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@ CedarDB

Overview

(8 UMBRA

TUM Startup

o O O O

Started at TUM with Umbra
Cutting-edge database research

Query compilation

Disk-based with in-memory performance

CSRankings: Computer Science Rankings

CSRankings is a metrics-based ranking of top computer science institutions around the world. Click on a
triangle (> ) to expand areas or institutions. Click on a name to go to a faculty member's home page. Click on
a chart icon (the iy after a name or institution) to see the distribution of their publication areas as a
bar chart v |. Click on a Google Scholar icon (i) to see publications, and click on the DBLP logo (») to go
to a DBLP entry. Applying to grad school? Read this first. Do you find CSrankings useful? Sponsor

CSrankings on GitHub.
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Overview

(8 UMBRA

TUM Startup

o O O O

Started at TUM with Umbra
Cutting-edge database research

Query compilation

Disk-based with in-memory performance

“PostgreSQL for analytics”

o O O O O

PostgreSQL protocol and client compatibility

CSRankings: Computer Science Rankings

CSRankings is a metrics-based ranking of top computer science institutions around the world. Click on a
triangle (> ) to expand areas or institutions. Click on a name to go to a faculty member's home page. Click on
a chart icon (the iy after a name or institution) to see the distribution of their publication areas as a
[bar chart v |. Click on a Google Scholar icon () to see publications, and click on the DBLP logo (») to go
to a DBLP entry. Applying to grad school? Read this first. Do you find CSrankings useful? Sponsor
CSrankings on GitHub.

Rank institutions in | the world v | by publications from 2017 v |to(2023 v |

All Areas [off | on] # Institution
1 » TU Munich = i,
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» Artificial intelligence (m] o

» Computer vision o 3 » Tsinghua University @l il
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e 5 » National University of Singapore ™= jj;
6  » Duke University == jjy

Systems [off | on] 7 » Chinese University of Hong Kong i3 il

» Computer architecture (m] 8  » Nanyang Technological University ==

» Computer networks (m]

» Computer security o 9 » Univ. of California - San Diego == i
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» Embedded & real-time systems [

Simultaneous high-performance analytics and operations on the same data

Full utilization of modern hardware capabilities (e.g. massive parallelism, RAM capacity)
Transparently and gracefully scales beyond main memory

Several orders of magnitude speedup over existing systems
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Performance
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Performance
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Overview

e “PostgreSQL for analytics”

PostgreSQL protocol and client compatibility

Simultaneous high-performance analytics and operations on the same data

Full utilization of modern hardware capabilities (e.g. massive parallelism, RAM capacity)
Transparently and gracefully scales beyond main memory

Several orders of magnitude speedup over existing systems

O O O O O

e Free Community Edition for Linux / Docker:
curl https://get.cedardb.com | bash
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Agenda

e Recap: DBMS Components
e Relational Algebra Optimization

e Storage: B-Tree deep dive

Overview over cutting-edge database research
Research papers referenced like this ->

Umbra: A Disk-Based System with In-Memory Performance

Thomas Neumann, Michael Freitag
Technische Universitat Minchen
{neumann,freitagm}@in.tum.de

ABSTRACT

‘The increases in mai sizes over the last decade have made
pure in-memory database systems feasible, and in-memory systems
offer unprecedented performance. However, DRAM is still rela-
tively expensive, and the growth of main-memory sizes has slowed
down. In contrast, the prices for SSDs have fallen substantially in
the last years, and their read bandwidth has increased to gigabytes
per second. This makes it attractive 1o combine a large in-memory

performance for the in-memory \mrkmg set with the scalability of
a disk-based system.

In this paper we present the Umbra system, an evolution of the
pure in-memory HyPer system towards a disk-based, or rather
SSD-based, system. We show that by introducing a novel low-
overhead buffer manager with variable-size pages we can achieve
comparableperformance o an in-memory database system for
the cached working set, while handling accesses to uncached data
gracefully. We discuss the changes and techniques that were nec-
essary to handle the out-of-memory case gracefully and with low
overhead, offering insights into the design of a memory optimized
disk-based system.

1. INTRODUCTION
Hardware trends have greatly affected the development and evolu-
tion of database management systems over time. Historically, most
of the data was stored on (rotating) disks, and only small !mcnon\
of the data could be kept in RAM in a buffer pool. As main mes
up 10 terabytes of RAM, this perspe
changed as large fractions of the data o even all data could now be
kept in memory. In comparison to disk-based systems, this offered
a huge performance advantage and led o the development of pure
in-memory database systems [4, 5, including our own system Hy-
Per [9]. These systems make use of RAM-only storage and offer
outstanding performance, but tend to fail or degrade heavily if the
data does not fit into memory.

Moreover, we currently observe two hardware trends that cast
strong doubt on the viability of pure in-memory systems. First,
RAM sizes are not increasing significantly any more. Ten years

“This article is published under a Creative Commons Attribution License
(hup:/icreativecommons.org/licenses/by/3.0). which permits distribution
and reprodu e 5wl s sllowig defunivs ek, e
vided that original work to the author(s) and CIDR 2
Ok A Conferenceon ovtie D Sysems Rseinch (CIDR 201
January 12-15, 2020, Amsterdam, Netherlands.

ago, one could conceivably buy a commadity server with 1TB of
memory for a remnmlhle pricz. Today, affordable main memory
m.gm have increased to 2TB, but going beyond that dispro-

ately incre: e the i As oin usually have to be kept
under conrol muugh this has caused the growth of main memory
sizes in servers to subside in the recent years.

On the other hand, SSDs have achieved astonishing improve-
ments over the past years. A modern 2 TB M.2 SSD can read with
about 3.5 GBI, while costing only $500. In comparison, 2B of
server DRAM costs about $20000, i.e. a factor of 40 more. By
placing multiple SSDs into one machine we can get excellent read
bandwidths at a fraction of the cost of a pure DRAM solution.
Because of this, Lomet argues that pure in-memory DBMSs are
uneconomical [15]. They offer the best possible performance, of
course, but me) do not

X

siz

le beyond a certain size ma are far
ase:

not
Umbu system which simultaneously
worlds: Genuine in-memory performance
set, and transparent scaling beyond main memory where required.
Umbra is the spiritual successor of our pure in-memory system
HyPer, and completely eliminates the restrictions of HyPer on data
sizes. As we will show in this paper, we achieve this without sacri-
ficing any performance in the process. Umbra is a fully functional
general-purpose DBMS that is actively developed further by our
group. All techniques presented in this paper have been imple-
mented and evaluated within this working system. While Umbra
sign choices like a compiling query
Umbra deviates in many important aspects due

performance for the common c:
into main memory.

A key ingredient for achieving this is a novel buffer manager that
combines low-overhead buffering with variable-size pages. Com-
pared to a traditional disk-based system, in-memory systems have
the major advantage that they can do away with buffering, which
both eliminates overhead and greatly simplifies the code. For disk-
based systems, common wisdom dictates (o use a buffer manager
with fixed-size pages. However, while this simplifies the buffer
manager itself, it makes using the buffer manager exceedingly diffi-
cult. For example, large strings or lookup tables for dictionary com-
pression often cannot easily be stored in a single fixed-size page,
and both complex and expensive mechanisms are thus required all
over the database system in order to handle large objects. We ar-

e that the entire workmg set fits
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e Recap: DBMS Components
e Relational Algebra Optimization

e Storage: B-Tree deep dive



@ CedarDB
Recap: DBMS Components

e SQL parsing
e Relational Algebra Plan
e Physical Execution Plan

e Storage Access



é% CedarDB
SQL Parsing

SELECT *
FROM R1,R3, (
SELECT R2.z, count(*)
FROM R2
WHERE R2.y = 3
GROUP BY R2.z

) R2

WHERE R1.x = 7

AND R1.a = R3.b
AND R2.z = R3.c

10



é% CedarDB

SQL Parsing

SELECT *

FROM R1,R3,
SELECT R2.z, count(*)
FROM R2

(

WHERE R2.y = 3
GROUP BY R2.z

) R2

WHERE R1.
AND R1.a
AND R2.z

I n X

=7
R3.b
R3.c

=3

R,

11
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Relational Algebra Plan

e Set-Oriented Query Processing
e Allows abstract optimization

e Crucial for efficient execution

12



CedarDB
Physical Execution Plan

e Physical access paths

o Index or table scan




CedarDB
Physical Execution in CedarDB

e Pipelined execution

o Keeps values in registers

o  Minimizes materialization
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Physical Execution in CedarDB

e Pipelined execution

e Data-centric code generation

(@)

%1
%2
%3
%V
%5
%6
%7
%8 =

%hash

Efficient code for complex expressions

zext 164 %int1;
zext 164 %int2;
rotr i64 %2, 32;

or i64 %1, %3;

crc32 i64 6763793487589347598,
crc32 164 4593845798347983834,
rotr 164 %6, 32;

xor 164 %5, %7;
= mul 164 %8,

Zero extend to 64 bit

Rotate right

Combine int1 and int2
First crc32

Second crc32

Shift second part
Combine hash parts
Mix parts

%V ;
%V ;

11400714819323198485;

15
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Physical Execution in CedarDB

e Pipelined execution

HT(T) HT(S)
- i i A |B
e Data-centric code generation .. : \c/: PR S
e Full llel algorith Z A B jC /133 (i probe(16)— R
ully parallel algorithms a 1168 [v wstore” |Soiia e()\18 3 N /;6 Z
d
o  Allows scaling yd 27110 | = Tc
store probe(27) 10
o  Benefits from new hardware c |, 5 5 '
23 | u 7 |23
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Storage Access

e Storage on disk
e Row vs. column stores
e Hybrid storage for

transactions and analytics
o Fastscans
o Fast point lookups
o Fast writes
o Index structures

Analytical Performance

OLTP

= B-Trees Transactional Performance
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Agenda

e Recap: DBMS Components
e Relational Algebra Optimization

e Storage: B-Tree deep dive

18
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Query Optimization

e PostgreSQL grammar

e Parsed into relational algebra
o Example: TPC-H Q17

o https://lumbra-db.com/interface/

19


https://umbra-db.com/interface/

@ CedarDB
Running Example: TPC-H Q17

How much average yearly revenue
would be lost if orders were no
longer filled for small quantities of
certain parts?

This may reduce overhead
expenses by concentrating sales on
larger shipments.

Figure 2: The TPC-H Schema

PART (P_) PARTSUPP (PS_) LINEITEM (L_) ORDERS (0_)

SF*200,000 SF*800,000 SF*6,000,000 SF*1,500,000
PARTKEY — | PARTKEY ORDERKEY ORDERKEY
NAME ™| SUPPKEY :h_[: PARTKEY CUSTKEY
MFGR AVAILQTY SUPPKEY ORDERSTATUS
BRAND SUPPLYCOST LINENUMBER TOTALPRICE
TYPE COMMENT QUANTITY ORDERDATE
SIZE EXTENDEDPRICH ORDER-

CUSTOMER (C_) PRIORITY
CONTAINER SF*150,000 DISCOUNT poprEm

CUSTKEY
RETAILPRICE TAX SHIP-

NAME
COMMENT RETURNFLAG PRIORITY

ADDRESS

LINESTATUS COMMENT
SUPPLIER (S_) NATIONKEY
SF*10,000 SHIPDATE
_ PHONE

SUPPKEY COMMITDATE

ACCTBAL
NAME RECEIPTDATE

MKTSEGMENT
ADDRESS SHIPINSTRUCT
NATIONKEY [~ COMMENT SHIPMODE
PHONE NATION (N_) COMMENT

25

ACCTBAL

NATIONKEY REGION (R_)
COMMENT 5

NAME — | REGIONKEY

REGIONKEY | ™%

NAME
COMMENT

COMMENT
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Running Example: TPC-H Q17

-- TPC-H Query 17
select sum(1l_extendedprice)
/ 7.0 as avg_yearly
from lineitem, part
where p_partkey = 1_partkey
and p_brand = 'Brand#23’
and p_container = 'MED BOX'
and 1_quantity < (
select 0.2 * avg(l_quantity)
from lineitem
where 1_partkey = p_partkey

Figure 2: The TPC-H Schema

PART (P_) PARTSUPP (PS_) LINEITEM (L_) ORDERS (0_)

SF*200,000 SF*800,000 SF*6,000,000 SF*1,500,000
PARTKEY — | PARTKEY ORDERKEY ORDERKEY
NAME ™| SUPPKEY :h_[: PARTKEY CUSTKEY
MFGR AVAILQTY SUPPKEY ORDERSTATUS
BRAND SUPPLYCOST LINENUMBER TOTALPRICE
TYPE COMMENT QUANTITY ORDERDATE
SIZE EXTENDEDPRICH ORDER-

CUSTOMER (C_) PRIORITY
CONTAINER SF*150,000 DISCOUNT poprEm

CUSTKEY
RETAILPRICE TAX SHIP-

NAME
COMMENT RETURNFLAG PRIORITY

ADDRESS

LINESTATUS COMMENT
SUPPLIER (S_) NATIONKEY
SF*10,000 SHIPDATE
_ PHONE

SUPPKEY COMMITDATE

ACCTBAL
NAME RECEIPTDATE

MKTSEGMENT
ADDRESS SHIPINSTRUCT
NATIONKEY [~ COMMENT SHIPMODE
PHONE NATION (N_) COMMENT

25

ACCTBAL

NATIONKEY REGION (R_)
COMMENT 5

NAME — | REGIONKEY

REGIONKEY | ™%

NAME
COMMENT

COMMENT




= RESULT
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Query Optimization

I GROUPBY

e PostgreSQL grammar s

e Parsed into relational algebra o select

p_partkey = |_partkey
and p_brand = 'Brand#23'

(@) Example: TPC'H Q17 and p_container = 'MED BOX'

and |_quantity < ?column?

o https://lumbra-db.com/interface/ |

X CROSS-PRODUCT

X MAP

x CROSS-PRODUCT

)

?column? = 0.2 * avg(l_quantity)

= LINEITEM = PART I GROUPBY
ize: o Aggregates:
Table Size: 0 Table Size: 0 s e

¢ SELECT

|_partkey33 = p_partkey

Z2 LINEITEM

Table Size: 0
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@ CedarDB
Query Optimization

e PostgreSQL grammar
e Parsed into relational algebra

e Optimizer passes over algebra

1: Unoptimized Plan

2: Expression Simplification

JAL

AN

3: Unnesting

4: Predicate Pushdown

AN

.

5: Initial Join Tree

J

AN

6: Sideway Information Passing

JAL

7: Operator Reordering

AN

8: Early Probing

9: Common Subtree Elimination

-

JAL

10: Physical Operator Mapping

AN

23
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Query Optimization

e PostgreSQL grammar
e Parsed into relational algebra

e Optimizer passes over algebra

Cost-based
Optimization

<

1: Unoptimized Plan

JAL

2: Expression Simplification

AN

3: Unnesting

4: Predicate Pushdown

AN

.

5: Initial Join Tree

J

>

AL

6: Sideway Information Passing

AN

7: Operator Reordering

AN

8: Early Probing

AN

9: Common Subtree Elimination

-

10: Physical Operator Mapping

AN

Rule-based
Canonicalization

24
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Expression Simplification

e Fold constants

e Canonicalize expressions

o_orderdate >= date
and o_orderdate < date

o_orderdate between date

e Execute in evaluation engine

'1994-01-01"
'1994-01-01"

'1994-01-01"

+ interval

and date

‘1" year

'1994-12-31"

25
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Query Unnesting & Decorrelation

Unnesting Arbitrary Queries

Unnesting Arbitrary Queries

Thomas Neumann and Alfons Kemper
Technische Universitit Miinchen
Munich, Germany
neumann@in.tum.de, kemper @in.tum.de

Abstract: SQL-99 allows for nested subqueries at nearly all places within a query
From a user’s point of view, nested queries can greatly simplify the formulation of
complex queries. However, nested queries that are correlated with the outer queries
frequently lead to dependent joins with nested loops evaluations and thus poor perfor-
mance.

ting systems therefore use a number of heuristics to unnest these queries, .
de-correlate them. These unnesting t can greatly speed up query processing.
but are usually limited to certain classes of queries. To the best of our knowledge

n0 existing system can de-correlate queries in the general case. We present a generic
approach for unnesting arbitrary queries. As a result, the de-correlated queries allow
for much simpler and much more efficient query evaluation.

1 Introduction

Subqueries are frequently used in SQL queries to simplify query formulation. Consider
for our running examples the following schema:

o students: {[id, name, major, year, ... 1}

o exams: {[sid, course, curriculum, date, ...}

‘Then the following is a nested query to find for each student the best exams (according to
the German grading system where lower numbers are better)

01: select
from
where

.grade)

where s.id=e2.sid)

Conceptually, for each student, exam pair (s, ¢) it determines, in the subquery, whether or
not this particular cxam ¢ has the best grade of all exams of this particular student .

From a performance point of view the query is not so nice, as the subquery has o be re-
evaluated for every student, exam pair. From a technical perspective the query contains a

383

DuckDB Documentation

Blog

Correlated Subqueries in SQL

Subqueries in SQL are a powerful abstraction that allow simple queries to be
used as composable building blocks. They allow you to break down complex
problems into smaller parts, and subsequently make it easier to write, under-
stand and maintain large and complex queries.

DuckDB uses a state-of-the-art subquery decorrelation optimizer that allows
subqueries to be executed very efficiently. As a result, users can freely use
subqueries to create expressive queries without having to worry about manu-
ally rewriting subqueries into joins. For more information, skip to the
Performance section.

Types of Subqueries

SQL subqueries exist in two main forms: subqueries as expressions and sub-
queries as tables. Subqueries that are used as expressions can be used in
the SELECT or WHERE clauses. Subqueries that are used as tables can be
used in the FROM clause. In this blog post we will focus on subqueries used
as expressions. A future blog post will discuss subqueries as tables.

Subqueries as expressions exist in three forms.

« Scalar subqueries
* EXISTS
o IN/ANY/ALL

All of the subqueries can be either correlated or uncorrelated. An uncorre-
lated subquery is a query that is independent from the outer query. A corre-
lated subquery is a subquery that contains expressions from the outer query.
Correlated subqueries can be seen as parameterized subqueries.

Blog

26
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Query Unnesting

Unnesting Arbitrary Queries

(@)

O(n?)

= RESULT

X MAP

avg_yearly == sum(l_extendedprice) / 7

I GROUPBY

Aggregates:
sum(l_extendedprice) = sum(l_extendedprice)

-

o SELECT

p_partkey = |_partkey

and p_brand = 'Brand#23'
and p_container = '"MED BOX'
and |_quantity < ?column?

X CROSS-PRODUCT

M

x CROSS-PRODUCT

=

X MAP

\ ?column? = 0.2 * avg(l_quantity)

zZ LINEITEM

Table Size: 0

= TRRT I GROUPBY
o Aggregates:
Table Size: 0 avg(l_quantity) = avg(l_quantity36)

¢ SELECT

|_partkey33 = p_partkey

Z2 LINEITEM

Table Size: 0
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Query Unnesting

Unnesting Arbitrary Queries

(@)

O(n?)

= RESULT

X MAP

avg_yearly == sum(l_extendedprice) / 7

I GROUPBY

Aggregates:

sum(l_extendedprice) = sum(l_extendedprice)

o SELECT

p_partkey = |_partkey

and p_brand = 'Brand#23'
and p_container = '"MED BOX'
and |_quantity < ?column?

X CROSS-PRODUCT

,/ B~

x CROSS-PRODUCT

X MAP

?column? = 0.2 * avg(l_quantity)

)

= LINEITEM = PART I GROUPBY
ize: o Aggregates:
Table Size: 0 Table Size: 0 s e

|_partkey33 = p_partkey

¢ SELECT

Z2 LINEITEM

Table Size: 0

28
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Query Unnesting

Unnesting Arbitrary Queries

(@)

(@)

o(n?) -> O(n)

Huge improvement

= RESULT

X MAP

avg_yearly = sum(l_extendedprice) / 7

r GROUPBY

Aggregates:
sum(l_extendedprice) = sum(l_extendedprice)

’

o SELECT

p_partkey = |_partkey

and p_brand = 'Brand#23'
and p_container = 'MED BOX'
and |_quantity < ?column?

X  NOTSELECTEDYET

p_partkey is |_partkey51

X CROSS-PRODUCT

X MAP

?column? = 0.2 * avg(l_quantity)

ZZ  LINEITEM

Table Size: 0

r GROUPBY
= PART
Aggregates:
Table Size: 0 avg(l_quantity) = avg(l_quantity36)

Keys: |_partkey33

|_partkey33 = |_partkey33

¢ SELECT

ZZ LINEITEM

Table Size: 0

29
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Predicate Pushdown

Place predicates at scan

Propagate & fold constants

= RESULT

X MAP

avg_yearly = sum(l_extendedprice) / 7

r GROUPBY

Aggregates:
sum(l_extendedprice) = sum(l_extendedprice)

o SELECT

p_partkey = |_partkey

and p_brand = 'Brand#23'
and p_container = 'MED BOX'
and |_quantity < ?column?

X  NOTSELECTEDYET

p_partkey is |_partkey51

[ B

X CROSS-PRODUCT

X MAP

?column? = 0.2 * avg(l_quantity)

I GROUPBY
22 LINEITEM 22 PART
Aggregates:
Table Size: 0 Table Size: 0 avg(l_quantity) = avg(l_quantity36)

Keys: |_partkey33

¢ SELECT

|_partkey33 = |_partkey33

ZZ LINEITEM

Table Size: 0

30
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Predicate Pushdown

Place predicates at scan

Propagate & fold constants

= RESULT

X MAP

avg_yearly = sum(l_extendedprice) / 7

I GROUPBY

Aggregates:

sum(l_extendedprice) = sum(l_extendedprice)

M NOTSELECTEDYET

|_quantity < 0.2 * avg(l_quantity)
and p_partkey = |_partkey51

\

X NOTSELECTEDYET

p_partkey = |_partkey

ZZ  LINEITEM

Table Size: 0

I GROUPBY

Aggregates:
avg(l_quantity) = avg(l_quantity36)

\ Keys: |_partkey33

== PART

Table Size: 0

p_brand = 'Brand#23'

ZZ LINEITEM

Table Size: 0

p_container = 'MED BOX'

31
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Predicate Pushdown

Place predicates at scan

Propagate & fold constants

= RESULT

X MAP

avg_yearly = sum(l_extendedprice) / 7

I GROUPBY

Aggregates:

sum(l_extendedprice) = sum(l_extendedprice)

M NOTSELECTEDYET

|_quantity < 0.2 * avg(l_quantity)
and p_partkey = |_partkey51

\

X NOTSELECTEDYET

p_partkey = |_partkey

i

ZZ  LINEITEM

Table Size: 0

I GROUPBY

Aggregates:
avg(l_quantity) = avg(l_quantity36)

\ Keys: |_partkey33

zZ PART

Table Size: 0

p_brand = 'Brand#23'

== LINEITEM

Table Size: 0

p_container = 'MED BOX'

+ where p_partkey = 42

32



@ CedarDB
Predicate Pushdown

Place predicates at scan

Propagate & fold constants

= RESULT

X MAP

avg_yearly := sum(l_extendedprice) / 7

I GROUPBY

Aggregates:
sum(l_extendedprice) = sum(l_extendedprice)

X NOTSELECTEDYET

|_quantity < 0.2 * avg(l_quantity)

-

I GROUPBY
X CROSS-PRODUCT Agaregates: _
avg(l_quantity) = avg(l_quantity36)
Keys: 42
2 PART
I LINEITEM ZZ  LINEITEM
Table Size: 0
Table Size: 0 Table Size: 0
p_partkey = 42
|_partkey = 42 p_container = 'MED BOX' |_partkey = 42
p_brand = 'Brand#23'

33
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Initial Join Tree

Push joins through aggregates

Expand transitive join conditions

and

and
and

c_nationkey
s_nationkey

c_nationkey
s_nationkey
c_nationkey

s_nationkey
n_nationkey

s_nationkey
n_nationkey
n_nationkey

34
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Initial Join Tree

Push joins through aggregates

Expand transitive join conditions

Drop unnecessary joins

select
from
where

select
from

sum(o_totalprice)
customer, orders
c_custkey = o_custkey

sum(o_totalprice)
orders

35



CedarDB
Cost-Based Optimization

e Heuristics vs. statistics

36
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Cost-Based Optimization

e Heuristics vs. statistics
e Statistics in Umbra:
o Samples
o Distinct counts
o Numerical statistics (mean, variance) for aggregates

o Functional dependencies

= Estimate execution cost
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@ CedarDB
Sample Evaluation

e Maintain uniform reservoir sample
e Evaluate scan predicates o on sample

e Execute in evaluation engine select count(*)

from lineitem
where 1l_commitdate < l_receiptdate
o 1024 tuples ~ 0.1% error and 1l_shipdate < 1l_commitdate

e Surprisingly accurate
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@ CedarDB
Sample Evaluation

for 1 in lineitem: for 1 in lineitem:
if not 1_shipdate < 1_commitdate: if not 1_commitdate < l_receiptdate: for 1 in lineitem:
continue -- 51% taken continue -- 37% taken if not (l_shipdate < 1_commitdate
if not 1_commitdate < 1_receiptdate: if not 1_shipdate < 1_commitdate: and 1_commitdate < 1_receiptdate):
continue - taken continue taken continue -- taken
counter++ counter++ counter++
Variant @ : Separate branches Variant (B) : Separate branches Variant © : Combined branch
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@ CedarDB
Sample Evaluation

for 1 in lineitem: for 1 in lineitem:
if not 1l_shipdate < 1_commitdate: if not 1_commitdate < l_receiptdate: for 1 in lineitem:
continue -- 51% taken continue -- 37% taken if not (l_shipdate < 1_commitdate
if not 1_commitdate < 1_receiptdate: if not 1_shipdate < 1_commitdate: and 1_commitdate < 1_receiptdate):
continue - taken continue taken continue taken
counter++ counter++ counter++
Variant @ : Separate branches Variant (B) : Separate branches Variant © : Combined branch
Variant branch-misses instructions loads exec. time
) 0.63/tpl  7.62/tpl 2.85/tpl  18.4ms
0.58 / tpl 7.91/tpl 3.00/tpl  17.7ms
© 0.13/tpl  11.67 /tpl 3.37/tpl  12.7ms
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Sample Evaluation

e Calculate matches-bitsets

e Combine them to optimize ordering
o TPC-HQ12:

where 1_shipmode in ('MAIL', 'SHIP')
and 1_commitdate < l_receiptdate
and 1_shipdate < 1l_commitdate
and 1l_receiptdate between date '1994-01-01"
and date '1994-12-31"'

0100'0011°1010'6100°1110°1011°1011°1100°1010°1010°1011'0000°1011°'0011°1100'0000
& 0000'1111°'0000'1111°'0000°1111°0000°1111°0000°1111°0000°1111'0000°1111'0000° 1111
& 1111'0000°1111'0000°1111'0000°1111'0000°1111'0000°1111°'0000°1111°'0000°1111'0000
& 1010'0110°1110°'1110°1000°'0011°0111°0101'6110°1111°10061°1101°1110°0011'1000°' 0001
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Join Ordering

e Mostly Hash Joins

o Indexes don'’t allow bushy plans -> less useful
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Join Ordering

Mostly Hash Joins

Query

no

S

easy?/

yes

Y

solve optimally with
graph-based DP

»
>

no

Adaptive Opti

medium?

yes

DP with
search space
linearization

Y

gracefully introduce

greediness to keep

optimization time
reasonable
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Join Ordering

e Mostly Hash Joins
e Distinct count estimates with Pat Selinger’s equations:
column1 = column2
F =1/MAX(ICARD(column1), ICARD(column2))
e HyperLoglLog intersections

e Mean & stddev approximations for 1_quantity < 0.2 * avg(l_quantity)
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Research Data Management Track Paper

SIGMOD *21, June 20-25, 2021, Virtual Event, China

Small Selectivities Matter: Lifting the Burden of Empty Samples

Estimate (correlated) predicates with confidence st g

Technische Universitit Dresden University of Mannheim Technische Universitit Dresden
1 d .de uni hei wolfgang leh: -dresden.de
Norman May Florian Wolf Lars Fricke

AP S

e Any combination of predicates

ABSTRACT

Every year more and more advanced approaches to cardinality
estimation are published, using learned models or other data and
= " workload specific synopses. In contrast, the majority of commercial
PY I ri Ck W h en 4 tu |e S qua || L i o T bty et
‘general and easiest estimator to implement, While most methods do
not seein ta improve much over saaplingbased estimetors in the
presence of non-selective queries, sampling struggles with highly
selective queries due to limitations of the sample size. Especially in
situations where no sample tuple qualifies, optimizers fall back to
] . basic heuristics that ignore attribute correlations and lead to large
. n r f r n n I n estimation errors. In this work, we present a novel approach, dealing
with these 0-Tuple Situations. It i ready to use in any DBMS capable
of sampling, showing a negligible impact on optimization time. Our
experiments on real world and synthetic data sets demonstrate up
to two orders of magnitude reduced estimation errors. Enumerating
single filter predicates according to our estimates reveals 1.3 to 1.8

times faster query responses for complex filters.

ACM Reference Form:
Axel Hertzschuch, Guido Moerkotte, Wolfgang Lehner, Norman May, Flo-
rian Wolf, and Lars Fricke. 2021. Small Selectivities Matter: Lifting the Bur-
den of Empty Samples. In Proceedings of the 2021 International Conference on
Management of Data (SIGMOD '21), June 18~27, 2021, Virtual Event, China.
ACM, New York, NY, USA, 13 pages. https//doi.org/10.1145/3448016.3452805

1 INTRODUCTION

Good cardinality estimates guide query optimizers towards decent
execution plans and lower the risk of disastrous plans [25, 28]. Al-
though many approaches were published on cardinality estimation,
g, using histograms (18], sampling [11), or machine learning [13],
itis still considered a grand challenge (28], Especially analytical
workloads remain challenging as they often comprise a multitude of
correlated filter predicates. The comprehensive analysis of 60k real-
world BI data repositories by Vogelsgesang et al. [45] underlines
the importance of filter operations and reveals: Most data is stored
in string format, which enables arbitrary complex expressions.

Permission to make digital or hard copics of all or part of this work for personal or
elassroom use i granted without fee provided that copies are not made or distributed

{2 o] W sample size: 1k tuples

s 8

% of queries leading to 0

2atoms  3atoms 4atoms  5atoms  6aloms 7 atoms

igure 1: Relative number of queries over tables with at least
1M tuples that lead to empty samples (0-TS) with regard to
the number of filter predicates (atoms) and the sample size.

Sampling is an ad that
arbitrary numbers and types of predicates. Therefore, it is com-
monly used in commercial systems [25, 26, 36, 40] and has been
combined with histograms [35] and machine learning [23, 47]. How-
ever, it is not a panacea. Although sampling might be reasonably
fast for in-memory systems due to the efficient random access [17],
the number of sample tuples often is very limited. Traditionally,
we randomly draw a fixed number of tuples from a table and di-
vide the number of qualifying sample tuples by the total number
of sample tuples. Instead of drawing the sample at query time,
some approaches exploit materialized views [24] or use reservoir
sampling [7, 44). Given a sufficient number of qualifying tuples,
these sample-based estimates are precise and give probabilistic er-
ror guarantees [32]. However, complex predicates frequently lead
to situations where no sample tuple qualifies. According to Kipf
et al. [22] we call these 0-Tuple Situations (0-TS). To assess the
frequency at which 0-TS occur, we analyze the Public Bi Bench-
mark [2], a real-world, user-generated workload. Considering base
tables with at least 1M tuples, Figure 1 illustrates the relative num-
ber of queries that result in 0-TS when using two standard sized
random samples. Tnterestingly, and contrary to the intuition of be-
ing a corer case, this analysis of a real-life workload reveals that
up 10 727% of the queries with complex filters lead to empty sam-
ples. In these situations, query optimizers rely on basic heuristics,
e.g. using Attribute Value Independence (AVY), that lead to large
estimation errors and potentially poor execution plans [33, 37]. To

£

pose we sample from a tabl

»

o the first page. Copyrights for components of this work owned by others than the

‘author(s) must be honored. Abstractn with credit s permitted. To copy otherwise, or
blsh,

and/or a fee. Request permissions fom permissions@acm.org.
SIGMOD ‘21, une 127, 2021, Virtual Event, China

2021 Copyrigh held by the owner/author(s) Pablication righis icensed 10 ACM.
ACMISEN 975-1-4503-5343-1121/06...$15.00
hitps/doiorg/10.1145/3448016, 3452805

brands, models and colors of cars. Even if no sample tuple qualifies
for a given filter, there is little justification to assume independence
between all attributes as the model usually determines the brand.
Surprisingly, no previous work we are aware of considers cor-
relations in 0-TS. This paper therefore presents a novel approach
that - given a sample — derives more precise selectivity estimates
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Physical Optimization

e Indexes

° orst-case optimal join
° roupjoin

e Range join

e Join micro-optimizations

o  Multiset semantics

o Allocation sizes

Adopting Worst-Case Optimal Joins in
Relational Datab

Y

Michael Freftag, Maximilian Bandle, Tobias Schmidt, Alfons Kemper, Thomas Neumann
fechnische Universitat Minchen

{freitagm, bandle, \umas.scnmm, kemper, neumann}@in.tum.de
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28 ABSTRACT
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T pillr of query processing s the fficent evaluation of cqui-foins,
2604 typically withlinar-time algorithms (e hash oins). However,for
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Figure 1: Flight routing with stop-over
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1 INTRODUCTION

Over the last years, we observed two major trends in data pro-

cessing: The amount of data collected is vastly growing, and data
Dat

lent base for managing

Licenn Vst g reavecommons cryiense by 401t view  copy of

ettt o8 ot
g e VD st Vol 15N 1SN 2047

A
with a transit duraton between 45 minutes and three hours. A
query answering this question could look like this:

elect s,
fron flights f1, flights f2
UC and f2.dest = 'SYD' and

ing + '45 minutes’ and
f1.\anding + '3 hours"
order by fL.price + f2.price Linit 10

In i e, the ol i vl condtons T tdeics
predicate fLdest b edicate f2takeoff between
fulanding + 45 minutes” and fLlanding + '3 hours'. Thus, the join
could be considered an equi-join with a range-residual or a range-
join with an additional eqivalence-predicate. Other examples for

ange joins are: The matching of vehicle sensor data to vehicle rides
(defined by a time frame) or the mapping of IP addsesses to subets
[57) M

of multiple range predicates, so-called multi-dimensionl range
joins. Examples are: Finding return tripsin axi-ride datasets (Sec-
tion 63:3) or combining bird sightings and weather reports [23]
based on location and time data. Additional equivalence predicates
asin the flight example,are also very common and should be in-
corporated nto & range join algorithm,

from unnested ageregates
“The unnesting of inner aggregation subqueries s very prof-
iable, ine it ciminates nestd-loops ealuation and improves
H

B

N1 158 25007
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@ CedarDB
Recap

e Query compilation & optimization
o  Optimizer passes
o Rule-based canonicalization

o Cost-based optimization
e Cutting-edge research

o Join ordering
o Cardinality estimation

o Integrated in a running system

: Unoptimized Plan

Y4

AYd

: Expression Simplification

JAL

AN

: Unnesting

N

-

: Predicate Pushdown

AN

.

N

Y4

: Initial Join Tree

J

AL

AY 4

: Sideway Information Passing

AN

\
)

: Operator Reordering

AN

\
-

8:

Early Probing

AN

\

9:

Common Subtree Elimination

10: Physical Operator Mapping

AN
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Agenda

e Recap: DBMS Components
e Relational Algebra Optimization

e Storage: B-Tree deep dive
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CedarDB
B-Trees

Hybrid storage engine:

Row oriented
Columnar storage
Hybrid structure
Best of both worlds
Hot writes at end

Row Id B-Tree

Column-based Data Block Pages

= [ o |
[ | o
]]

Row-based
Buffer Pages
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CedarDB
B-Trees

Hybrid storage engine:

Row oriented
Columnar storage
Hybrid structure
Best of both worlds
Hot writes at end

Row Id B-Tree

Column-based Data Block Pages

/

Disk / SSD

= [ o |
[ | o
]]

Row-based
Buffer Pages
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@ CedarDB
B-Trees

Universally used
o XFS, Btrfs, APFS, & many DBMS

50 years old tech
New storage engine in CedarDB

D1-82-0989

ORGANIZATION AND MAINTENANCE OF LARGE
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@ CedarDB
B-Trees

e Universally used
o XFS, Btrfs, APFS, & many DBMS

e 50 years old tech
e New storage engine in CedarDB
e Still appropriate for modern hardware

D1-82-0989

ORGANIZATION AND MAINTENANCE OF LARGE
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CedarDB
B-Trees

e Example dataset:
ClickBench hits
e /0GB, 100M rows

e 3levels

o Fanout:
50 * 1500 * 1500

Row Id B-Tree
‘l'\
pacTuaLd *
G (O T—T e T T o]

Column-based Data Block Pages

[ o |

m m

,—,—n—||:=n:| [ — |
Row-based

Buffer Pages
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B-Trees

e Example dataset:
ClickBench hits
e /0GB, 100M rows

e 3levels

o Fanout:
50 * 1500 * 1500
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CedarDB
B-Trees

100M rows
66,689 leafs
49 inner

1 root
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CedarDB
On Modern Hardware

Cache efficiency

e 064 KB root
e 3.1 MB inner
e 4 GB leafs

Package L#0

NUMANode L#0 P#® (373GB)

Die L#0
L3 (32MB)
L2 (1024KB) || L2 (1024ks) |O OO L2 (1024KB)
8x total

Lid (32KB) L1d (32KB) Lid (32KB)

L1i (32KB) L1i (32KB) L1i (32KB)

Core L#0 Core L#1 Core L#7
PU L#0 PU L#2 PU L#14

PO P#1 P#7

PU L#1 PU L#3 PU L#15
P#06 P#97 P#103

ooao
12x total
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@ CedarDB

On Modern Hardware

Cache efficiency

64 KB root

3.1 MB inner
4 GB leafs

o LB
dHo S

Inner nodes cached

= almost no latency
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CedarDB
Lock Coupling on Modern Hardware

Problem:
Synchronization over 100s of cores
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Lock Coupling on Modern Hardware

Problem:
Synchronization over 100s of cores

e Lock coupling
e All accesses through root node
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Lock Coupling on Modern Hardware

Problem: 1

e Lock coupling
e All accesses through root node

. lock A
Synchronization over 100s of cores 2.

access A
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Lock Coupling on Modern Hardware

Problem:
Synchronization over 100s of cores

Lock coupling
All accesses through root node

—

o b~ w

. lock A
. access A

. lock B
. unlock A
. access B
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Lock Coupling on Modern Hardware

Problem:
Synchronization over 100s of cores

Lock coupling
All accesses through root node

o b~ w —

O 00 N O

. lock
. access

. lock
. unlock
. access

. lock

. unlock
. access
. unlock

>

OO WO
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Lock Coupling on Modern Hardware

Problem:
Synchronization over 100s of cores

e Lock coupling
e All accesses through root node
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CedarDB
Lock Coupling on Modern Hardware

Problem:
Synchronization over 100s of cores

e Lock coupling
e All accesses through root node
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CedarDB
Lock Coupling on Modern Hardware

Problem:
Synchronization over 100s of cores

Lock coupling

All accesses through root node
Leafs are fine-grained

Root is bottleneck
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Lock Coupling on Modern Hardware

Problem:
Synchronization over 100s of cores

Lock coupling

All accesses through root node
Leafs are fine-grained

Root is bottleneck

Reference counting for shared
locks does not scale

Every lock is an atomic write

M operation/s

lookup

unsynchronized

lock coupling

5 10
threads

15

20
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Lock Coupling

Problem:
Synchronization over 100s of cores

Lock coupling

All accesses through root node
Leafs are fine-grained

Root is bottleneck

Reference counting for shared
locks does not scale

e Every lock is an atomic write
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Problem:
Synchronization over 100s of cores

Lock coupling

All accesses through root node
Leafs are fine-grained

Root is bottleneck

Reference counting for shared
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Lock Coupling

Problem:
Synchronization over 100s of cores

Lock coupling

All accesses through root node
Leafs are fine-grained

Root is bottleneck

Reference counting for shared
locks does not scale

e Every lock is an atomic write
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Optimistic Lock Coupling

|dea: Ask forgiveness, not permission
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@ CedarDB
Optimistic Lock Coupling

Idea: Ask forgiveness, not permission

e Root changes rarely
e Just read unsynchronized, but verify
that we didn’t read wrong data
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Optimistic Lock Coupling
Idea: Ask forgiveness, not permission

e Root changes rarely
e Just read unsynchronized, but verify
that we didn’t read wrong data

= \/ersioning, writers increment version
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@ CedarDB
Optimistic Lock Coupling
Idea: Ask forgiveness, not permission

e Root changes rarely
e Just read unsynchronized, but verify
that we didn’t read wrong data

= \/ersioning, writers increment version

Also known as:
Seqglocks ~ Linux Kernel 2003
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@ CedarDB
Optimistic Lock Coupling
Idea: Ask forgiveness, not permission

e Root changes rarely
e Just read unsynchronized, but verify
that we didn’t read wrong data

= \/ersioning, writers increment version

Also known as:
Seqglocks ~ Linux Kernel 2003

Optimistic Lock Coupling: A Scalable and Efficient
General-Purpose Synchronization Method

Viktor Leis, Michael Haubenschild*, Thomas Neumann

Technische Universitdt Miinchen Tableau Software™®
{leis,neumann} @in.tum.de mhaubenschild @tableau.com™
Abstract

As the number of cores on commodity processors continues to increase, scalability becomes more and
more crucial for overall performance. Scalable and efficient concurrent data structures are particularly
important, as these are often the building blocks of parallel algorithms. Unfortunately, traditional
synch i h based on fi ined locking have been shown to be unscalable on modern
multi-core CPUs. Lock-free data structures, on the other hand, are extremely difficult to design and often
incur significant overhead.

In this work, we make the case for Optimistic Lock Coupling as a practical alternative to both
traditional locking and the lock-free approach. We show that Optimistic Lock Coupling is highly scalable
and almost as simple to implement as traditional lock coupling. Another important advantage is that it is
easily applicable to most tree-like data structures. We therefore argue that Optimistic Lock Coupling,
rather than a complex and error-prone custom synchronization protocol, should be the default choice for
performance-critical data structures.

1 Introduction

Today, Intel’s commodity server processors have up to 28 cores and its upcoming microarchitecture will have
up to 48 cores per socket [6]. Similarly, AMD currently stands at 32 cores and this number is expected to
double in the next generation [20]. Since both platforms support simultaneous multithreading (also known as
hyperthreading), affordable commodity servers (with up to two sockets) will soon routinely have between 100
and 200 hardware threads.

With such a high degree of hardware parallelism, efficient data processing crucially depends on how well
concurrent data structures scale. Internally, database systems use a plethora of data structures like table heaps,
internal work queues, and, most importantly, index structures. Any of these can easily become a scalability (and
therefore overall performance) bottleneck on many-core CPUs.

Traditionally, database systems 1 internal data structures using fine-grained reader/writer locks'.
Unfortunately, while fine-grained locking makes lock contention unlikely, it still results in bad scalability because

Copyright 2019 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

'In this work, we focus on data structure synchronization rather than high-level transaction semantics and therefore use the term
lock for what would typically be called latch in the database literature. We thus follow common computer science (rather than database)
terminology.
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Optimistic Lock Coupling

Lock Coupling:
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Lock Coupling:
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@ CedarDB
Optimistic Lock Coupling

Much better scalability!

e Practically lock free
e Practically cache oblivious

But: Still rarely used

e Conceptually simple
(for a lock free data structure)
e But the devil is in the details

M operation/s

lookup

unsynchronized

optimistic

lock coupling

10
threads

15

20
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Try it now:
Free Community Edition for Linux / Docker:
curl https://get.cedardb.com | bash

philipp@cedardb‘.com‘_‘ﬂ




