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Motivation /

Enterprise-Resource-Planning (ERP) systems
use a lot of dynamic hierarchical data!

Examples:
I Human Resources (HR) hierarchy

I 1 million nodes
I Some subtree moves (around 10-15%)

I Asset hierarchies
I 10 — 100 million nodes
I A lot of subtree moves (50% or more)

I Problem: Current indexing approaches do
not support subtree moves!

I Challenge: Versioning required for
accountability
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Hierarchical Data /

I Hierarchical Relationship over tuples of a table

Name
Adam

Salary ...

Bob
Celia

80,000
55,000
70,000

...

...

...

Felicia

55,000 ...
...

Gina

Dale
Eddy

Hana

45,000
60,000
75,000
45,000

...

...

...

Boss
NULL
Adam
Adam

Adam
Felicia

Celia
Celia

Gina

I Queries over structural properties, e.g., subtree
SELECT name, salary FROM /Employee[name=“Celia”]//*

I Scope: Index the hierarchy structure
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Versioned Hierarchical Data /

I Multiple versions of a hierarchy (1000+)
I Updates at latest version create new version
I Versioning of the table out of scope
I Possibly branching history
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H

I

V1 V2 V3

I Versioned Queries
SELECT name, salary FROM /Employee[name=“Celia”]//* IN V2
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Goals /

Goal: An efficient index for versioned hierarchies to speed up ERP
systems (and other hierarchical databases).

Desired properties:
I Efficient queries in all versions
I Low space consumption

I Large hierarchies
I Long histories
I Main-memory database

I Efficient updates in latest version
I Insert, delete, and subtree move

I Allow branching histories
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Indexing Hierarchies: Labeling Schemes /

I Widely used hierarchy indexing: Labeling Schemes

I Each node carries fixed set of labels
I Queries can be answered by only considering labels
I Widely applied in, e.g., XPath processing
I Examples: pre/post, ORDPATH, nested intervals (NI)

/Employee[name=“Celia”]//* ⇒ “All nodes in [3,8]”
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Challenges /

I Challenge 1: Efficient Query Support

I NI can be used to answer queries efficiently X
I Challenge 2: Efficient Update Support

I NI not dynamic (O(n) bounds change per update) /

I Challenge 3: Space Consumption of Histories

I O(n) bounds change per update need to be stored /
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Swaps /

I Observation: Each update can be represented by a swap of
two ranges of bounds

I Insert Node: Before

R4R1 R3R2
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Swaps /
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Swaps /

I Observation: Each update can be represented by a swap of
two ranges of bounds
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Storing Swaps /

I Observation: Each update can be represented by a swap of
two ranges of bounds

I Idea: Simply store that swap instead of the changed bounds
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A

E
B

DC F

Before

9 / 29



Storing Swaps /

I Observation: Each update can be represented by a swap of
two ranges of bounds

I Idea: Simply store that swap instead of the changed bounds

R4R1 R3R2
A

E
B

DC F

Before

9 / 29



Storing Swaps /

I Observation: Each update can be represented by a swap of
two ranges of bounds

I Idea: Simply store that swap instead of the changed bounds

R4R1 R3R2
A

E
B

DC F

Before

9 / 29



Storing Swaps /

I Observation: Each update can be represented by a swap of
two ranges of bounds

I Idea: Simply store that swap instead of the changed bounds

R4R1 R3R2

0 5 10

A

E
B

DC F

R1 R2 R3Source Space R4

Before

9 / 29



Storing Swaps /
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Representing Swaps /

I Representation: Two balanced (binary) search trees (“double
tree”)

I Node content: Lower border and link to other tree
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R2 R3Source Space
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NI Deltas /

I The double tree represents a function δ : N 7→ N

I δ maps interval bounds from source space to target space
I Let b be a bound in source space, then δ(b) is equivalent

bound in target space
I Given an NI encoding in version Vi and a delta δVi→Vj from

version Vi to another version Vj , we can answer queries in Vj
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Computing δ on the Double Tree /

I Computing δ(b) is easy:

I Find greatest node in source tree less than b
⇒ Usual search-tree lookup

I Apply translation of that node

δ(11) = 7:
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+2-4

Source Tree

Target Tree 0

0

0
12
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0

I Computation of δ−1(b) similar
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Double tree feasible? /

Does the double tree delta solve the problems?

I Challenge 1: Efficient Query Support

X

I Challenge 2: Space Consumption

X

I Challenge 3: Efficient Update Support

?
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Updating Deltas /

I Until now, we only considered deltas with one change

I How to build deltas with more changes?
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Updating Deltas /

I Step 0:
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Updating Deltas /

I Task: Swap range R2 with R3
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Updating Deltas /

I Step 1: Insert range borders
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Updating Deltas /

I Step 2: Swap borders in R2 and R3

R4

R4R2R3R1

R3R1 R2

0 10 20

A B C’ D FE G H IC E’

A B C’ D FE G H IC E’

15 / 29



Updating Deltas /

I Step 2: Swap borders in R2 and R3

R4

R4R2R3R1

R3R1 R2
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I Naive: Delete and reinsert all changed borders: O(c log c) /
I ⇒ Better approach required
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Efficient Border Swap /

I Observation: Only target space changes

I Steps: Adjust keys O(c) keys, swap O(c) nodes
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I Observation: Only target space changes

I Steps: Adjust keys O(c) keys, swap O(c) nodes
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Efficient Node Rearrangement /

I How to swap O(c) nodes in a search tree in O(log c)?

I Solution: Split and join

?

I Split: Split a tree into two new balanced trees
I Join: Concatenate two trees to one balanced one
I Both operations run in O(log c) X
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Updating Keys Efficiently /

I Split and join can rearrange nodes efficiently
I But: Keys are not updated ⇒ search tree condition violated!
I Updating one by one would require O(c)

I Solution: Accumulation tree
⇒ Node key: Sum of all keys on path to root

I Changing all keys in a subtree: O(1)
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The Swap Algorithm /

I Using split/join and the accumulation tree, updating in
O(log c) is possible

I Target tree before update:

O(log c)
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The Swap Algorithm /

I Using split/join and the accumulation tree, updating in
O(log c) is possible

I Target tree with accumulation before update:

O(log c)
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I Step 1: Split tree (O(log c))
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The Swap Algorithm /

I Using split/join and the accumulation tree, updating in
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I Rearrange trees (no-op)
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The Swap Algorithm /

I Using split/join and the accumulation tree, updating in
O(log c) is possible

I Step 2: Translate keys (O(1))
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The Swap Algorithm /

I Using split/join and the accumulation tree, updating in
O(log c) is possible

I Step 3: Join trees (O(log c))
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The Swap Algorithm /

I Using split/join and the accumulation tree, updating in
O(log c) is possible

I Final result:
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Overview /

I What we have shown:

I Double tree delta efficiently represents the changes in a version

I Efficient Queries (NI Encoding)
I Efficient Updates (Swap Algorithm)
I Low Space Consumption (O(c))

I What is missing:

I How to represent whole version histories efficiently?
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Representing Version Histories /

I Assume:
I Linear history of n versions V0, . . . ,Vn−1
I Constantly bounded number of changes c per version

I What we need:
I V0 has a fully materialized NI encoding
I We need deltas that lead to each other version (transitively)
I E.g., δ0→3 and δ3→5 lead to V5 by applying δ3→5(δ0→3(b))

I Which deltas to store in order to. . .
I minimize space consumption?
I minimize query runtime?
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Simple Schemes /

I Minimize space consumption: linear topology

⇒ O(n) space consumption X
⇒ O(n) query time /

1

0

2

1

3

2

4

3

5

4

6

5

7

6

8

7

9

8

10

9
Base

I Minimize query time: star topology

⇒ O(log n) query time X
⇒ O(n2) space consumption /
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Exponential Scheme /

I We need a better space/time tradeoff!

I Solution: Exponential scheme

⇒ O(n log n) space consumption X
⇒ O(log n) best case query time X
⇒ O(log2 n) worst case query time X
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Evaluation Baseline /

I Baseline: Currently strongest algorithms

ORD-MVBT
I Labeling with ORDPATH

I No relabeling ⇒ efficient updates
I Efficient queries

I Versioning with Multiversion B-Tree (MVBT)
I Asymptotically optimal query time and space consumption

I Improvements with DeltaNI
I Support of subtree relocation and deletion
I Branching histories
I Simple integer comparisons instead of bytewise comparisons
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Evaluation: Query Performance /
Time for one million queries
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Evaluation: Space Consumption /
Space consumption
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Evaluation: Update Performance /

Time for one million updates
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Conclusion /

I Core observation: All updates reducable to range swap in the
NI encoding

I Double tree interval deltas make NI encoding dynamic
I O(c) space consumption
I O(log c) update complexity
I Even complex updates supported (subtree relocation)

I Versioning via exponential delta-packing scheme
I Yields reasonable space/time tradeoff
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Questions /

Thank you for your attention!

Any questions?
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