
DeltaNI : An Efficient Labeling Scheme
for Versioned Hierarchical Data

Jan Finis Robert Brunel Alfons Kemper
Thomas Neumann Franz Färber Norman May

Technische Universität München

SAP AG



Motivation /

Enterprise-Resource-Planning (ERP) systems
use a lot of dynamic hierarchical data!

Examples:
I Human Resources (HR) hierarchy

I 1 million nodes
I Some subtree moves (around 10-15%)

I Asset hierarchies
I 10 — 100 million nodes
I A lot of subtree moves (50% or more)

I Problem: Current indexing approaches do
not support subtree moves!

I Challenge: Versioning required for
accountability

2 / 29



Motivation /

Enterprise-Resource-Planning (ERP) systems
use a lot of dynamic hierarchical data!

Examples:
I Human Resources (HR) hierarchy

I 1 million nodes
I Some subtree moves (around 10-15%)

I Asset hierarchies
I 10 — 100 million nodes
I A lot of subtree moves (50% or more)

I Problem: Current indexing approaches do
not support subtree moves!

I Challenge: Versioning required for
accountability

Adam

Bob Celia

Dale Eddy

Felicia

Garry Hana

Ina

2 / 29



Motivation /

Enterprise-Resource-Planning (ERP) systems
use a lot of dynamic hierarchical data!

Examples:
I Human Resources (HR) hierarchy

I 1 million nodes
I Some subtree moves (around 10-15%)

I Asset hierarchies
I 10 — 100 million nodes
I A lot of subtree moves (50% or more)

I Problem: Current indexing approaches do
not support subtree moves!

I Challenge: Versioning required for
accountability

Plant

Building

Room

Robot

Arm

Joint

...

...

...

...

...

2 / 29



Motivation /

Enterprise-Resource-Planning (ERP) systems
use a lot of dynamic hierarchical data!

Examples:
I Human Resources (HR) hierarchy

I 1 million nodes
I Some subtree moves (around 10-15%)

I Asset hierarchies
I 10 — 100 million nodes
I A lot of subtree moves (50% or more)

I Problem: Current indexing approaches do
not support subtree moves!

I Challenge: Versioning required for
accountability

Plant

Building

Room

Robot

Arm

Joint

...

...

...

...

...

2 / 29



Motivation /

Enterprise-Resource-Planning (ERP) systems
use a lot of dynamic hierarchical data!

Examples:
I Human Resources (HR) hierarchy

I 1 million nodes
I Some subtree moves (around 10-15%)

I Asset hierarchies
I 10 — 100 million nodes
I A lot of subtree moves (50% or more)

I Problem: Current indexing approaches do
not support subtree moves!

I Challenge: Versioning required for
accountability

Plant

Building

Room

Robot

Arm

Joint

...

...

...

...

...

2 / 29



Hierarchical Data /

I Hierarchical Relationship over tuples of a table

Name
Adam

Salary ...

Bob
Celia

80,000
55,000
70,000

...

...

...

Felicia

55,000 ...
...

Gina

Dale
Eddy

Hana

45,000
60,000
75,000
45,000

...

...

...

Boss
NULL
Adam
Adam

Adam
Felicia

Celia
Celia

Gina

I Queries over structural properties, e.g., subtree
SELECT name, salary FROM /Employee[name=“Celia”]//*

I Scope: Index the hierarchy structure

3 / 29



Hierarchical Data /

I Hierarchical Relationship over tuples of a table

Name
Adam

Salary ...

Bob
Celia

80,000
55,000
70,000

...

...

...

Felicia

55,000 ...
...

Gina

Dale
Eddy

Hana

45,000
60,000
75,000
45,000

...

...

...

Boss
NULL
Adam
Adam

Adam
Felicia

Celia
Celia

Gina

I Queries over structural properties, e.g., subtree
SELECT name, salary FROM /Employee[name=“Celia”]//*

I Scope: Index the hierarchy structure

3 / 29



Hierarchical Data /

I Hierarchical Relationship over tuples of a table

Name
Adam

Salary ...

Bob
Celia

80,000
55,000
70,000

...

...

...

Felicia

55,000 ...
...

Gina

Dale
Eddy

Hana

45,000
60,000
75,000
45,000

...

...

...

Boss
NULL
Adam
Adam

Adam
Felicia

Celia
Celia

Gina

I Queries over structural properties, e.g., subtree
SELECT name, salary FROM /Employee[name=“Celia”]//*

I Scope: Index the hierarchy structure

3 / 29



Hierarchical Data /

I Hierarchical Relationship over tuples of a table

Name
Adam

Salary ...

Bob
Celia

80,000
55,000
70,000

...

...

...

Felicia

55,000 ...
...

Gina

Dale
Eddy

Hana

45,000
60,000
75,000
45,000

...

...

...

Adam

Bob Celia

Dale Eddy

Felicia Gina

Hana

I Queries over structural properties, e.g., subtree
SELECT name, salary FROM /Employee[name=“Celia”]//*

I Scope: Index the hierarchy structure

3 / 29



Versioned Hierarchical Data /

I Multiple versions of a hierarchy (1000+)
I Updates at latest version create new version
I Versioning of the table out of scope
I Possibly branching history

A

B C

D E

F G

H

A

B C

D E

F G

H

I

A

B C

D E

F G

H

I

V1 V2 V3

I Versioned Queries
SELECT name, salary FROM /Employee[name=“Celia”]//* IN V2

4 / 29



Goals /

Goal: An efficient index for versioned hierarchies to speed up ERP
systems (and other hierarchical databases).

Desired properties:
I Efficient queries in all versions
I Low space consumption

I Large hierarchies
I Long histories
I Main-memory database

I Efficient updates in latest version
I Insert, delete, and subtree move

I Allow branching histories

5 / 29



Goals /

Goal: An efficient index for versioned hierarchies to speed up ERP
systems (and other hierarchical databases).

Desired properties:
I Efficient queries in all versions

I Low space consumption
I Large hierarchies
I Long histories
I Main-memory database

I Efficient updates in latest version
I Insert, delete, and subtree move

I Allow branching histories

5 / 29



Goals /

Goal: An efficient index for versioned hierarchies to speed up ERP
systems (and other hierarchical databases).

Desired properties:
I Efficient queries in all versions
I Low space consumption

I Large hierarchies
I Long histories
I Main-memory database

I Efficient updates in latest version
I Insert, delete, and subtree move

I Allow branching histories

5 / 29



Goals /

Goal: An efficient index for versioned hierarchies to speed up ERP
systems (and other hierarchical databases).

Desired properties:
I Efficient queries in all versions
I Low space consumption

I Large hierarchies
I Long histories
I Main-memory database

I Efficient updates in latest version
I Insert, delete, and subtree move

I Allow branching histories

5 / 29



Goals /

Goal: An efficient index for versioned hierarchies to speed up ERP
systems (and other hierarchical databases).

Desired properties:
I Efficient queries in all versions
I Low space consumption

I Large hierarchies
I Long histories
I Main-memory database

I Efficient updates in latest version
I Insert, delete, and subtree move

I Allow branching histories

5 / 29



Indexing Hierarchies: Labeling Schemes /

I Widely used hierarchy indexing: Labeling Schemes

I Each node carries fixed set of labels
I Queries can be answered by only considering labels
I Widely applied in, e.g., XPath processing
I Examples: pre/post, ORDPATH, nested intervals (NI)

/Employee[name=“Celia”]//* ⇒ “All nodes in [3,8]”

6 / 29



Indexing Hierarchies: Labeling Schemes /

I Widely used hierarchy indexing: Labeling Schemes
I Each node carries fixed set of labels
I Queries can be answered by only considering labels

I Widely applied in, e.g., XPath processing
I Examples: pre/post, ORDPATH, nested intervals (NI)

/Employee[name=“Celia”]//* ⇒ “All nodes in [3,8]”

6 / 29



Indexing Hierarchies: Labeling Schemes /

I Widely used hierarchy indexing: Labeling Schemes
I Each node carries fixed set of labels
I Queries can be answered by only considering labels
I Widely applied in, e.g., XPath processing
I Examples: pre/post, ORDPATH, nested intervals (NI)

/Employee[name=“Celia”]//* ⇒ “All nodes in [3,8]”

6 / 29



Indexing Hierarchies: Labeling Schemes /

I Widely used hierarchy indexing: Labeling Schemes
I Each node carries fixed set of labels
I Queries can be answered by only considering labels
I Widely applied in, e.g., XPath processing
I Examples: pre/post, ORDPATH, nested intervals (NI)

A

B C

D E

F G

H

/Employee[name=“Celia”]//* ⇒ “All nodes in [3,8]”

6 / 29



Indexing Hierarchies: Labeling Schemes /

I Widely used hierarchy indexing: Labeling Schemes
I Each node carries fixed set of labels
I Queries can be answered by only considering labels
I Widely applied in, e.g., XPath processing
I Examples: pre/post, ORDPATH, nested intervals (NI)

A

B C

D E

F G

H

[1,2] [3,8] [9,10] [11,14]

[4,5] [6,7] [12,13]

[0,15]

/Employee[name=“Celia”]//* ⇒ “All nodes in [3,8]”

6 / 29



Indexing Hierarchies: Labeling Schemes /

I Widely used hierarchy indexing: Labeling Schemes
I Each node carries fixed set of labels
I Queries can be answered by only considering labels
I Widely applied in, e.g., XPath processing
I Examples: pre/post, ORDPATH, nested intervals (NI)

A

B C

D E

F G

H

[1,2] [3,8] [9,10] [11,14]

[4,5] [6,7] [12,13]

[0,15]

0 10

A

EB D
C

HF
G

5 15

/Employee[name=“Celia”]//* ⇒ “All nodes in [3,8]”

6 / 29



Indexing Hierarchies: Labeling Schemes /

I Widely used hierarchy indexing: Labeling Schemes
I Each node carries fixed set of labels
I Queries can be answered by only considering labels
I Widely applied in, e.g., XPath processing
I Examples: pre/post, ORDPATH, nested intervals (NI)

A

B C

D E

F G

H

[1,2] [3,8] [9,10] [11,14]

[4,5] [6,7] [12,13]

[0,15]

0 10

A

EB D
C

HF
G

5 15

/Employee[name=“Celia”]//* ⇒ “All nodes in [3,8]”

6 / 29



Challenges /

I Challenge 1: Efficient Query Support

I NI can be used to answer queries efficiently X
I Challenge 2: Efficient Update Support

I NI not dynamic (O(n) bounds change per update) /

I Challenge 3: Space Consumption of Histories

I O(n) bounds change per update need to be stored /

7 / 29



Challenges /

I Challenge 1: Efficient Query Support
I NI can be used to answer queries efficiently X

I Challenge 2: Efficient Update Support

I NI not dynamic (O(n) bounds change per update) /

I Challenge 3: Space Consumption of Histories

I O(n) bounds change per update need to be stored /

7 / 29



Challenges /

I Challenge 1: Efficient Query Support
I NI can be used to answer queries efficiently X

I Challenge 2: Efficient Update Support

I NI not dynamic (O(n) bounds change per update) /
I Challenge 3: Space Consumption of Histories

I O(n) bounds change per update need to be stored /

7 / 29



Challenges /

I Challenge 1: Efficient Query Support
I NI can be used to answer queries efficiently X

I Challenge 2: Efficient Update Support
I NI not dynamic (O(n) bounds change per update) /

I Challenge 3: Space Consumption of Histories

I O(n) bounds change per update need to be stored /

A

B C

D

F G

H

[1,2] [3,6] [7,8] [9,12]

[4,5] [10,11]

[0,13]

0 10

A

B D
C

HF
G

5 15

7 / 29



Challenges /

I Challenge 1: Efficient Query Support
I NI can be used to answer queries efficiently X

I Challenge 2: Efficient Update Support
I NI not dynamic (O(n) bounds change per update) /

I Challenge 3: Space Consumption of Histories

I O(n) bounds change per update need to be stored /

A

B C

D

F G

H

[1,2] [3,6] [7,8] [9,12]

[4,5] [10,11]

[0,13]

0 10

A

B D
C

HF
G

5 15

E [?,?]

7 / 29



Challenges /

I Challenge 1: Efficient Query Support
I NI can be used to answer queries efficiently X

I Challenge 2: Efficient Update Support
I NI not dynamic (O(n) bounds change per update) /

I Challenge 3: Space Consumption of Histories

I O(n) bounds change per update need to be stored /

A

B C

D

F G

H

[1,2] [3,8] [9,10] [11,14]

[4,5] [12,13]

[0,15]

0 10

A

B D
C

HF
G

5 15

E [?,?]

O(n) bound changes

7 / 29



Challenges /

I Challenge 1: Efficient Query Support
I NI can be used to answer queries efficiently X

I Challenge 2: Efficient Update Support
I NI not dynamic (O(n) bounds change per update) /

I Challenge 3: Space Consumption of Histories

I O(n) bounds change per update need to be stored /

A

B C

D

F G

H

[1,2] [3,8] [9,10] [11,14]

[4,5] [12,13]

[0,15]

0 10

A

B D
C

HF
G

5 15

E [6,7]

E

O(n) bound changes

7 / 29



Challenges /

I Challenge 1: Efficient Query Support
I NI can be used to answer queries efficiently X

I Challenge 2: Efficient Update Support
I NI not dynamic (O(n) bounds change per update) /

I Challenge 3: Space Consumption of Histories

I O(n) bounds change per update need to be stored /

A

B C

D

F G

H

[1,2] [3,8] [9,10] [11,14]

[4,5] [12,13]

[0,15]

0 10

A

B D
C

HF
G

5 15

E [6,7]

E

O(n) bound changes

7 / 29



Challenges /

I Challenge 1: Efficient Query Support
I NI can be used to answer queries efficiently X

I Challenge 2: Efficient Update Support
I NI not dynamic (O(n) bounds change per update) /

I Challenge 3: Space Consumption of Histories
I O(n) bounds change per update need to be stored /

A

B C

D

F G

H

[1,2] [3,8] [9,10] [11,14]

[4,5] [12,13]

[0,15]

0 10

A

B D
C

HF
G

5 15

E [6,7]

E

O(n) bound changes

7 / 29



Swaps /

I Observation: Each update can be represented by a swap of
two ranges of bounds

I Insert Node: Before

R4R1 R3R2

0 5 10

A

E
B

DC F

max

A

B E

FC D

8 / 29



Swaps /

I Observation: Each update can be represented by a swap of
two ranges of bounds

I Insert Node: Before

R4R1 R3R2

0 5 10

A

E
B

DC F

max

A

B E

FC D

8 / 29



Swaps /

I Observation: Each update can be represented by a swap of
two ranges of bounds

I Insert Node: After

R4:
 ±0

R1: ±0 R3: -4 R2: +2

0 5 10

A

E
B
DC F

max

A

B E

FC D

8 / 29



Swaps /

I Observation: Each update can be represented by a swap of
two ranges of bounds

I Delete Node: Before

R4R1 R2 R3

0 5 10

A

E
B
DC F

max

A

B E

FC D

8 / 29



Swaps /

I Observation: Each update can be represented by a swap of
two ranges of bounds

I Delete Node: After

R4:
 ±0

R1: ±0 R4: +4R3: -2

0 5 10

A

E
B

DC F

max

A

B E

FC D

8 / 29



Swaps /

I Observation: Each update can be represented by a swap of
two ranges of bounds

I Delete Subtree: Before

R4R1 R3R2

0 5 10

A

EB D
C

F

max

A

C F

D

B E

8 / 29



Swaps /

I Observation: Each update can be represented by a swap of
two ranges of bounds

I Delete Subtree: After

R4: 
±0

R1: ±0 R3: -4 R2: +5

0 5 10

A

F
C

EB D

max

A C

F DB E

8 / 29



Swaps /

I Observation: Each update can be represented by a swap of
two ranges of bounds

I Move Subtree: Before

R4R1 R3R2

0 5 10

A

EB D
C

F

max

A

C F

D

B E

8 / 29



Swaps /

I Observation: Each update can be represented by a swap of
two ranges of bounds

I Move Subtree: After

R4: ±0R1: ±0 R3: -4 R2: +2

0 5 10

A

F
C

EB D

max

A

C F

D

B E

8 / 29



Storing Swaps /

I Observation: Each update can be represented by a swap of
two ranges of bounds

I Idea: Simply store that swap instead of the changed bounds

R4R1 R3R2
A

E
B

DC F

Before

9 / 29



Storing Swaps /

I Observation: Each update can be represented by a swap of
two ranges of bounds

I Idea: Simply store that swap instead of the changed bounds

R4R1 R3R2
A

E
B

DC F

Before

9 / 29



Storing Swaps /

I Observation: Each update can be represented by a swap of
two ranges of bounds

I Idea: Simply store that swap instead of the changed bounds

R4R1 R3R2
A

E
B

DC F

Before

9 / 29



Storing Swaps /

I Observation: Each update can be represented by a swap of
two ranges of bounds

I Idea: Simply store that swap instead of the changed bounds

R4R1 R3R2

0 5 10

A

E
B

DC F

R1 R2 R3Source Space R4

Before

9 / 29



Storing Swaps /

I Observation: Each update can be represented by a swap of
two ranges of bounds

I Idea: Simply store that swap instead of the changed bounds

0 5 10

R1

0 -4

R2 R3Source Space

Target Space

R4

0+2

R4:
 ±0

R1: ±0 R3: -4 R2: +2
A

E
B
DC F

After

9 / 29



Representing Swaps /

I Representation: Two balanced (binary) search trees (“double
tree”)

I Node content: Lower border and link to other tree

0 5 10

R1

0 -4

R2 R3Source Space

Target Space

R4

0+2

106

6 8

+2-4

Source Tree

Target Tree 0

0

0
12

12

0

10 / 29



NI Deltas /

I The double tree represents a function δ : N 7→ N

I δ maps interval bounds from source space to target space
I Let b be a bound in source space, then δ(b) is equivalent

bound in target space
I Given an NI encoding in version Vi and a delta δVi→Vj from

version Vi to another version Vj , we can answer queries in Vj

106

6 8

+2-4

Source Tree

Target Tree 0

0

0
12

12

0

11 / 29



NI Deltas /

I The double tree represents a function δ : N 7→ N
I δ maps interval bounds from source space to target space

I Let b be a bound in source space, then δ(b) is equivalent
bound in target space

I Given an NI encoding in version Vi and a delta δVi→Vj from
version Vi to another version Vj , we can answer queries in Vj

106

6 8

+2-4

Source Tree

Target Tree 0

0

0
12

12

0

11 / 29



NI Deltas /

I The double tree represents a function δ : N 7→ N
I δ maps interval bounds from source space to target space
I Let b be a bound in source space, then δ(b) is equivalent

bound in target space

I Given an NI encoding in version Vi and a delta δVi→Vj from
version Vi to another version Vj , we can answer queries in Vj

106

6 8

+2-4

Source Tree

Target Tree 0

0

0
12

12

0

11 / 29



NI Deltas /

I The double tree represents a function δ : N 7→ N
I δ maps interval bounds from source space to target space
I Let b be a bound in source space, then δ(b) is equivalent

bound in target space
I Given an NI encoding in version Vi and a delta δVi→Vj from

version Vi to another version Vj , we can answer queries in Vj

106

6 8

+2-4

Source Tree

Target Tree 0

0

0
12

12

0

11 / 29



Computing δ on the Double Tree /

I Computing δ(b) is easy:

I Find greatest node in source tree less than b
⇒ Usual search-tree lookup

I Apply translation of that node

δ(11) = 7:

106

6 8

+2-4

Source Tree

Target Tree 0

0

0
12

12

0

I Computation of δ−1(b) similar

12 / 29



Computing δ on the Double Tree /

I Computing δ(b) is easy:
I Find greatest node in source tree less than b

⇒ Usual search-tree lookup

I Apply translation of that node

δ(11) = 7:

106

6 8

+2-4

Source Tree

Target Tree 0

0

0
12

12

0

I Computation of δ−1(b) similar

12 / 29



Computing δ on the Double Tree /

I Computing δ(b) is easy:
I Find greatest node in source tree less than b

⇒ Usual search-tree lookup
I Apply translation of that node

δ(11) = 7:

106

6 8

+2-4

Source Tree

Target Tree 0

0

0
12

12

0

I Computation of δ−1(b) similar

12 / 29



Computing δ on the Double Tree /

I Computing δ(b) is easy:
I Find greatest node in source tree less than b

⇒ Usual search-tree lookup
I Apply translation of that node

δ(11) = 7:

106

6 8

+2-4
Source Tree

Target Tree 0

0

0
12

12

0

11

7

I Computation of δ−1(b) similar

12 / 29



Computing δ on the Double Tree /

I Computing δ(b) is easy:
I Find greatest node in source tree less than b

⇒ Usual search-tree lookup
I Apply translation of that node

δ(11) = 7:

106

6 8

+2-4
Source Tree

Target Tree 0

0

0
12

12

0

11

7

I Computation of δ−1(b) similar

12 / 29



Double tree feasible? /

Does the double tree delta solve the problems?

I Challenge 1: Efficient Query Support

X

I Challenge 2: Space Consumption

X

I Challenge 3: Efficient Update Support

?

106

6 8

+2-4

Source Tree

Target Tree 0

0

0
12

12

0

n = number of nodes, c = number of changes in delta

13 / 29



Double tree feasible? /

Does the double tree delta solve the problems?
I Challenge 1: Efficient Query Support

X

I Challenge 2: Space Consumption

X

I Challenge 3: Efficient Update Support

?

106

6 8

+2-4

Source Tree

Target Tree 0

0

0
12

12

0

n = number of nodes, c = number of changes in delta

13 / 29



Double tree feasible? /

Does the double tree delta solve the problems?
I Challenge 1: Efficient Query Support

X

I NI can be used to answer queries efficiently X

I Calculating δ(b) (search tree lookup) is in O(log c) X

I Challenge 2: Space Consumption

X

I Challenge 3: Efficient Update Support

?

106

6 8

+2-4

Source Tree

Target Tree 0

0

0
12

12

0

n = number of nodes, c = number of changes in delta

13 / 29



Double tree feasible? /

Does the double tree delta solve the problems?
I Challenge 1: Efficient Query Support

X

I NI can be used to answer queries efficiently X
I Calculating δ(b) (search tree lookup) is in O(log c) X

I Challenge 2: Space Consumption

X

I Challenge 3: Efficient Update Support

?

106

6 8

+2-4
Source Tree

Target Tree 0

0

0
12

12

0

11

7

n = number of nodes, c = number of changes in delta
13 / 29



Double tree feasible? /

Does the double tree delta solve the problems?
I Challenge 1: Efficient Query Support X
I Challenge 2: Space Consumption

X

I Challenge 3: Efficient Update Support

?

106

6 8

+2-4

Source Tree

Target Tree 0

0

0
12

12

0

n = number of nodes, c = number of changes in delta
13 / 29



Double tree feasible? /

Does the double tree delta solve the problems?
I Challenge 1: Efficient Query Support X
I Challenge 2: Space Consumption

X

I Storing all changed bounds: O(n) space /

I Storing only range borders: O(c) space ,

I Challenge 3: Efficient Update Support

?

106

6 8

+2-4

Source Tree

Target Tree 0

0

0
12

12

0

n = number of nodes, c = number of changes in delta
13 / 29



Double tree feasible? /

Does the double tree delta solve the problems?
I Challenge 1: Efficient Query Support X
I Challenge 2: Space Consumption

X

I Storing all changed bounds: O(n) space /
I Storing only range borders: O(c) space ,

I Challenge 3: Efficient Update Support

?

106

6 8

+2-4

Source Tree

Target Tree 0

0

0
12

12

0

n = number of nodes, c = number of changes in delta
13 / 29



Double tree feasible? /

Does the double tree delta solve the problems?
I Challenge 1: Efficient Query Support X
I Challenge 2: Space Consumption X

I Challenge 3: Efficient Update Support

?

106

6 8

+2-4

Source Tree

Target Tree 0

0

0
12

12

0

n = number of nodes, c = number of changes in delta
13 / 29



Double tree feasible? /

Does the double tree delta solve the problems?
I Challenge 1: Efficient Query Support X
I Challenge 2: Space Consumption X

I Challenge 3: Efficient Update Support ?

106

6 8

+2-4

Source Tree

Target Tree 0

0

0
12

12

0

n = number of nodes, c = number of changes in delta
13 / 29



Updating Deltas /

I Until now, we only considered deltas with one change

I How to build deltas with more changes?

0 5 10

R1

0 -4

R2 R3Source Space

Target Space

R4

0+2

R4:
 ±0

R1: ±0 R3: -4 R2: +2
A

E
B
DC F

After

14 / 29



Updating Deltas /

I Until now, we only considered deltas with one change
I How to build deltas with more changes?

A B C D FE G H I

0 10 20

14 / 29



Updating Deltas /

I Step 0:

A B C D FE G H I

0 10 20

I Step X:

15 / 29



Updating Deltas /

I Task: Swap range R2 with R3

R4R3R2R1

B C D FE G H IA

0 10 20

I Step X:

15 / 29



Updating Deltas /

I Step 1: Insert range borders

R4R3R1 R2

A B C’ D FE G H IC E’

R4R3R2R1

B C D FE G H IA

0 10 20

I Search tree insert: O(log c) X

15 / 29



Updating Deltas /

I Step X:

R4R3R1 R2

A B C’ D FE G H IC E’

0 10 20

15 / 29



Updating Deltas /

I Step 2: Swap borders in R2 and R3

R4

R4R2R3R1

R3R1 R2

0 10 20

A B C’ D FE G H IC E’

A B C’ D FE G H IC E’

15 / 29



Updating Deltas /

I Step 2: Swap borders in R2 and R3

R4

R4R2R3R1

R3R1 R2

0 10 20

A B C’ D FE G H IC E’

A B C’ D FE G H IC E’

I Naive: Delete and reinsert all changed borders: O(c log c) /
I ⇒ Better approach required

15 / 29



Efficient Border Swap /

I Observation: Only target space changes

I Steps: Adjust keys O(c) keys, swap O(c) nodes

R4

R4R2R3R1

R3R1 R2

0 10 20

A B C’ D FE G H IC E’

A B C’ D FE G H IC E’

16 / 29



Efficient Border Swap /

I Observation: Only target space changes

I Steps: Adjust keys O(c) keys, swap O(c) nodes

R4

R4R2R3R1

R3R1 R2

0 10 20

A BC’ DFE GH IC E’

A B C’DF E GH IC E’

16 / 29



Efficient Border Swap /

I Observation: Only target space changes
I Steps: Adjust keys O(c) keys, swap O(c) nodes

R4R3R1 R2

0 10 20

A BC’ DFE GH IC E’

1

3

5

10

12

15

18

23720
A C’

C

E

E’

B

H

D G

F
Before:

16 / 29



Efficient Border Swap /

I Observation: Only target space changes

I Steps: Adjust keys O(c) keys, swap O(c) nodes

0 10 20

A

R4R2R3R1

A B C’DF E GH IC E’

After:

1

2

7

9

13

15

23

181240
B

C

E’

F

C’

D

H

E I

G

16 / 29



Efficient Node Rearrangement /

I How to swap O(c) nodes in a search tree in O(log c)?

I Solution: Split and join

?

I Split: Split a tree into two new balanced trees
I Join: Concatenate two trees to one balanced one
I Both operations run in O(log c) X

17 / 29



Efficient Node Rearrangement /

I How to swap O(c) nodes in a search tree in O(log c)?
I Solution: Split and join

Split

Join

I Split: Split a tree into two new balanced trees
I Join: Concatenate two trees to one balanced one
I Both operations run in O(log c) X

17 / 29



Efficient Node Rearrangement /

I How to swap O(c) nodes in a search tree in O(log c)?

I Solution: Split and join

Split

Join

I Split: Split a tree into two new balanced trees

I Join: Concatenate two trees to one balanced one
I Both operations run in O(log c) X

17 / 29



Efficient Node Rearrangement /

I How to swap O(c) nodes in a search tree in O(log c)?

I Solution: Split and join

Split

Join

I Split: Split a tree into two new balanced trees
I Join: Concatenate two trees to one balanced one

I Both operations run in O(log c) X

17 / 29



Efficient Node Rearrangement /

I How to swap O(c) nodes in a search tree in O(log c)?

I Solution: Split and join

Split

Join

I Split: Split a tree into two new balanced trees
I Join: Concatenate two trees to one balanced one
I Both operations run in O(log c) X

17 / 29



Updating Keys Efficiently /

I Split and join can rearrange nodes efficiently
I But: Keys are not updated ⇒ search tree condition violated!
I Updating one by one would require O(c)

I Solution: Accumulation tree
⇒ Node key: Sum of all keys on path to root

I Changing all keys in a subtree: O(1)

18 / 29



Updating Keys Efficiently /

I Split and join can rearrange nodes efficiently
I But: Keys are not updated ⇒ search tree condition violated!
I Updating one by one would require O(c)
I Solution: Accumulation tree

⇒ Node key: Sum of all keys on path to root

1

3

5

10

12

15

18

23720

I Changing all keys in a subtree: O(1)

18 / 29



Updating Keys Efficiently /

I Split and join can rearrange nodes efficiently
I But: Keys are not updated ⇒ search tree condition violated!
I Updating one by one would require O(c)
I Solution: Accumulation tree

⇒ Node key: Sum of all keys on path to root

-2

-5

+2

+10

-3

+5

+3

+5+2+1-1

(10)

(5)

(7)

(9)(4)(2)

(3) (12)

(15)

(18)

(23)

I Changing all keys in a subtree: O(1)

18 / 29



Updating Keys Efficiently /

I Split and join can rearrange nodes efficiently
I But: Keys are not updated ⇒ search tree condition violated!
I Updating one by one would require O(c)
I Solution: Accumulation tree

⇒ Node key: Sum of all keys on path to root

-2

-5

+2

+10

-3

+5

+3

+5+2+1-1

(10)

(5)

(7)

(9)(4)(2)

(3) (12)

(15)

(18)

(23)

+2

I Changing all keys in a subtree: O(1)

18 / 29



The Swap Algorithm /

I Using split/join and the accumulation tree, updating in
O(log c) is possible

I Target tree before update:

O(log c)

1

3

5

10

12

15

18

23720
A C’

C

E

E’

B

H

D G

F

19 / 29



The Swap Algorithm /

I Using split/join and the accumulation tree, updating in
O(log c) is possible

I Target tree with accumulation before update:

O(log c)

-2

-5

+2

+10

-3

+5

+3

+5+2+1-1
A C’

C

E

E’

B

H

D G

F

19 / 29



The Swap Algorithm /

I Using split/join and the accumulation tree, updating in
O(log c) is possible

I Step 1: Split tree (O(log c))

-2

-5

+2

+10

-3

+5

+3

+5+2+1-1
A C’

C

E

E’

B

H

D G

F

19 / 29



The Swap Algorithm /

I Using split/join and the accumulation tree, updating in
O(log c) is possible

I Step 1: Split tree (O(log c))

+1

-1
A

C
+3

-1
C’

E
+10

-5

F

D
+2

+2

E’

B

-3

+18

+5
H

G

I

19 / 29



The Swap Algorithm /

I Using split/join and the accumulation tree, updating in
O(log c) is possible

I Rearrange trees (no-op)

+1

-1
A

C
+3

-1
C’

E
+10

-5

F

D
+2

+2

E’

B

-3

+18

+5
H

G

I

19 / 29



The Swap Algorithm /

I Using split/join and the accumulation tree, updating in
O(log c) is possible

I Rearrange trees (no-op)

+1

-1
A

C
+3

-1
C’

E
+10

-5

F

D
+2

+2

E’

B

-3

+18

+5
H

G

I

19 / 29



The Swap Algorithm /

I Using split/join and the accumulation tree, updating in
O(log c) is possible

I Step 2: Translate keys (O(1))

+1

-1
A

C
+13

-1
C’

E
+7

-5

F

D
+2

+2

E’

B

-3

+18

+5
H

G

I

+10 -3 +3 +10

19 / 29



The Swap Algorithm /

I Using split/join and the accumulation tree, updating in
O(log c) is possible

I Step 3: Join trees (O(log c))

+1

-1
A

C
+13

-1
C’

E
+7

-5

F

D
+2

+2

E’

B

-3

+18

+5
H

G

I

19 / 29



The Swap Algorithm /

I Using split/join and the accumulation tree, updating in
O(log c) is possible

I Final result:

-1

-7

+5

+9

-2

+6

+8

-5-1-3-1
A B

C

E’

F

C’

D

H

E I

G

19 / 29



Overview /

I What we have shown:

I Double tree delta efficiently represents the changes in a version

I Efficient Queries (NI Encoding)
I Efficient Updates (Swap Algorithm)
I Low Space Consumption (O(c))

I What is missing:

I How to represent whole version histories efficiently?

20 / 29



Overview /

I What we have shown:
I Double tree delta efficiently represents the changes in a version

I Efficient Queries (NI Encoding)
I Efficient Updates (Swap Algorithm)
I Low Space Consumption (O(c))

I What is missing:

I How to represent whole version histories efficiently?

20 / 29



Overview /

I What we have shown:
I Double tree delta efficiently represents the changes in a version

I Efficient Queries (NI Encoding)
I Efficient Updates (Swap Algorithm)
I Low Space Consumption (O(c))

I What is missing:

I How to represent whole version histories efficiently?

20 / 29



Overview /

I What we have shown:
I Double tree delta efficiently represents the changes in a version

I Efficient Queries (NI Encoding)
I Efficient Updates (Swap Algorithm)
I Low Space Consumption (O(c))

I What is missing:
I How to represent whole version histories efficiently?

20 / 29



Representing Version Histories /

I Assume:
I Linear history of n versions V0, . . . ,Vn−1
I Constantly bounded number of changes c per version

I What we need:
I V0 has a fully materialized NI encoding
I We need deltas that lead to each other version (transitively)
I E.g., δ0→3 and δ3→5 lead to V5 by applying δ3→5(δ0→3(b))

I Which deltas to store in order to. . .
I minimize space consumption?
I minimize query runtime?

21 / 29



Simple Schemes /

I Minimize space consumption: linear topology

⇒ O(n) space consumption X
⇒ O(n) query time /

1

0

2

1

3

2

4

3

5

4

6

5

7

6

8

7

9

8

10

9
Base

I Minimize query time: star topology

⇒ O(log n) query time X
⇒ O(n2) space consumption /

1

0

2
0

3

0
4
0

5

0

6

0

7

0

8

0

9

0

10

0

Base

22 / 29



Simple Schemes /

I Minimize space consumption: linear topology
⇒ O(n) space consumption X

⇒ O(n) query time /

1

0

2

1

3

2

4

3

5

4

6

5

7

6

8

7

9

8

10

9
Base

I Minimize query time: star topology

⇒ O(log n) query time X
⇒ O(n2) space consumption /

1

0

2
0

3

0
4
0

5

0

6

0

7

0

8

0

9

0

10

0

Base

22 / 29



Simple Schemes /

I Minimize space consumption: linear topology
⇒ O(n) space consumption X
⇒ O(n) query time /

1

0

2

1

3

2

4

3

5

4

6

5

7

6

8

7

9

8

10

9
Base

I Minimize query time: star topology

⇒ O(log n) query time X
⇒ O(n2) space consumption /

1

0

2
0

3

0
4
0

5

0

6

0

7

0

8

0

9

0

10

0

Base

22 / 29



Simple Schemes /

I Minimize space consumption: linear topology
⇒ O(n) space consumption X
⇒ O(n) query time /

1

0

2

1

3

2

4

3

5

4

6

5

7

6

8

7

9

8

10

9
Base

I Minimize query time: star topology

⇒ O(log n) query time X
⇒ O(n2) space consumption /

1

0

2
0

3

0
4
0

5

0

6

0

7

0

8

0

9

0

10

0

Base

22 / 29



Simple Schemes /

I Minimize space consumption: linear topology
⇒ O(n) space consumption X
⇒ O(n) query time /

1

0

2

1

3

2

4

3

5

4

6

5

7

6

8

7

9

8

10

9
Base

I Minimize query time: star topology
⇒ O(log n) query time X

⇒ O(n2) space consumption /

1

0

2
0

3

0
4
0

5

0

6

0

7

0

8

0

9

0

10

0

Base

22 / 29



Simple Schemes /

I Minimize space consumption: linear topology
⇒ O(n) space consumption X
⇒ O(n) query time /

1

0

2

1

3

2

4

3

5

4

6

5

7

6

8

7

9

8

10

9
Base

I Minimize query time: star topology
⇒ O(log n) query time X
⇒ O(n2) space consumption /

1

0

2
0

3

0
4
0

5

0

6

0

7

0

8

0

9

0

10

0

Base

22 / 29



Exponential Scheme /

I We need a better space/time tradeoff!

I Solution: Exponential scheme

⇒ O(n log n) space consumption X
⇒ O(log n) best case query time X
⇒ O(log2 n) worst case query time X

23 / 29



Exponential Scheme /

I We need a better space/time tradeoff!
I Solution: Exponential scheme

⇒ O(n log n) space consumption X
⇒ O(log n) best case query time X
⇒ O(log2 n) worst case query time X

1

0

2

0

3

2

4

0

5

4

6

4

7

6

8

0

9

8

10

8

Base

10

11

8

12

23 / 29



Exponential Scheme /

I We need a better space/time tradeoff!
I Solution: Exponential scheme

⇒ O(n log n) space consumption X

⇒ O(log n) best case query time X
⇒ O(log2 n) worst case query time X

1

0

2

0

3

2

4

0

5

4

6

4

7

6

8

0

9

8

10

8

Base

10

11

8

12

23 / 29



Exponential Scheme /

I We need a better space/time tradeoff!
I Solution: Exponential scheme

⇒ O(n log n) space consumption X
⇒ O(log n) best case query time X

⇒ O(log2 n) worst case query time X

1

0

2

0

3

2

4

0

5

4

6

4

7

6

8

0

9

8

10

8

Base

10

11

8

12

23 / 29



Exponential Scheme /

I We need a better space/time tradeoff!
I Solution: Exponential scheme

⇒ O(n log n) space consumption X
⇒ O(log n) best case query time X
⇒ O(log2 n) worst case query time X

1

0

2

0

3

2

4

0

5

4

6

4

7

6

8

0

9

8

10

8

Base

10

11

8

12

23 / 29



Evaluation Baseline /

I Baseline: Currently strongest algorithms

ORD-MVBT
I Labeling with ORDPATH

I No relabeling ⇒ efficient updates
I Efficient queries

I Versioning with Multiversion B-Tree (MVBT)
I Asymptotically optimal query time and space consumption

I Improvements with DeltaNI
I Support of subtree relocation and deletion
I Branching histories
I Simple integer comparisons instead of bytewise comparisons

24 / 29



Evaluation Baseline /

I Baseline: Currently strongest algorithms

ORD-MVBT

I Labeling with ORDPATH
I No relabeling ⇒ efficient updates
I Efficient queries

I Versioning with Multiversion B-Tree (MVBT)
I Asymptotically optimal query time and space consumption

I Improvements with DeltaNI
I Support of subtree relocation and deletion
I Branching histories
I Simple integer comparisons instead of bytewise comparisons

24 / 29



Evaluation Baseline /

I Baseline: Currently strongest algorithms

ORD-MVBT

I Labeling with ORDPATH
I No relabeling ⇒ efficient updates
I Efficient queries

I Versioning with Multiversion B-Tree (MVBT)
I Asymptotically optimal query time and space consumption

I Improvements with DeltaNI
I Support of subtree relocation and deletion
I Branching histories
I Simple integer comparisons instead of bytewise comparisons

24 / 29



Evaluation Baseline /

I Baseline: Currently strongest algorithms ORD-MVBT
I Labeling with ORDPATH

I No relabeling ⇒ efficient updates
I Efficient queries

I Versioning with Multiversion B-Tree (MVBT)
I Asymptotically optimal query time and space consumption

I Improvements with DeltaNI
I Support of subtree relocation and deletion
I Branching histories
I Simple integer comparisons instead of bytewise comparisons

24 / 29



Evaluation Baseline /

I Baseline: Currently strongest algorithms ORD-MVBT
I Labeling with ORDPATH

I No relabeling ⇒ efficient updates
I Efficient queries

I Versioning with Multiversion B-Tree (MVBT)
I Asymptotically optimal query time and space consumption

I Improvements with DeltaNI
I Support of subtree relocation and deletion
I Branching histories
I Simple integer comparisons instead of bytewise comparisons

24 / 29



Evaluation: Query Performance /
Time for one million queries

0 1 ,000 2 ,000 3 ,000 4 ,000 5 ,000 6 ,000 7 ,000 8 ,000
0

1

2

3

4

5

6

7

8

9

Version

E
xe

cu
ti
on

T
im

e
(s

)

DeltaNI ORD-MVBT

25 / 29



Evaluation: Space Consumption /
Space consumption

0 1 ,000 2 ,000 3 ,000 4 ,000 5 ,000 6 ,000 7 ,000 8 ,000
0

0 .5

1

1 .5

2

2 .5

3

3 .5

4

4 .5

5

5 .5

6

6 .5

7

Version

T
ot

al
Si

ze
(G

B
)

DeltaNI ORD-MVBT

26 / 29



Evaluation: Update Performance /

Time for one million updates

0 1 ,000 2 ,000 3 ,000 4 ,000 5 ,000 6 ,000 7 ,000 8 ,000

104

105

106

Version

E
xe

cu
ti
on

T
im

e
(s

)

DeltaNI ORD-MVBT

27 / 29



Conclusion /

I Core observation: All updates reducable to range swap in the
NI encoding

I Double tree interval deltas make NI encoding dynamic
I O(c) space consumption
I O(log c) update complexity
I Even complex updates supported (subtree relocation)

I Versioning via exponential delta-packing scheme
I Yields reasonable space/time tradeoff

28 / 29



Conclusion /

I Core observation: All updates reducable to range swap in the
NI encoding

I Double tree interval deltas make NI encoding dynamic
I O(c) space consumption
I O(log c) update complexity
I Even complex updates supported (subtree relocation)

I Versioning via exponential delta-packing scheme
I Yields reasonable space/time tradeoff

28 / 29



Conclusion /

I Core observation: All updates reducable to range swap in the
NI encoding

I Double tree interval deltas make NI encoding dynamic
I O(c) space consumption
I O(log c) update complexity
I Even complex updates supported (subtree relocation)

I Versioning via exponential delta-packing scheme
I Yields reasonable space/time tradeoff

28 / 29



Questions /

Thank you for your attention!

Any questions?

29 / 29


