
Supporting Hierarchical Data in SAP HANA

Robert Brunel∗ Jan Finis∗

Gerald Franz† Norman May† Alfons Kemper∗ Thomas Neumann∗ Franz Faerber†
∗ Technische Universität München, Garching, Germany

firstname.lastname@cs.tum.edu
† SAP SE, Walldorf, Germany
firstname.lastname@sap.com

Abstract—Managing hierarchies is an ever-recurring challenge
for relational database systems. Through investigations of cus-
tomer scenarios at SAP we found that today’s RDBMSs still
leave a lot to be desired in order to meet the requirements of
typical applications. Our research puts a new twist on handling
hierarchies in SQL-based systems. We present an approach for
modeling hierarchical data natively, and we extend the SQL
language with expressive constructs for creating, manipulating,
and querying a hierarchy. The constructs can be evaluated
efficiently by leveraging existing indexing and query processing
techniques. We demonstrate the feasibility of our concepts with
initial measurements on a HANA-based prototype.

I. INTRODUCTION

Hierarchical relations appear in virtually any business appli-
cation, be it for representing organizational structures such
as reporting lines or geographical divisions, the structure of
assemblies, taxonomies, marketing schemes, or tasks in a
project plan. But as tree and graph structures do not naturally fit
into the flat nature of the traditional relational model, handling
such data today remains a clumsy and unnatural task for
users of the SQL language. We have investigated a number
of SAP applications dealing with hierarchies and collected
their typical requirements (Sec. II). Within SAP’s Enterprise
Resource Planning system, hierarchies are used in the human
resources domain to model reporting lines of employees, in asset
management to keep track of production-relevant assets and
their functional locations (e. g., plants, machines, machine parts,
tools, equipment), and in materials planning to represent an
assembly of components into an end product, a so-called bill of
materials (BOM). Due to the limitations of the relational model
and SQL, logic for hierarchy handling within these applications
has mostly been written in ABAP and therefore runs within the
application server. We have identified almost a dozen different
implementations of more or less the same hierarchy-handling
logic, which is unfortunate not only from an interoperability
and maintainability point of view. In most cases, hierarchies are
represented in the database schema using a simple relational
encoding, and converted into a custom-tailored format within
the application, if needed. The most widespread encoding is a
self-referencing table resembling an adjacency list. It is well-
known in the literature (e. g., [1]) under the term Adjacency List
model. Fig. 1 shows an example instance: table BOM represents
a bill of materials. Field id uniquely identifies each part. The
hierarchical relationship is established by a self-reference pid

associating each row with its respective parent row, the part
containing it. The resulting hierarchy is displayed on the left.

>

A1

B1

C1 C2

B2

C3

D1 D2

C4

D3

A2

BOM

id pid kind payload pos

'A1' NULL 'compound' · · · A1
'A2' NULL 'display' · · · A2
'B1' 'A1' 'engine' · · · B1
'B2' 'A1' 'engine' · · · B2
'C1' 'B1' 'valve' · · · C1
'C2' 'B1' 'rotor' · · · C2
'C3' 'B2' 'compound' · · · C3
'C4' 'B2' 'control' · · · C4
'D1' 'C3' 'valve' · · · D1
'D2' 'C3' 'rotor' · · · D2
'D3' 'C4' 'cpu' · · · D3

Fig. 1. Example hierarchy and corresponding table

The only standard hierarchy-handling tools that SQL-based
DBMSs today offer are Recursive Common Table Expressions
(RCTEs) and some means to define custom stored procedures
for working on adjacency lists like BOM. But these tools
suffer from certain usability and performance deficiencies. The
conventional alternative is to abandon the Adjacency List model
and implement a more suitable encoding scheme manually,
either on the relational level [1] or within the application (i. e.,
ABAP), relinquishing any kind of engine support either way. We
consider neither RCTEs nor alternative encoding schemes nor
any other purported solution we investigated sufficient to meet
the common requirements that we have identified (Sec. III).
These requirements call for a solution that seamlessly integrates
hierarchical and relational data by combining an expressive
front end (new language constructs) with a powerful back end
(indexing and query processing techniques), without departing
farther than necessary from the philosophy of the relational
model. Such a solution is missing to date.

That is not to say the research community has not given
enough attention to the underlying technical challenges. In fact,
the problem of storing and indexing hierarchical or recursively
structured data has been studied deeply in the past decade, in
the course of research efforts in the domains of XML and semi-
structured databases. While recognizing that many challenges of
indexing and query processing have been successfully tackled
previously (e. g., by RCTEs, encoding schemes, and structural
joins), we believe there is an open opportunity to reconcile the
ideas and techniques from the mentioned areas into a general
framework for working with hierarchies in a relational context.

The core concept of our framework is to encapsulate
structural information into a table column of a new special-
purpose data type NODE (Sec. IV). Our extensions to the SQL
query language comprise a small yet essential set of built-in

functions operating on the NODE values (Sec. V), plus DDL and
DML constructs for obtaining and manipulating a NODE column
in the first place (Sec. VI). Altogether the language elements
cover the typical requirements and blend seamlessly with the
look and feel of SQL, as we illustrate on some advanced
scenarios (Sec. VII). The back-end design we present is geared
to the in-memory column store of SAP HANA [2]. From an
early stage on, HANA has been envisioned as a multi-engine
query processing environment offering abstractions for data
of different degrees of structure, and the idea of hierarchical
tables fits well in this spirit. That said, our framework is generic
in such a way that it can be adapted for different RDBMSs,
including classical row stores. Our HANA-based prototype
provides insights into architectural and implementation aspects
(Sec. VIII) as well as a proof of concept and initial performance
characteristics (Sec. IX).

II. REQUIREMENTS REVIEW

Through consultations with stakeholders at SAP we investigated
a number of customer scenarios dealing with hierarchies. We
restrained ourselves to “strict” hierarchies—basically trees—
and precluded applications featuring general non-tree graphs.
Hence, we identified the following requirements that a DBMS
should fulfill to exhibit decent support for hierarchical data:

#1 Tightly integrate relational and hierarchical data. Today
business data still resides mainly in pure relational tables, and
virtually any query on a hierarchy needs to simultaneously refer
to such data. First and foremost, any hierarchy support must
harmonize with relational concepts, both on the data model side
and on the language side. In particular, it is of major importance
that joining hierarchical and relational data is straightforward
and frictionless.

#2 Provide expressive, lightweight language constructs. Apart
from expressiveness, the constructs must be intelligible in such
a way that SQL programmers are able to intuitively understand,
adopt, and leverage the functionality they provide. At the
same time, an eye must be kept on light syntactic impact:
Where appropriate, existing constructs should be reused or
enhanced rather than replaced with new inventions. This not
only minimizes training efforts for users who are familiar with
SQL, but also reduces implementation complexity and adoption
barriers for an existing system such as HANA.

#3 Enable and facilitate complex queries involving hierarchies,
by offering convenient query language (QL) constructs and
corresponding back-end support. Typical tasks to be supported
are: querying hierarchical properties such as the level of a node,
and selecting nodes according to their properties; testing node
relationships with respect to hierarchy axes such as ancestor,
descendant, parent, sibling, or child; navigating along an axis
starting from a given set of nodes; and arranging a set of nodes
in either depth-first or breadth-first order.

#4 Support explicit modeling of hierarchical data. In a plain
relational database, a schema designer initially has to decide
on how to represent a hierarchy (e. g., as an adjacency list).
Even though relational tree encodings are well understood
nowadays [1], carefully choosing and implementing one still
requires advanced knowledge. What’s more, a tree encoding
generally disguises the fact that the corresponding table contains
a hierarchy. What is needed is a way to explicitly model

hierarchies in the schema, using abstract, special-purpose data
definition (DDL) constructs that hide the fiddly storage details.

#5 Provide front- and back-end support for data manipulation.
Hierarchies in business scenarios are usually dynamic. In some
cases manipulations involve only insertions or removals of
individual leaf nodes, while in other cases more complex
update operations are required, such as collective relocations
of large subtrees. As an example, consider the enterprise
assets (EA) hierarchy of an automotive company that contains
a lot of machines and robots and relocates them whenever
a new production line is established. Through a previous
analysis of a customer’s EA hierarchy, we found that as
much as 31% of all recorded update operations were subtree
relocations [3]. Consequently, the system must provide an
interface (DML) and efficient back-end support for both leaf
and subtree manipulations.

#6 Support legacy applications, where modeling and main-
taining hierarchies explicitly (#4) by extending the schema is
not always an option. In existing schemas, hierarchies are
necessarily encoded in a certain relational format—in the
majority of cases the Adjacency List format. Users shall be
enabled to take advantage of all QL functionality “ad-hoc” on
the basis of such data without having to modify the schema.
For that purpose, means to create a derived hierarchy from an
adjacency list shall be provided.

#7 Enforce structural integrity of a hierarchy. To this end, the
system must prevent the user from inserting non-tree edges.
Furthermore, it must ensure that a node cannot be removed as
long as it still has children, which would become orphans.

#8 Cope with very large hierarchies of millions of nodes. Every
proposed language construct must yield an evaluation plan that
is at least as fast as—and often considerably faster than—the
best equivalent hand-crafted RCTE. To achieve maximum query
performance, back-end support in the form of special-purpose
indexing schemes is indispensable. For hierarchies that are
never updated—in particular derived hierarchies (#6)—read-
optimized static indexing schemes are to be used. In contrast,
dynamic scenarios (#5) demand for dynamic indexing schemes
that support update operations efficiently.

In addition to these primary requirements, further requirements
arise in some advanced customer scenarios: One example are
multi-versioned or temporal hierarchies. Another example are
“non-strict” hierarchies, that is, directed graphs that contain
a few non-tree edges but shall be treated as trees anyway.
Such hierarchies can be handled by systematically extracting a
spanning tree from the graph, or by replicating subtrees that are
reachable via non-tree edges. Although we already anticipate
these advanced requirements in our prototype, they are not
discussed in this paper for the sake of brevity.

III. FROM STATUS QUO TO HIERARCHIES IN HANA

Do we need yet another solution? The problem at hand
is almost ancient in terms of DBMS history. Hierarchical
Queries [4], a proprietary SQL extension for traversing re-
cursively structured data in the Adjacency List format, have
been a part of Oracle Database for about 35 years. In 1999,
Recursive Common Table Expressions (RCTEs) [5], [6] brought
standard SQL a general and powerful facility for recursive

SELECT
XMLElement("PurchaseOrder", XMLAttributes(pono AS "pono"),
XMLElement("ShipAddr", XMLForest(

street AS "Street", city AS "City", state AS "State")),
(SELECT XMLAgg(
XMLElement("LineItem", XMLAttributes(lino AS "lineno"),
XMLElement("liname", liname)))

FROM lineitems l
WHERE l.pono = p.pono)
) AS po

FROM purchaseorder p

SELECT top_price, XMLQUERY (
'for $cost in /buyer/contract/item/amount
where /buyer/name = $var1 return $cost'
PASSING BY VALUE 'A.Eisenberg' AS var1, buying_agents
RETURNING SEQUENCE BY VALUE)

FROM buyers

Fig. 2. Using SQL/XML to generate XML from a relational table (top, [7])
and to evaluate XQuery (bottom, [8])

fixpoint queries. Furthermore, many alternative data models and
languages incorporating hierarchies more or less natively have
emerged, such as Multidimensional Expressions (MDX), XPath,
XQuery, and SQL/XML. Upon closer inspection, however,
neither of the existing approaches stands up to our requirements.
In the following we discuss the assets and drawbacks of the
strongest existing solutions we found.

XML. Storing and querying XML—an inherently hierarchical
data format—and the idea of bridging the technology stacks
of the relational and XML worlds have received a lot of
attention in the research community. One research track pursues
the idea of adapting RDBMSs for storing XML fragments
and evaluating XPath and XQuery based on relational query
processing techniques [9], [10]. Beyond that, the idea of joining
the XML and relational data models in order to enable queries
over both tables and XML documents has resulted in the
SQL/XML standard [11], which integrates XML support into
SQL. It has been implemented by prominent vendors [7], [12],
[13]. Fig. 2 depicts two example SQL/XML queries. So-called
publishing functions enable the user to generate XML from
relational input data (top example). Conversely, XQuery can
be used within SQL statements to extract data from an XML
fragment and produce either XML or a relational view (bottom
example). While SQL/XML is the tool of choice for working
with XML within RDBMSs, it cannot hide the fact that the
underlying data models were not designed for interoperability
in the first place. “Casting” data from a relational to an XML
format or vice versa induces a lot of syntactic overhead, as the
many XML... clauses cluttering the top example of Fig. 2 attest.
In addition, SQL/XML requires users to know both data models
and the respective query languages, which is a challenge to SQL-
only users. Since our requirements #1 and #2 mandate that the
data model and query language should blend seamlessly with
SQL, we do not consider SQL/XML a candidate for general
hierarchy support in HANA. That said, we recognize that many
techniques from the XML field, such as join operators and
labeling schemes, can be leveraged for our purpose.

hierarchyid is a variable-length system data type introduced
in Microsoft SQL Server 2008 [14], [15] whose values represent
a position in an ordered tree using ORDPATH [16], a compact
and update-friendly path-based encoding scheme. The feature is
apparently a by-product of SQL Server’s XML support and as

such a good demonstration that XML technology can be lever-
aged for more general uses. The data type provides methods for
working with nodes, such as GetLevel and IsDescendantOf.
Nodes can be inserted and relocated by generating new
values using, for example, methods GetReparentedValue and
GetDescendant. From a syntax and data model perspective,
this is the related work that is most similar to what we present
in this paper. However, there are several major differences to
our design: The hierarchyid field is provided as a simple tool
for modeling a hierarchy; yet, a collection of rows with such a
field does not necessarily represent a valid hierarchy. It is up to
the user to generate and manage the values in a reasonable way.
By design, the system does not enforce the structural integrity
of the represented tree. For example, it does not guarantee
the uniqueness of generated values, and it does not prevent
accidentally “orphaning” a subtree by deleting its parent node.
In contrast, we require the system to ensure structural integrity
at any time (Req. #7), so that queries on hierarchies will not
yield surprising results. Of course, this design choice comes at
a price, as consistency has to be checked on each update. As
another difference, we opt to provide flexibility regarding the
underlying indexing scheme. Rather than hardwiring a particular
scheme such as ORDPATH, our design allows a scheme to be
chosen according to the application scenario at hand. ORDPATH
has the inherent deficiency that relocating a subtree incurs
changes to all hierarchyid values in that subtree (cf. Req. #5).

Hierarchical Queries in Oracle Database [4] extend the
SELECT statement by the constructs START WITH, CONNECT BY,
and ORDER SIBLINGS BY. The wording of these constructs
and the related built-in functions and pseudo-columns such
as ROOT, IS_LEAF, and LEVEL clearly hint at their intended
use for traversing hierarchical data in the Adjacency List
format. The underlying recursion mechanism is conceptually
similar to RCTEs. Most functionality can in fact be expressed
straightforwardly using RCTEs [17], so the discussion in the
following paragraphs applies to Hierarchical Queries as well.

Recursive Common Table Expressions are a standard tool
that can, among other things, be used for working with a
table in the Adjacency List format. We refer to this particular
combination as the “RCTE-based approach”. As a generic
mechanism, RCTEs do in fact have interesting uses far beyond
traversing hierarchical data, and we by no means intend to
render them obsolete. To convey an impression of how our
design and the RCTE-based approach differ, we revisit the
BOM example from Fig. 1. Consider the following query,
which is derived from a customer scenario:

“Select all combinations (e, r, c) of an engine e, a rotor r, and
a compound part c, such that e contains r, and r is contained
in c.”

In the example BOM, the qualifying node triples would be
(B2,D2,C3), (B2,D2,A1), and (B1,C2,A1). This query is
not entirely trivial in that it involves not only two, but three
nodes that are tested for hierarchical relationships. Fig. 3 shows
an RCTE-based solution. It selects the id and a payload of
each node. We use two RCTEs: one starting from an engine e
and navigating downwards from e to r, the other navigating
upwards from r to c. Obviously, the statement is not particularly
intelligible to readers, and somewhat tedious to write down in

WITH RECURSIVE ER (id, pl, r_id, r_pl, r_kind) AS (
SELECT e.id, e.payload, e.id, e.payload, e.kind

FROM BOM e
WHERE e.kind = 'engine'
UNION ALL
SELECT e.id, e.pl, r.id, r.payload, r.kind
FROM BOM r
JOIN ER e

ON r.pid = e.r_id
),
CER (e_id, e_pl, r_id, r_pl,

c_id, c_pl, c_kind, pid) AS (
SELECT id,pl,r_id,r_pl,r_id,r_pl,r_kind,r_id
FROM ER
WHERE r_kind = 'rotor'
UNION ALL
SELECT e.e_id, e.e_pl, e.r_id, e.r_pl, c.id,

c.payload, c.kind, c.pid
FROM BOM c
JOIN CER e

ON e.pid = c.id
)
SELECT e_id, e_pl, r_id, r_pl, c_id, c_pl
FROM CER
WHERE c_kind = 'compound'

Fig. 3. Example hierarchical query, expressed using two RCTEs.

the first place. What’s more, it is not the only way to solve
the problem. An alternative would be to fully materialize all
ancestor/descendant combinations (u, v) using a single RCTE
and then work (non-recursively) on the resulting table. This
option is generally inferior due to the large intermediate result,
though it might be feasible if only a small hierarchy is involved.
The point is that it is up to the user to choose the most
appropriate strategy for answering the query. The first choice to
make is the basic approach to use: one RCTE materializing all
pairs versus two RCTEs as in the example. The second choice
is the join direction to proceed in: towards the root versus away
from the root. The query optimizer is tightly constrained by the
approach the user is prescribing. In fact, the query statement
is imperative rather than declarative: A bad choice from the
user’s side can easily result in incorrect answers or severe
performance penalties.

Furthermore, as a direct consequence of the underlying
Adjacency List model, navigation axes other than descendant
and ancestor (e. g., the XPath axis following) are inherently
difficult to express. And in order to query hierarchical properties
such as the level of a node, the user must do the computation
manually using arithmetics within the RCTE. Even though
the flexibility of RCTEs allows the user to perform arbitrary
computations, seemingly basic tasks, such as depth-first sorting,
can be surprisingly difficult to express, let alone evaluate. All in
all, writing RCTEs to express non-trivial queries is an “expert-
friendly” and error-prone task in terms of achieving correctness,
intelligibility, and robust performance.

In addition, the RCTE-based approach bears some inherent
inefficiencies. We give two examples: First, note that even
though in Fig. 3 we are interested only in qualifying ances-
tor/descendant pairs (e, r) and (r, c), but not in any nodes in
between, the RCTE necessarily touches all intermediate nodes
anyway. Second, attributes of interest to the user (payload in
the example) must often be materialized early and carried along
throughout the recursion, which is costly.

SELECT e.id, e.payload,
r.id, r.payload,
c.id, c.payload

FROM BOM e, BOM r, BOM c
WHERE e.kind = 'engine'
AND IS_DESCENDANT(r.pos, e.pos)
AND r.kind = 'rotor'
AND IS_ANCESTOR(c.pos, r.pos)
AND c.kind = 'compound'

Fig. 4. The example query from Fig. 3, expressed using the proposed SQL
language extensions.

From RCTEs to our syntax. Fig. 4 shows how the example
query is expressed in the syntax we introduce in sections IV
and V. In a nutshell, the pos field of type NODE identifies a
row’s position in the depicted hierarchy, which makes BOM a
hierarchical table. Without delving into details, we illustrate
three major cornerstones of our design: First, with the RCTE-
based approach, the task of “discovering” and navigating the
hierarchy structure on the one hand, and the task of actually
using the hierarchy to compute hierarchical properties of interest
on the other hand, are inseparably intertwined. By contrast, the
query statement in Fig. 4 makes use of an available hierarchical
table exposing the pos field. The hierarchy structure is known
ahead and persisted. The task of querying the hierarchy is
cleanly separated from the task of specifying and building the
hierarchy structure. Thus, any duplication of “discovery logic”
in user code is avoided. Second, unlike the generic RCTE
mechanism, our syntax is particularly tailored for working with
hierarchies. This way we can provide increased intelligibility,
user-friendliness, and expressiveness, and we can employ
particularly tuned data structures and algorithms on the back-
end side. Third, our syntax states the hierarchical relationships
clearly and in a declarative way (e. g., IS_DESCENDANT). This
allows the query optimizer to reason about the user’s intent and
pick an optimal evaluation (i. e., join) strategy and direction.

The example shows how we achieve requirements #1, #2,
and #3: Our syntax blends with SQL (#1), as we stick to joins
and built-in functions to provide all required query support (#3).
As a corollary, the syntactic impact is minimal (#2). In fact,
a hierarchy query does not need any extensions to the SQL
grammar. Still, the syntax is highly expressive (#2): the query
in Fig. 4 reads just like the English sentence defining it.

IV. HIERARCHICAL TABLES: OUR MODEL

Basic Terms. We use the term hierarchy to denote an ordered,
rooted, labeled tree. The tree in Fig. 1 is an example. Labeled
means each vertex in the tree has a label, which represents
the attached data. Rooted means a specific node is marked as
root, and all edges are conceptually oriented away from the
root. We require that every hierarchy contains by default a
single, virtual root node, which we denote by > and call the
super-root. As a virtual node, > is hidden from the user. The
children of > are the actual roots in the user data. Through
this mechanism we avoid certain technical complications in
handling empty hierarchies as well as hierarchies with multiple
roots, so-called forests. Furthermore, a hierarchy is ordered,
that is, a total order is defined among the children of each node.
That said, for many applications the relative order of siblings
is actually not relevant. While we recognize this use case by

providing order-indifferent update operations, the system always
maintains an internal order. This way order-based functionality
such as preorder ranking is well-defined and deterministic.

Hierarchical Tables. In a database context, a hierarchy is
not an isolated object but rather closely tied to an associated
table. A hierarchy has exactly one associated table. (Of course,
additional tables can be tied to a hierarchy by using joins;
cf. Sec. VII.) Conversely, a table might have multiple associated
hierarchies. In Fig. 1, for instance, table BOM has one associated
hierarchy, which arranges its rows in a tree, thus adding a
hierarchical dimension to BOM. We call a table with at least
one associated hierarchy a hierarchical table. Let H be a
hierarchy attached to a table T . Each row r of T is associated
with at most one node v of H , so there may also be rows
that do not appear in the hierarchy. Conversely, each node
except for > is associated with exactly one row of T . The
values in the fields of r can be regarded as labels attached
to v or to the edge onto v. Besides the tree structure and a
node–row association, H conceptually does not contain any
data. A user never works with the hierarchy object H itself
but only works with the associated table T . Consequently, a
row-to-node handle is required to enable the user to refer to
the nodes in H . Such a handle is provided by a column of
type NODE in T .

The NODE Data Type. A field of the predefined data type NODE

represents the position of a row’s associated node within the
hierarchy. A table (row) can easily have two or more NODE

fields and thus be part of multiple distinct hierarchies. Using an
explicit column to serve as handle for a hierarchical dimension
is a cornerstone of our design. We can expose all hierarchy-
specific functionality through that column in a very natural and
lightweight way. The following pseudo-code illustrates this for
table BOM with its NODE column named pos:

SELECT id, . . ., “level of pos”
FROM BOM
WHERE “pos is a leaf”

Compared to other conceivable approaches, such as introducing
a pseudo-column for each property of interest (similar to the
LEVEL column in Oracle Hierarchical Queries), or functions
operating on table aliases (an idea mandated by early proposals
for temporal SQL), the NODE field implicates minimal syntac-
tic impact and also simplifies certain aspects: Transporting
“hierarchy information” across a SQL view is a trivial matter
of including the NODE column in the projection list of the
defining SELECT statement. Furthermore, the functionality can
be extended in the future by simply defining new functions
operating on NODE.

Actual values of data type NODE are opaque and not directly
observable; a naked NODE field must not be part of the output
of a top-level query. The user may think of a NODE value as
“the position of this row in the hierarchy”. How this position is
encoded is intentionally left unspecified. This leaves maximum
flexibility and optimization opportunities to the back end.

The user works with a NODE column exclusively by applying
hierarchical functions and predicates such as “level of” and
“is ancestor of”. Besides that, the NODE type supports only
the operators = and <>. Other operations such as arithmetics
and casts from other data types are not allowed. The system

ID LEVEL IS_LEAF IS_ROOT PRE_RANK POST_RANK

'A1' 1 0 1 1 10
'B1' 2 0 0 2 3
'C1' 3 1 0 3 1
'C2' 3 1 0 4 2
'B2' 2 0 0 5 9
'C3' 3 0 0 6 6
'D1' 4 1 0 7 4
'D2' 4 1 0 8 5
'C4' 3 0 0 9 8
'D3' 4 1 0 10 7
'A2' 1 1 1 11 11

Fig. 5. Projecting hierarchy properties of BOM.

statically tracks the original hierarchy of each NODE column
and ensures that binary predicates and set operations (e. g.,
UNION) do not mix NODE values from different hierarchies. NODE
values can be NULL to express that a row is not part of the
hierarchy. Non-null values always encode a valid position in the
hierarchy. The handling of NULL values during query processing
is consistent with SQL semantics.

V. QUERYING HIERARCHIES

To meet Requirement #3 to support and facilitate complex
queries, we enhance SQL’s query language. As outlined in the
previous section, a field of data type NODE serves as handle to
the nodes in the associated hierarchy. For the following, we
suppose a table with such a field (like BOM and pos) is at hand.
How to obtain such a table—either a hierarchical base table or
a derived hierarchy—is covered by Sec. VI.

We provide built-in scalar functions operating on a NODE

value v to enable the user to query certain hierarchy properties:

LEVEL(v) — The number of edges on the path from > to v.

IS_LEAF(v) — Whether v is a leaf, i. e., has no children.

IS_ROOT(v) — Whether v is a root, i. e., its parent is >.

PRE_RANK(v) — The preorder traversal rank of v.

POST_RANK(v) — The postorder traversal rank of v.

Fig. 5 shows the result of projecting all these properties
for BOM. The values of LEVEL, PRE_RANK, and POST_RANK are
1-based. There are certain more or less obvious equivalences.
For example, IS_ROOT(v) is equivalent to LEVEL(v)=1 and
thus redundant, strictly speaking. However, for the sake of
convenience and expressiveness we do not aim for a strictly
orthogonal function set.

The following example demonstrates how hierarchy prop-
erties are used; it produces a table of all non-composite parts
(i. e., leaves) and their respective levels:

SELECT id, LEVEL(pos) AS level
FROM BOM
WHERE IS_LEAF(pos) = 1

As mandated by SQL semantics, the order of the result rows
is undefined. To traverse a hierarchy in a particular order, one
can combine ORDER BY with a hierarchy property. For example,
consider a so-called parts explosion for the BOM, which shows
all parts in depth-first order, down to a certain level:

-- Depth-first, depth-limited parts explosion with level numbers
SELECT id, LEVEL(pos) AS level

FROM BOM
WHERE LEVEL(pos) < 5
ORDER BY PRE_RANK(pos)

With PRE_RANK, parents are arranged before children (in
preorder); with POST_RANK, children are arranged before parents
(in postorder). Sorting in breadth-first search order can be done
using the LEVEL property:

-- Breadth-first parts explosion
SELECT id, LEVEL(pos) AS level

FROM BOM
ORDER BY LEVEL(pos)

Note that computing the actual pre- or post-order rank of a
node is not trivial for many indexing schemes (e. g., ORDPATH).
However, when PRE_RANK or POST_RANK appear only in the
ORDER BY clause (which is their main use case), then there is
no need to actually compute the values. For sorting purposes,
pairwise comparison of the pre/post positions is sufficient, and
all indexing schemes we use can handle this efficiently.

Besides querying hierarchy properties, a general task is to
navigate from a given set of nodes along a certain hierarchy
axis. Such axes can be expressed using one of the following
hierarchy predicates (with u and v being NODE values):

IS_PARENT(u,v) — whether u is a parent of v.

IS_CHILD(u,v) — whether u is a child of v.

IS_SIBLING(u,v) — whether u is a sibling of v, i. e., has
the same parent.

IS_ANCESTOR(u,v) — whether u is an ancestor of v.

IS_DESCENDANT(u,v) — whether u is a descendant of v.

IS_PRECEDING(u,v) — true iff u precedes v in preorder
and is not an ancestor of v.

IS_FOLLOWING(u,v) — true iff u follows v in preorder and
is not a descendant of v.

The task of axis navigation maps quite naturally onto a self-join
with an appropriate hierarchy predicate as join condition. For
example, the following lists all pairs (u, v) of nodes where
u is a descendant of v:

SELECT u.id, v.id
FROM BOM u
JOIN BOM v

ON IS_DESCENDANT(u.pos, v.pos)

As another example, we can use a join to answer the classic
where-used query on a BOM. The query “Where is part D2
used?” corresponds to enumerating all ancestors of said node:

SELECT a.id
FROM BOM p, BOM a
WHERE IS_ANCESTOR(a.pos, p.pos)

AND p.id = 'D2'

The different predicates are inspired by the axis steps known
from XPath. Note that the preceding and following predicates
are only meaningful in an ordered hierarchy, and thus of less
interest in the general case.

The functions presented here are chosen based on the
customer scenarios we have analyzed and the capabilities of
the indexing schemes we have considered. Further functions
might be added in the future.

VI. CREATING AND MANIPULATING HIERARCHIES

The previous section describes query primitives that work on a
field of type NODE. In this section, we show how such fields
are declared and maintained.

A. Deriving a Hierarchy from an Adjacency List

According to Requirement #6, legacy applications demand
for a means to derive a hierarchy from an available table in
the Adjacency List format. Derived hierarchies enable users
to take advantage of all query functionality “ad hoc” on the
basis of relationally encoded hierarchical data, while staying
entirely within the QL (and in particular, without requiring
schema modifications via DDL). For this purpose we provide
the HIERARCHY expression. It derives a hierarchy from a given
adjacency-list-formatted source table, which may be a table, a
view, or the result of a subquery:

HIERARCHY
USING source table AS source name
[START WHERE start condition]
JOIN PARENT parent name ON join condition
[SEARCH BY order]
SET node column name

This expression can be used wherever a table reference is
allowed (in particular, a FROM clause). Its result is a temporary
table containing the data from the source table plus an additional
NODE column named node column name. The expression is
evaluated by first self-joining the source table in order to derive
a parent-child relation representing the edges, then building
a temporary hierarchy representation from that, and finally
producing the corresponding NODE column. The START WHERE

subclause can be used to restrict the hierarchy to only the nodes
that are reachable from any node satisfying start condition. The
SEARCH BY subclause can be used to specify a desired sibling
order; if omitted, siblings are ordered arbitrarily. Conceptually,
the procedure for evaluating the whole expression is as follows:

1) Evaluate source table and materialize required columns
into a temporary table T . Also add a NODE column named
node column name to T .

2) Perform the join
T AS C LEFT OUTER JOIN T AS P ON join condition,

where P is the parent name and C is the source name. Within
the join condition, P and C can be used to refer to the parent
and the child node, respectively.

3) Build a directed graph G containing all row IDs of T as
nodes, and add an edge rP → rC between any two rows rP
and rC that are matched through the join.

4) Traverse G, starting at rows satisfying start condition, if
specified, or otherwise at rows that have no (right) partner
through the outer join. If order is specified, visit siblings in that
order. Check whether the traversed edges form a valid tree or
forest, that is, there are no cycles and no node has more than
one parent. Raise an error when a non-tree edge is encountered.

5) Build a hierarchy representation from all edges visited
during Step 4 and populate the NODE column of T accordingly.
The result of the HIERARCHY expression is T .

Note that the description above is merely conceptual; we
describe an efficient implementation in Sec. VIII-C. As de-
scribed, an error is raised when a non-tree edge is encountered.
This way we ensure the resulting hierarchy has a valid tree
structure (Req. #7). In our prototype, we also support “non-
strict” hierarchies by deriving a spanning tree over G, with
various options controlling the way the spanning tree is chosen.
We omit these advanced options for the sake of brevity.

The HIERARCHY syntax is intentionally close to an RCTE
and even more so to Oracle Hierarchical Queries. (The self-
join via parent name is comparable to a CONNECT BY via
PRIOR in a Hierarchical Query.) However, the semantics are
quite different in that by design only a single self-join is
performed on the input rather than a recursive join. As our
experiments show, this allows for a very efficient evaluation
algorithm compared to a recursive join. Furthermore, there is
a major conceptual difference to the mentioned approaches:
The HIERARCHY expression does nothing more than define a
hierarchy. That hierarchy can be queried by wrapping the
expression into a SELECT statement. In contrast, a RCTE both
defines and queries a hierarchy in one convoluted statement.
We believe that separating these two aspects greatly increases
comprehensibility. As an example, consider again the BOM of
Fig. 1. The following statement uses a CTE to derive the pos

column from id and pid, then selects the id and level of all
parts that appear within part C2:

WITH PartHierarchy AS (
SELECT id, pos

FROM HIERARCHY USING BOM AS c
JOIN PARENT p ON p.id = c.pid
SET pos

)
SELECT v.id, LEVEL(v.pos) AS level

FROM PartHierarchy u,
PartHierarchy v

WHERE u.id = 'C2'
AND IS_DESCENDANT(v.pos, u.pos)

The mentioned separation of aspects is clearly visible.
PartHierarchy could be extracted into a view and reused for
different queries. One might argue that a RCTE or Hierarchical
Query could as well be placed in a view, but that would still
not result in a clear definition/query separation, because any
potentially needed hierarchy properties (such as LEVEL in the
example) would have to be computed in the view definition even
though they are clearly part of the query. A query that does
not need the level would still trigger its computation, resulting
in unnecessary overhead. In contrast, our design allows for
deferring the selection of hierarchy properties to the query.

B. Hierarchical Base Tables

Derived hierarchies as discussed in the previous section are
targeted mainly at legacy applications. For newly designed
applications a preferable approach is to express and maintain
a hierarchy explicitly in the table schema. We provide specific
DDL constructs for this purpose (Req. #4). The user can include
a hierarchical dimension in a base table definition:

CREATE TABLE T (
. . .,
HIERARCHY name [NULL|NOT NULL] [WITH (option*)]

)

This implicitly adds a column named name of type NODE to
the table, exposing the underlying hierarchy. Explicitly adding
columns of type NODE is prohibited. A hierarchical dimension
can also be added to or dropped from an existing table using
ALTER TABLE. Like a column, a hierarchical dimension can
optionally be declared nullable. If it is declared NOT NULL, the
implicit NODE value of a newly inserted row is DEFAULT, making
it a new root without children. A row with a NULL value in its
NODE field is not part of the hierarchy.

A hierarchy that is known to be static allows the system
to employ a read-optimized indexing scheme (cf. Req. #8).
Therefore, we provide the user with a means of controlling
the degree to which updates to the hierarchy are to be allowed.
This is done through an option named UPDATES:

UPDATES = BULK|NODE|SUBTREE

BULK allows only bulk-updates; NODE allows bulk-updates and
single-node operations, that is, relocating, adding, and removing
single leaf nodes; SUBTREE allows bulk-updates, single-node
operations, and the relocation of whole subtrees. A BULK

dimension is basically static; individual updates are prohibited.
We furthermore make a distinction between single-node and
subtree updates, because subtree updates require a more
powerful dynamic indexing scheme than single-node updates,
with inevitable tradeoffs in query performance (cf. Sec. VIII-A).
Depending on the option, the system chooses an appropriate
indexing scheme for the hierarchical dimension. The default
setting is SUBTREE, so full update flexibility is provided unless
restricted explicitly by the user.

C. Manipulating Hierarchies

For legacy application support (Req. #6), we aim to provide a
smooth transition path from relationally encoded hierarchies
(i. e., adjacency lists) to full-fledged hierarchical dimensions.
In a first stage, we expect most legacy applications to rely
entirely on views featuring HIERARCHY expressions on top of
adjacency lists, thus avoiding any schema changes. Hence,
bulk-building is, at least conceptually, used on each view
evaluation; though it may be elided often in practice, since
HANA employs view caching. In a second stage, a partly
adapted legacy application might add a static (UPDATES=BULK)
hierarchical dimension alongside an existing adjacency list
encoding, and update the dimension periodically from the
adjacency list via an explicit bulk-update. A bulk-update is
issued by using a HIERARCHY expression as source table of
a MERGE INTO statement. (We do not discuss this in detail
for brevity reasons.) These two stages provide a way to
gradually adopt hierarchy functionality in a legacy application,
but they come at the cost of frequently performing bulk-
builds whenever the hierarchy structure changes. Therefore,
for green-field applications as well as for fully migrated legacy
applications, a dynamic hierarchy (UPDATES=NODE or SUBTREE)
supporting explicit, fine-grained updates via special-purpose
DML constructs is preferable (Req. #5). Again, we strive for a
minimally invasive syntax: We use ordinary INSERT and UPDATE

statements operating on the NODE column of a hierarchical
dimension to express updates.

Inserting. To specify the position where a new row is to be
inserted into the hierarchy, we use an anchor value. Again,
we refrain from extending the SQL grammar and define new
built-in functions that take a NODE as input and yield an anchor.
An anchor can be used as value for the NODE field in an INSERT

statement. We support the following anchor functions:

BELOW(v) inserts the new row as child of v. The insert
position among siblings is undefined.

BEFORE(v) or BEHIND(v) insert the new row as immediate
left or right sibling of v.

For example, we can add a node B3 as new child of A2 into
the hierarchy of Fig. 1 like this:

INSERT INTO BOM (id, pos)
VALUES ('B3', BELOW(

SELECT pos FROM BOM WHERE id = 'A2'))

The BELOW anchor is useful for unordered hierarchies, while
the BEFORE and BEHIND anchors allow for precise positioning
among siblings in hierarchies where sibling order matters.

The user can also use DEFAULT to make the new row a root,
or NULL (for nullable dimensions) to omit it from the hierarchy.

Relocating. Relocating a node v is done by issuing an ordinary
UPDATE on the NODE field of the associated row, again using
an anchor to describe the node’s target position. If v has any
descendants, they are moved together with v, so the whole
subtree rooted at v is relocated. Relocating a subtree is only
allowed if option UPDATES=SUBTREE is used for the hierarchical
dimension. In order to guarantee structural integrity, the system
must prohibit relocation of a subtree below a node within that
same subtree, as this would result in a cycle.

Removing. A node can be removed from a hierarchy by either
deleting its row or setting the NODE field to NULL. However,
these operations are prohibited if the node has any descendants
that are not also removed by the same transaction. To remove
a node with descendants, all children have to be relocated first
or removed with that node. While this is necessary to ensure
that removing nodes does not leave behind an invalid hierarchy,
it is very restrictive: If a hierarchical dimension uses option
UPDATES=BULK, the only rows that may be deleted are those
whose NODE value is NULL; the user is prevented from deleting
any rows that take part in the hierarchy. To make easy row
deletion possible in this case, we allow truncating the whole
hierarchy by setting the NODE value of all rows to NULL within
the same transaction. Then, rows may be deleted at will, and
subsequently the hierarchy can be rebuilt (bulk-built) from
scratch. These rules ensure that the structure of the hierarchy
remains valid at any time, thus satisfying Requirement #7.

VII. ADVANCED CUSTOMER SCENARIOS

Here we explore some advanced techniques for modeling
entities that are part of multiple hierarchies, entities that appear
in the same hierarchy multiple times, and inhomogeneous
hierarchies that contain entities of various types. The queries
are inspired by customer scenarios and demonstrate that our
language extensions stand up to non-trivial, real-world queries.

Flexible Forms of Hierarchies. In certain applications an entity
might be designed to belong to two or even more hierarchies.
For example, an employee might have both a disciplinary
superior as well as a line manager, and thus be part of two
reporting lines. A straightforward way to model this is to use
two hierarchical dimensions:

CREATE TABLE Employee (
id INTEGER PRIMARY KEY, . . .,
HIERARCHY disciplinary,
HIERARCHY line

)

A more complex case arises when a hierarchy shall contain
certain rows more than once. Again, a bill of materials is
a good example: A common part such as a screw generally
appears multiple times within the same BOM, and we do not
want to replicate its attributes each time. This is a typical
1 : n relationship: one part can appear many times in the
hierarchy. As our data model blends seamlessly with SQL, the
solution is to model this case exactly as one would model 1 : n
relationships in SQL, namely by introducing two relations and
linking them by means of a foreign key constraint. Thus, we
separate the schema from Fig. 1 into per-part data Part and a
separate BOM table:

CREATE TABLE Part (
id INTEGER PRIMARY KEY,
kind VARCHAR(16),
price INTEGER, . . . -- master per-part data

)

CREATE TABLE BOM (
node_id INTEGER PRIMARY KEY,
HIERARCHY pos,
part_id INTEGER, -- a node is a part (N :1)
FOREIGN KEY (part_id) REFERENCES Part (id),
. . . -- additional node attributes

)

Heterogeneous Hierarchies. Often, entities of different types
are mixed in a single hierarchy. “Different types” means that
the entities are characterized by different sets of attributes.
Especially in XML documents, it is very common to have
various node types (i. e., tags with corresponding attributes),
and XPath expressions routinely interleave navigation with
filtering by node type (so-called node tests). The SQL way of
modeling multiple entity types is to define a separate table per
entity type, each with an appropriate set of columns. Returning
to our BOM, we further enhance the Part–BOM data model with
master data specific to engines:

CREATE TABLE Engine (
id INTEGER PRIMARY KEY,
FOREIGN KEY (id) REFERENCES Part (id),
power INTEGER, . . . -- master data

)

While Part contains master data common to all parts, Engine
adds master data that is specific to parts of kind “engine”. Both
tables necessarily share their primary key domain (id). BOM is
now a heterogeneous hierarchy in that each node has a type: it
is either a general Part or an Engine. This design is extensible.
Further part types can be added by defining further tables like
Engine with 1 : 1 relationships to Part.

While working with a BOM, the user can use type-specific
part attributes for filtering purposes simply by joining in the

SELECT *
FROM BOM c, -- compound node

Part cm, -- compound master data
BOM f, -- fitting node
Part fm, -- fitting master data
BOM e, -- engine node
Engine em -- engine master data

WHERE c.id = cm.id
AND cm.kind = 'compound'
AND IS_DESCENDANT(f.pos, c.pos)
AND f.id = fm.id
AND fm.kind = 'fitting'
AND fm.manufacturer = 'X'
AND IS_DESCENDANT(e.pos, f.pos)
AND e.id = em.id
AND em.power > 700

Fig. 6. Querying a heterogeneous hierarchy

corresponding master data. As an example, suppose that fittings
by manufacturer X have been reported to outwear too quickly
when used in combination with engines more powerful than
700 watts, and we need to determine the compounds that contain
this hazardous combination in order to issue a recall. Fig. 6
shows the solution. Note that the BOM–Engine join implies the
test that node e is of kind 'engine'.

Dimension Hierarchies. A major use case for hierarchies is
arranging some keys that are used as dimensions for a fact
table. Measures associated with the facts are to be aggregated
alongside the dimension hierarchies. As an example, consider a
sales table recording, besides a certain sales amount and other
attributes, the store where each sale took place. Suppose stores
are arranged in a geographic hierarchy. The schema is:

Sale : {[store_id, date, amount, . . .]}
Store : {[id, location_id, . . .]}
Location : {[id, pos, name, . . .]}

By joining Sale—Store—Location, we can associate each sale
with a NODE value (Location.pos) of the location hierarchy
indicating where the sale took place. Suppose we would like
to answer the query: “Considering only sales within Europe,
list the total sales per sub-subregion.” This query speaks,
quite implicitly, of three distinct Location nodes: a reference
node u, namely Europe; the set of nodes V two levels below u,
corresponding to the sub-subregions; and the sets of nodes Wv

below each v ∈ V , corresponding to locations of stores where
a sale took place. We are explicitly interested in the nodes in V ,
but also need a name for a node w ∈Wv in order to specify the
association of w to a sale, so that we can ultimately compute a
sum over the sales amount. All in all, three self-joined instances
of the hierarchical table are required:

SELECT v.id, SUM(sale.amount)
FROM Location u, Location v, Location w,

Store store, Sale sale,
WHERE u.name = 'Europe'

AND IS_DESCENDANT(v.pos, u.pos)
AND LEVEL(v.pos) = LEVEL(u.pos) + 2
AND IS_DESCENDANT(w.pos, v.pos)
AND IS_LEAF(w.pos) = 1 -- store locations are leaves
AND w.id = store.location_id
AND store.id = sale.store_id

GROUP BY v.id;

Note the straightforward reading direction, which intuitively
matches the direction of navigation in the hierarchy. This
example and the one from Fig. 6 in particular show how our
language extensions maintain the join “look and feel” of SQL,
so even large queries look familiar to SQL programmers.

VIII. ARCHITECTURE AND IMPLEMENTATION ASPECTS

On the back-end side, the foundation for implementing the
functionality described in sections V and VI is the hierarchy
indexing scheme underlying each hierarchical dimension. As
Requirement #8 anticipates, no single scheme can serve all
application scenarios equally well; there is no “one size fits
all” solution. Thus, our design leaves the system the choice
among different indexing schemes. Each scheme comes with a
set of built-in implementations of the hierarchy functions (e. g.,
LEVEL). For efficient query processing, we employ hierarchy-
aware join operators that work well with all supported indexing
schemes. The bulk-building operation is in large parts common
to all indexing schemes. It is also particularly important for
supporting derived hierarchies (Sec. VI-A) and thus legacy
applications. Therefore, we cover this operation in detail
(Sec. VIII-C). Due to space constraints and since the primary
focus of this paper is on the data model and our language
extensions, we omit certain technical details and refer to cited
works. Our intention is to convey a general intuition of how
our concepts can be implemented efficiently.

A. Hierarchy Indexing Schemes

In our framework, a hierarchy indexing scheme comprises
the content of a NODE column and possibly an auxiliary data
structure. It contains the hierarchy structure as non-redundant
information. This is in contrast to traditional indexes such as
B-trees, which are entirely redundant auxiliary data structures.
What data is actually stored in the NODE column depends on
the chosen indexing scheme. This is why we explicitly specify
NODE as opaque to the user (cf. Sec. IV).

Indexing schemes of varying complexity and sophistication
are conceivable: Among the simplest indexing schemes are
those based on labeling schemes; they are “simple” in that the
labels can be stored directly in the NODE column (and possibly
indexed using ordinary database indexes); no special-purpose
data structures are required. Labeling schemes have been studied
extensively in the XML context. Two prominent subcategories
are order-based schemes as studied by Grust et al. [18], and
path-based schemes such as ORDPATH [16]. In our prototype
we have implemented a simple yet effective order-based variant:
the pre/size/level scheme (PSL) [9], where we label each node
with its preorder rank, subtree size, and level. We have also
implemented a path-based scheme comparable to ORDPATH.
Fig. 7 depicts the NODE column for an example hierarchy using
these schemes.

Other, more sophisticated indexing schemes rely on aux-
iliary structures. Examples are BOXes [19] and our own
DeltaNI [3]; our prototype incorporates the latter. Both represent
the hierarchy information in special-purpose data structures,
and the NODE column contains handles into those structures.
The figure shows a possible NODE column for DeltaNI but omits
the auxiliary delta structures.

>

A1

B1 B2

C1

B3

C2 C3

A2

pre/size/level ORDPATH DeltaNI

A1 (1, 6, 1) 1 [1, 14]
A2 (8, 0, 1) 3 [15,16]
B1 (2, 0, 2) 1.1 [2, 3]
B2 (3, 1, 2) 1.3 [4, 7]
B3 (5, 2, 2) 1.5 [8, 13]
C1 (4, 0, 3) 1.3.1 [5, 6]
C2 (6, 0, 3) 1.5.1 [9, 10]
C3 (7, 0, 3) 1.5.3 [11,12]

Fig. 7. An example hierarchy and the contents of the NODE column using
different indexing schemes

The choice among indexing schemes matters particularly
with regard to their varying degrees of support for updates.
For example, while the PSL scheme allows for an efficient
evaluation of queries, it is totally static: Even a single-node
update can, in general, necessitate changes to O(n) labels of
other nodes. This is obviously not feasible for large hierarchies.
More complex schemes, on the other hand, trade off query
processing efficiency and in return support update operations to
a certain degree. DeltaNI, for example, supports even complex
update operations, such as relocating an entire subtree, in
O(log n) time and incidentally brings along versioning support.

The indexing scheme is meant to be chosen by the DBMS
per hierarchical dimension, transparently to the user. The user
indirectly influences the choice through the UPDATES option
(Sec. VI). Our prototype decides as follows: For derived
hierarchies, which are by design static, and for immutable
hierarchical tables (UPDATES=BULK), the obvious choice is PSL.
If the user requires support for complex updates (SUBTREE), as
well as for system-versioned tables, we choose DeltaNI. For
ordinary, non-versioned tables, and if the user settles for simple
updates (NODE), we resort to the path-based scheme.

A deeper discussion of indexing would fall out of the scope
of this paper. Our main message is: the design as presented
is extensible and flexible in that it anticipates further indexing
schemes to be plugged in. The user is not burdened with the
decision for the optimal scheme; it is up to the DBMS to pick
among the available alternatives.

Hierarchy Functions in the SQL statement are translated
into operations on the underlying index. Consequently, every
indexing scheme must provide the necessary operations. For
example, consider the LEVEL function: with PSL, we can decode
the result directly from the given NODE value; with a path-based
scheme, we have to count the number of elements in the path.
We have carefully chosen the set of functions to be supported
such that all important use cases we identified are covered
and, at the same time, it is possible to evaluate the functions
efficiently on most existing indexing schemes proposed in
the literature. Most implementations are straightforward and
covered in the cited publications.

Updates involving nodes are simply propagated to the index
implementations, which update the NODE column and the
auxiliary data structures accordingly. As we expect most
existing applications to rely on derived hierarchies initially,
we do not cover individual update operations any further in
favor of a detailed discussion of bulk-building.

B. Hierarchy-Aware Join Operators

Like functions, binary predicates such as IS_DESCENDANT can
be translated into invocations of the underlying index. But this
is not adequate if they are used as join conditions, since the
query optimizer would have to resort to nested-loops-based join
evaluation. Therefore, we enhance the optimizer such that joins
involving a hierarchy predicate are translated into efficient
hierarchy-aware physical join operators. Various hierarchy-
aware join operators have been proposed in the literature,
mostly for XPath processing [20], [21], [22]. Basically any
of these operators can be used in our setting, with slight
adaptions to account for SQL semantics. An XPath axis step,
for example, is implicitly a semi-join and performs duplicate
elimination. With SQL, we have to support general joins, and
duplicate elimination is not necessary in the default case. For
our prototype we have adapted the Staircase Join [21] to support
all join axes and work with the mentioned indexing schemes.

C. Bulk-Building

As discussed in Sec. VI, we make extensive use of the bulk-
building operation for derived hierarchies on one hand, and
for bulk-updates via MERGE on the other hand. Our goal is an
efficient implementation of the HIERARCHY expression, whose
definition we revisit here:

HIERARCHY
USING source table AS source name
[START WHERE start condition]
JOIN PARENT parent name ON join condition
[SEARCH BY order]
SET node column name

Virtually any indexing scheme we have investigated can be
built straightforwardly during a depth-first traversal of the input
hierarchy. Thus, the main task of the bulk-build algorithm is
to transform the adjacency list from the input table into an
intermediate representation that supports efficient depth-first
traversal. Building the intermediate representation is common
to all indexing schemes; only the final traversal is index-specific.
Our prototype reuses existing relational operators for as many
aspects as possible, adding as little new code as necessary. The
algorithm proceeds as follows:

(Step a.) source table is evaluated and the result is materi-
alized into a temporary table T . For this we use an ordinary
TEMP operator. To construct the hierarchy edges, we evaluate
T AS C LEFT OUTER JOIN T AS P ON join condition. The left
join input C represents the child node and the right input P
the parent node of an edge. Since it is an outer join, we
also select children without a parent node. In the absence of
a start condition, these nodes are by default the roots of the
hierarchy. We include the row IDs rP and rC of both join sides
in the result for later use. rP can be NULL due to the outer join.
If order is specified, we use an ordinary SORT operator to sort
the join result. Next, we remove all columns except for rP
and rC , so what we have at this point is a stream of parent/child
pairs (i. e., edges) in the desired sibling order. Next, building
and traversing the intermediate representation is taken over by
a new operator, hierarchy build β.

(Step b.) β first materializes all edges into an array and then
sorts this array by rP . Because all row IDs rP are in the range
0, . . . , n− 1, where n is the number of rows in T , we can use

a “perfect” bucket sort algorithm with n + 1 buckets, which
is much faster than a general-purpose sort algorithm. Edges
without a parent (rP = NULL) are put into bucket n. By always
pushing values to the back of a bucket, we achieve stable
sorting, that is, the relative order among rows with identical rP
values (and thus the SEARCH BY order, if specified) is preserved.

(Step c.) After bucket sorting, β builds the hierarchy index
during a depth-first traversal of the edges. The traversal is
straightforward: We start with entries in bucket n, which
correspond to roots in the hierarchy. Since a bucket Bi contains
all rows with rP = i, we can look up the children of a node
rP by inspecting its respective bucket.

For each node we visit during the traversal, we incorporate
a corresponding entry into the indexing scheme and add a
value to the NODE column. This is the only index-specific part
of the algorithm. For example, with the PSL scheme we track
the current pre-rank and level for each visited node during
the traversal (the pre-rank and level values are inserted before
visiting children, the size after visiting children) and encode
them into the corresponding NODE field. With DeltaNI, we add
an entry to the auxiliary structure and insert a handle to this
entry into the NODE field for each visited node.

Handling START WHERE. The algorithm as described so far
always builds the complete hierarchy even if a START WHERE

clause is specified. Handling the clause is straightforward:
Before executing β, we mark all rows satisfying start condition σ.
Then, during the traversal, we add only marked nodes and their
descendants. All other nodes are visited but not added to the
index.

Of course, this way the whole hierarchy is traversed even
if only a few leaf nodes qualify for σ. A recursive variant of β
that traverses only the qualifying nodes and their descendants
is to first select all qualifying rows Rσ, and then perform a
recursive join starting from rows in Rσ in order to enumerate
all reachable nodes. However, as our experiments indicate
(Sec. IX), a recursive join is much more expensive than an
ordinary join, so the recursive variant should only be chosen
if we can expect the sub-hierarchy Hσ spanned by Rσ to be
very small in comparison to the full hierarchy H . This is not
easy to predict, since the size of Hσ is not related to the
size of Rσ: Suppose, for example, Rσ contains only a single
node v0, so a naı̈ve query optimizer might choose the recursive
algorithm. If v0, however, happens to be the only root of H ,
then Hσ = H and the optimizer’s choice is bad. Our prototype
therefore refrains from using the recursive algorithm.

Late Sorting. When a SEARCH BY term is specified, the
algorithm as described performs a complete SORT before
executing the bulk-build. However, sorting can also be deferred
until after the bucket sort. This has the advantage that not
all rows but only rows within each bucket have to be sorted,
which speeds up sorting considerably. A disadvantage is that all
columns appearing in the SEARCH BY term (rather than just rC
and rP) must be maintained in the edge list, so the bucket sort
is slowed down due to larger rows. Since SEARCH BY is only
used for ordered hierarchies, which are uncommon in customer
scenarios, we have not implemented late sorting. This way, our
implementation of β remains compact and we can reuse the
existing SORT operator.

Hierarchy Size 103 104 105 106 107

a.) Hash Join 79 µs 1310 µs 12200 µs 170 ms 1660 ms
b.) Bucket Sort 5 µs 133 µs 2056 µs 31 ms 399 ms
c.) Traversal 21 µs 324 µs 2867 µs 23 ms 218 ms
Total 105 µs 1.77 ms 17.1 ms 224 ms 2.27 s
Recursive Join 125 µs 1.60 ms 20.6 ms 278 ms 4.47 s

Fig. 8. Bulk-building performance

Hierarchy Size 103 104 105 106 107

Result Size 0 2 9 59 1293
HAJoin 60 µs 431 µs 4 ms 42 ms 439 ms
RCTE 139 µs 4604 µs 70 ms 897 ms 14011 ms
HAJoin CHAR(16) 51 µs 484 µs 5 ms 52 ms 521 ms
RCTE CHAR(16) 183 µs 6205 µs 130 ms 251 ms 52797 ms

Fig. 9. Query performance

IX. EXPERIMENTS

Although this paper focuses on concepts rather than on the
performance characteristics of alternative implementations,
we conducted an experiment to demonstrate that an efficient
evaluation of our language constructs is possible. We derived
a BOM hierarchy from the materials planning data of a large
SAP customer with a few million nodes/rows. The original
non-hierarchical table encodes the hierarchy structure in the
Adjacency List format. It contains an INTEGER primary key
and an INTEGER column referencing the superordinate part. For
the equivalent hierarchical table, we employ the PSL indexing
scheme. In order to assess performance on varying hierarchy
sizes, we scale the data by removing or replicating nodes,
covering data sizes that easily fit into cache (103) as well as
sizes that by far exceed cache capacity (107). The benchmark is
executed on an Intel Core i7-4770K CPU at 3.50 GHz, running
Ubuntu 14.04.

Fig. 8 shows measurements for deriving a hierarchy from the
adjacency list using our bulk-build algorithm: the times of the
three steps of the algorithm on the top; the total time of all steps
together below that; and lowermost, for purposes of comparison,
the time of a recursive join over the super-part column. Such a
recursive join could be used to implement the recursive variant
of β, as outlined in the previous section. Note that the measured
recursive join does not perform duplicate elimination (i. e., cycle
elimination), which would make it considerably slower. The
table unveils the most expensive step of the bulk-build process:
the initial outer hash join building the edge list (a.). In contrast,
all steps of the bulk-build operator β together (b. and c.) take
only around one third of the time of the hash join. We therefore
conclude that the proposed bulk-building mechanism is indeed
very efficient. Furthermore, we see that executing an ordinary
join is considerably faster than the recursive join, especially so
for large hierarchies, so the recursive variant of β is in most
cases inferior to the non-recursive variant.

We measured query performance by executing the query
from Fig. 4 on the hierarchy and comparing it with the
equivalent RCTE from Fig. 3 as baseline. We use a 16 byte
payload column, so the size of a result row containing
3 INTEGER keys and 3 payload fields is 60 byte. Fig. 9 includes
the runtimes of the two algorithms and the sizes of the result sets.
The last two rows show the results for analogous measurements
with the INTEGER key replaced by a CHAR(16) key. As we see in
the table, the hierarchy-aware join (HAJoin) easily outperforms

RCTEs—for large hierarchies by a factor of over 30. There is
a simple explanation for that huge speed-up, and it shows the
general problem with RCTEs: Even though the result set is not
too large, the recursive join must iterate over large subtrees of
the hierarchy, yielding large intermediate results, only to find
that there are almost no matching parts in these subtrees. By
contrast, a hierarchy-aware join does not need to enumerate
whole subtrees to find matching nodes; thus, the predicate can
be pushed down to the table scans and only parts that meet the
filter condition participate in the join in the first place. When
we use CHAR(16) keys, the figures (last two lines) reveal one
more advantage over RCTEs: Hierarchy-aware joins work on
the join-optimized NODE column, while RCTEs must necessarily
work on the key column. Consequently, an unwieldy key type
whose values are expensive to compare hurts the performance
of RCTEs, while hierarchy-aware joins do not suffer. Thus, the
hierarchy-aware join outperforms the RCTE by two orders of
magnitude in this scenario.

Note that a hierarchy-aware join is so fast that its execution
is still much faster than the RCTE even if we always perform a
complete bulk-build prior to executing the query. For example,
for 107 nodes, bulk-building plus querying takes 2.71 seconds,
while the RCTE takes 14 seconds, so the speed-up is still more
than a factor of 5. We therefore conclude that migrating from
an RCTE-based approach to a hierarchy dimension can yield
a considerable query speed-up (Req. #8), even more so if the
hierarchy is not always bulk-built before each query. Since
HANA employs view caching, a bulk-build used in a view will
not be re-executed unless the input tables change. Thus, even
applications that simply issue a bulk-build for each query will
run exceptionally fast most of the time, since the bulk-build
will often be elided in favor of a cached result.

X. CONCLUSION

Our work has been motivated by customer demand and
findings from our investigation of typical requirements of SAP
applications featuring hierarchical data. Our analysis leads us
to conclude that the conventional approaches to handling such
data—particularly recursive CTEs—are not fully satisfactory to
meet the requirements. As a solution, we propose to enhance
the relational model to incorporate hierarchies by means of
a new data type NODE. This data type opaquely represents
the hierarchy structure without mandating a specific encoding,
in order to leave the system full flexibility in choosing the
most appropriate indexing scheme. We introduce extensions
to the SQL language that allow the user to specify queries
over hierarchical data in a concise and expressive manner.
The syntax extensions are minimal in that they rely mostly
on built-in hierarchy functions and predicates operating on
NODE values. Because of this, SQL programmers can adapt
easily to the new syntax, and its integration into an existing
RDBMS is straightforward. We propose efficient bulk-update
operations for legacy applications, as well as fine grained update
operations for greenfield applications. On the back-end side, we
incorporate well-proven techniques from relational and XML
database research.

The proof-of-concept HANA-based prototype we have
implemented shows the feasibility and performance potential
of the language. Once we have completed a customer-ready
implementation, our plan is to conduct a user study among
customers for a thorough evaluation of the expected benefits
regarding usability and actual performance.

REFERENCES

[1] J. Celko, Joe Celko’s Trees and Hierarchies in SQL for Smarties, 2nd ed.
Morgan Kaufmann, 2012.

[2] F. Färber, N. May, W. Lehner, P. Große, I. Müller, H. Rauhe, and J. Dees,
“The SAP HANA Database—an architecture overview.” IEEE Data Eng.
Bull., vol. 35, no. 1, 2012.

[3] J. Finis, R. Brunel, A. Kemper, T. Neumann, F. Färber, and N. May,
“DeltaNI: An efficient labeling scheme for versioned hierarchical data,”
in SIGMOD, 2013.

[4] Oracle Database SQL language reference 12c release 1 (12.1).
E17209-15. Oracle Corp. [Online]. Available: http://docs.oracle.com/cd/
E11882 01/server.112/e26088/toc.htm

[5] S. J. Finkelstein, N. Mattos, I. Mumick, and H. Pirahesh, “Expressing
recursive queries in SQL,” ANSI Document X3H2-96-075r1, 1996.

[6] Information technology — Database languages — SQL, ISO/IEC JTC
1/SC 32 Std. 9075, 2011.

[7] Z. H. Liu, M. Krishnaprasad, and V. Arora, “Native XQuery processing
in Oracle XMLDB,” in SIGMOD, 2005.

[8] A. Eisenberg and J. Melton, “Advancements in SQL/XML,” SIGMOD
Rec., vol. 33, no. 3, 2004.

[9] P. Boncz, T. Grust, M. Van Keulen, S. Manegold, J. Rittinger, and
J. Teubner, “MonetDB/XQuery: A fast XQuery processor powered by a
relational engine,” in SIGMOD, 2006.

[10] T. Grust, J. Rittinger, and J. Teubner, “Why off-the-shelf RDBMSs are
better at XPath than you might expect,” in SIGMOD, 2007.

[11] Information technology — Database languages — SQL, Part 14: XML-
Related Specifications (SQL/XML), ISO/IEC JTC 1/SC 32 Std. 9075-14,
2011.

[12] S. Pal, I. Cseri, O. Seeliger, M. Rys, G. Schaller, W. Yu, D. Tomic,
A. Baras, B. Berg, D. Churin et al., “XQuery implementation in a
relational database system,” in VLDB, 2005.

[13] K. Beyer, R. J. Cochrane, V. Josifovski, J. Kleewein, G. Lapis,
G. Lohman, B. Lyle, F. Özcan, H. Pirahesh, N. Seemann et al., “System
RX: One part relational, one part XML,” in SIGMOD, 2005.

[14] P. Nielsen and U. Parui, Microsoft SQL Server 2008 Bible. John Wiley
& Sons, 2011.

[15] Books Online for SQL Server 2014 – Database Engine – Hierarchical
Data. Microsoft Corp. [Online]. Available: http://msdn.microsoft.com/
en-us/library/ms130214.aspx

[16] P. O’Neil, E. O’Neil, S. Pal, I. Cseri, G. Schaller, and N. Westbury,
“ORDPATHs: Insert-friendly XML Node Labels,” in SIGMOD, 2004.

[17] K. Morton, K. Osborne, R. Sands, R. Shamsudeen, and J. Still, Pro
Oracle SQL, 2nd ed. Apress, 2013.

[18] T. Grust, “Accelerating XPath location steps,” in SIGMOD, 2002.
[19] A. Silberstein, H. He, K. Yi, and J. Yang, “BOXes: Efficient maintenance

of order-based labeling for dynamic XML data,” in ICDE, 2005.
[20] S. Al-Khalifa, H. Jagadish, N. Koudas, J. M. Patel, D. Srivastava, and

Y. Wu, “Structural joins: A primitive for efficient XML query pattern
matching,” in ICDE, 2002.

[21] T. Grust, M. van Keulen, and J. Teubner, “Staircase Join: Teach a
relational DBMS to watch its (axis) steps,” in VLDB, 2003.

[22] N. Bruno, N. Koudas, and D. Srivastava, “Holistic twig joins: Optimal
XML pattern matching,” in SIGMOD. ACM, 2002.

