloth,

Y,5) Y, 20)

SID

type
value

ins

(Berlin,
table,
Y,10)

29

I®Rctan

Centrum Wiskunde & Informatica

Vortex: contributions

= Performance
= HDFS locality
= YARN integration

= Updates

HDFS is an append-only filesystem?

PDTs to the Rescue!
= sigmodl16: Hive slows down 40% after updates — Vortex: nothing

PhD thesis Heman (“updating compressed column stores” 2015)
=» updating nested tables!

= Nested data models (Dremel, Parquet, ORC) < relational join indexes
= Help for co-locating tables in a distributed filesystem (HDFS)
= Fast merge-joins

30

I®Rctan

Vortex: contributions

= Performance

= HDFS locality
= YARN integration
= Updates

Centrum Wiskunde & Informatica

31

I®ctian W
I Centrum Wiskunde & Informatica

Vortex: In the cloud?

= Sure!

« Amazon EMR setup available
 USPs
= Performance, Elasticity, SQL Maturity, Updates, Spark integration

= \Work to do:

« Current solution relies on ephimeral storage
= Integrating S3 beyond incremental backup + DistCp
= Ephimeral storage as automatic cache

= Elasticity of “core instance group”

* Can leverage Vortex control over HDFS placement

32

I®Rctan

I Centrum Wiskunde & Informatica

Conclusions

= [ntroduced Vortex: Vectorwise-on-Hadoop

« High Performance — properly Vectorized
* YARN Iintegration, HDFS locality — min-cost flow optimizations

« Updates on Nested Tables — PDTs on join indexes
= Vortex in the cloud

 Works on EMR.
* Interested in taking student projects (HDF-S3, elasticity)

33

