
RWS-Diff : Flexible and Efficient Change
Detection in Hierarchical Data

Jan Finis Martin Raiber Nikolaus Augsten
Robert Brunel Alfons Kemper Franz Färber

Technische Universität München

University of Salzburg

SAP AG

Hierarchical Data /

/

bin etcusr

share

doc

bin local

bin

I Hierarchical Data: Rooted, labeled tree
I XML, HTML
I File System
I Abstract Syntax Tree
I Bills of Materials
I . . .

I Siblings are either ordered (e.g., XML) or
unordered (e.g., file systems)

I Greatly affects the complexity of various
algorithms

I We aim at supporting both

2 / 20

Diff’ing Hierarchical Data /
I Task: Given two hierarchies A and B , determine an edit script

that transforms A into B
I An edit script is a sequence of edit operations
I Various types of edit operations possible:

I Leaf insertion/deletion/relocation
I Subtree deletion/relocation/copy
I . . .

I A cost-minimal edit script is an edit script whose operations
have the minimal cost

I Finding a minimal script is computationally hard
⇒ Approximations required for scalability

A

B D E

F G

A

C

E

D

F G

H
I

E

F G

3 / 20

Diff’ing Hierarchical Data /
I Task: Given two hierarchies A and B , determine an edit script

that transforms A into B
I An edit script is a sequence of edit operations
I Various types of edit operations possible:

I Leaf insertion/deletion/relocation
I Subtree deletion/relocation/copy
I . . .

I A cost-minimal edit script is an edit script whose operations
have the minimal cost

I Finding a minimal script is computationally hard
⇒ Approximations required for scalability

A

B D E

F G

A

C

E

D

F G

H
I

E

F G

Delete Leaf I
Rename B to C

Move E below D
Insert Leaf H

Copy E below H

3 / 20

Applications of Hierarchical Diffs /

I Version Control
I XML/HTML Warehousing
I Source Code Revision Control

I Change visualization
I Synchronization

I File Systems (cf. delete/insert versus move)

I Tree differencing in general

4 / 20

The Edit Mapping /

I Given trees A and B , an edit mapping m is a function
V (B) 7→ V (A) mapping corresponding nodes

I Given an edit mapping, inferring an edit script is simple
⇒ Finding a good edit mapping is the hardest part

I Good mapping maps as many nodes as possible
I Good mapping maps the “right” nodes

A

B D E

F G

A

C

E

D

F G

H

deleteLeaf
insertLeaf

move

renameI

E

F G

copy

⇒ Rest of this talk: How to find a good mapping fast

5 / 20

The Problem /

I Finding an exact solution (minimal edit script) is
computationally hard

I Exact approaches do not scale at all
I Most existing contributions approximate the minimal edit script

I Finding a good approximation is still hard
I Elaborated solutions: O(n2) or worse runtime complexity
I Simple solutions: O(n log n) complexity but not robust
⇒ No robust and scalable solutions exist

I Tailoring the problem definition makes the problem even
harder

I Ordered versus unordered
I Varying types of edit operations

(e.g. no copy, no subtree move,. . .)
⇒ All to be supported by our algorithm

6 / 20

The Problem /

I Finding an exact solution (minimal edit script) is
computationally hard

I Exact approaches do not scale at all
I Most existing contributions approximate the minimal edit script

I Finding a good approximation is still hard
I Elaborated solutions: O(n2) or worse runtime complexity
I Simple solutions: O(n log n) complexity but not robust
⇒ No robust and scalable solutions exist

I Tailoring the problem definition makes the problem even
harder

I Ordered versus unordered
I Varying types of edit operations

(e.g. no copy, no subtree move,. . .)
⇒ All to be supported by our algorithm

6 / 20

The Problem /

I Finding an exact solution (minimal edit script) is
computationally hard

I Exact approaches do not scale at all
I Most existing contributions approximate the minimal edit script

I Finding a good approximation is still hard
I Elaborated solutions: O(n2) or worse runtime complexity
I Simple solutions: O(n log n) complexity but not robust
⇒ No robust and scalable solutions exist

I Tailoring the problem definition makes the problem even
harder

I Ordered versus unordered
I Varying types of edit operations

(e.g. no copy, no subtree move,. . .)
⇒ All to be supported by our algorithm

6 / 20

Simple Mapping Strategies /

I Bottom-up hash mapping
I Start from the leaves and calculate subtree hashes
I Map nodes with the same hash
⇒ Problem: Changing, adding or removing leaf makes mapping

fail for all subtrees including the leaf
I Top down mapping

I Start from the root and match as long as nodes are equal
⇒ Simple renaming of inner nodes prevents matching of all nodes

below this node

I Both strategies only work as long as subtrees are equal
A

B C D

F G H

rename A to Z
rename J to O
rename L to P

insert R below H

K L

E

JI

Z

B C D

F G H

K P

E

OI R
= unmatched
= changed

⇒ Solution: Match subtrees that are similar

7 / 20

Simple Mapping Strategies /
I Bottom-up hash mapping

I Start from the leaves and calculate subtree hashes
I Map nodes with the same hash
⇒ Problem: Changing, adding or removing leaf makes mapping

fail for all subtrees including the leaf

I Top down mapping
I Start from the root and match as long as nodes are equal
⇒ Simple renaming of inner nodes prevents matching of all nodes

below this node

I Both strategies only work as long as subtrees are equal
A

B C D

F G H

rename A to Z
rename J to O
rename L to P

insert R below H

K L

E

JI

Z

B C D

F G H

K P

E

OI R
= unmatched
= changed

⇒ Solution: Match subtrees that are similar

7 / 20

Simple Mapping Strategies /
I Bottom-up hash mapping

I Start from the leaves and calculate subtree hashes
I Map nodes with the same hash
⇒ Problem: Changing, adding or removing leaf makes mapping

fail for all subtrees including the leaf
I Top down mapping

I Start from the root and match as long as nodes are equal
⇒ Simple renaming of inner nodes prevents matching of all nodes

below this node

I Both strategies only work as long as subtrees are equal
A

B C D

F G H

rename A to Z
rename J to O
rename L to P

insert R below H

K L

E

JI

Z

B C D

F G H

K P

E

OI R
= unmatched
= changed

⇒ Solution: Match subtrees that are similar

7 / 20

Simple Mapping Strategies /
I Bottom-up hash mapping

I Start from the leaves and calculate subtree hashes
I Map nodes with the same hash
⇒ Problem: Changing, adding or removing leaf makes mapping

fail for all subtrees including the leaf
I Top down mapping

I Start from the root and match as long as nodes are equal
⇒ Simple renaming of inner nodes prevents matching of all nodes

below this node

I Both strategies only work as long as subtrees are equal
A

B C D

F G H

rename A to Z
rename J to O
rename L to P

insert R below H

K L

E

JI

Z

B C D

F G H

K P

E

OI R
= unmatched
= changed

⇒ Solution: Match subtrees that are similar

7 / 20

Simple Mapping Strategies /
I Bottom-up hash mapping

I Start from the leaves and calculate subtree hashes
I Map nodes with the same hash
⇒ Problem: Changing, adding or removing leaf makes mapping

fail for all subtrees including the leaf
I Top down mapping

I Start from the root and match as long as nodes are equal
⇒ Simple renaming of inner nodes prevents matching of all nodes

below this node

I Both strategies only work as long as subtrees are equal
A

B C D

F G H

rename A to Z
rename J to O
rename L to P

insert R below H

K L

E

JI

Z

B C D

F G H

K P

E

OI R
= unmatched
= changed

⇒ Solution: Match subtrees that are similar

7 / 20

Tree Similarity: P,Q-Grams /
P,Q-Grams are used for computing tree
similarity

I “p-grams for trees”
I Idea: Cut trees a into small excerpts

Pa = p1, p2, . . .(grams)
⇒ More grams equal ⇔ subtrees more

similar
I Symmetric bag distance

Dbag(a, b) = |(Pa \ Pb) ∪ (Pb \ Pa)|
measures dissimilarity

I If trees are equal, then Dbag(a, b) = 0
I Structure:

I chain of p ancestors (stem)
I q leaves (base)
I Dummy elements (*) for missing

ancestors
⇒ Capture ancestry and sibling relationsips

8 / 20

Tree Similarity: P,Q-Grams /
P,Q-Grams are used for computing tree
similarity

I “p-grams for trees”
I Idea: Cut trees a into small excerpts

Pa = p1, p2, . . .(grams)
⇒ More grams equal ⇔ subtrees more

similar
I Symmetric bag distance

Dbag(a, b) = |(Pa \ Pb) ∪ (Pb \ Pa)|
measures dissimilarity

I If trees are equal, then Dbag(a, b) = 0

I Structure:
I chain of p ancestors (stem)
I q leaves (base)
I Dummy elements (*) for missing

ancestors
⇒ Capture ancestry and sibling relationsips

8 / 20

Tree Similarity: P,Q-Grams /

A

DE B

FG

*

A

E D

p=2

q=2

P,Q-Grams are used for computing tree
similarity

I “p-grams for trees”
I Idea: Cut trees a into small excerpts

Pa = p1, p2, . . .(grams)
⇒ More grams equal ⇔ subtrees more

similar
I Symmetric bag distance

Dbag(a, b) = |(Pa \ Pb) ∪ (Pb \ Pa)|
measures dissimilarity

I If trees are equal, then Dbag(a, b) = 0
I Structure:

I chain of p ancestors (stem)
I q leaves (base)
I Dummy elements (*) for missing

ancestors
⇒ Capture ancestry and sibling relationsips

8 / 20

Generating P,Q-Grams /

I p,q-grams are generated by sliding a window over the children
of a node

I p,q-grams from subtrees can be reused for overall construction
time of O(n)

A

DE B

FG

p=2

q=2

9 / 20

Generating P,Q-Grams /

I p,q-grams are generated by sliding a window over the children
of a node

I p,q-grams from subtrees can be reused for overall construction
time of O(n)

A

DE B

FG

p=2

q=2

|A|D|E|A|E|D

*

A

D E

*

A

E D

9 / 20

Generating P,Q-Grams /

I p,q-grams are generated by sliding a window over the children
of a node

I p,q-grams from subtrees can be reused for overall construction
time of O(n)

A

DE B

FG

*

A

B D

p=2

q=2

|A|B|D|A|D|E *|A|D|B*|A|E|D

*

A

D E

*

A

D B

*

A

E D

9 / 20

Generating P,Q-Grams /

I p,q-grams are generated by sliding a window over the children
of a node

I p,q-grams from subtrees can be reused for overall construction
time of O(n)

A

DE B

FG

*

A

B D

p=2

q=2

*|A|B|D *|A|B|E*|A|D|E *|A|D|B *|A|E|B*|A|E|D

*

A

B E

*

A

D E

*

A

D B

*

A

E B

*

A

E D

9 / 20

The Problem with Similarity Mapping /

Similarity mapping:
I Use a distance function D(a, b)

I Symmetric bag distance Dbag(a, b) in case of p,q-grams

I For an unmapped subtree a from A, map the subtree b from B
with smallest D(a, b)

I Problem: Even if computing D(a, b) is fast — say O(1) — we
still have to compare all unmapped subtrees in A with all in B
⇒ O(n2) complexity /
⇒ Solution: Avoid comparing all pairs! ,

10 / 20

Feature Vectors /
I For each unmatched subtree a, compute a d -dimensional

feature vector va
I Desired property: D(a, b) ≈ D(va, vb) = ||va − vb||
⇒ Euclidean distance is approximation of dissimilarity
⇒ Similar subtrees have close feature vectors in euclidean space!

I Choose d meaningfully!
I Too high ⇒ curse of dimensionality
I Too small ⇒ too much loss of information

11 / 20

Matching with Feature Vectors /

I For each unmapped subtree a in A, compute va

I Insert each va into an index structure
I k-D tree, hierarchical k-means clustering, or k-means locality

sensitive hashing
I For each unmatched subtree b in B find nearest neighbor a in

index and match nodes if similar
I D(va, vb) only approximation
⇒ False positives possible!
⇒ Pick k (const) nearest neighbours, choose best or none

12 / 20

Matching with Feature Vectors /

I For each unmapped subtree a in A, compute va
I Insert each va into an index structure

I k-D tree, hierarchical k-means clustering, or k-means locality
sensitive hashing

I For each unmatched subtree b in B find nearest neighbor a in
index and match nodes if similar

I D(va, vb) only approximation
⇒ False positives possible!
⇒ Pick k (const) nearest neighbours, choose best or none

12 / 20

Matching with Feature Vectors /

I For each unmapped subtree a in A, compute va
I Insert each va into an index structure

I k-D tree, hierarchical k-means clustering, or k-means locality
sensitive hashing

I For each unmatched subtree b in B find nearest neighbor a in
index and match nodes if similar

I D(va, vb) only approximation
⇒ False positives possible!
⇒ Pick k (const) nearest neighbours, choose best or none

12 / 20

Random Walk Similarity /

I Open challenge: How to compute feature vector va?
I Computation of all vas must be in O(n log n)
⇒ single va computation must be in O(log n)
I Vectors must possess similarity condition: D(a, b) ≈ ||va − vb||

I Solution: Random Walk Similarity (RWS)
I va is the endpoint of a special pseudo-random walk in

d -dimensional space
I RWS’s properties make it a very good choice for feature

vectors

13 / 20

Random Walk Similarity /

I Open challenge: How to compute feature vector va?
I Computation of all vas must be in O(n log n)
⇒ single va computation must be in O(log n)
I Vectors must possess similarity condition: D(a, b) ≈ ||va − vb||

I Solution: Random Walk Similarity (RWS)
I va is the endpoint of a special pseudo-random walk in

d -dimensional space
I RWS’s properties make it a very good choice for feature

vectors

13 / 20

Generating RWS Feature Vectors /

1. Generate p,q-grams
2. Hash each p,q-gram pi to hi

3. From each hash hi , generate a point vi on the d -dimensional
unit sphere
⇒ vi is step of length 1 into “random” direction

4. Add up all vi to get va
⇒ va corresponds to a d -dimensional random walk

A

DE B

FG

14 / 20

Generating RWS Feature Vectors /
1. Generate p,q-grams

2. Hash each p,q-gram pi to hi

3. From each hash hi , generate a point vi on the d -dimensional
unit sphere
⇒ vi is step of length 1 into “random” direction

4. Add up all vi to get va
⇒ va corresponds to a d -dimensional random walk

A

DE B

FG

*

A

B D

*|A|B|D *|A|B|E*|A|D|E *|A|D|B *|A|E|B*|A|E|D

*

A

B E

*

A

D E

*

A

D B

*

A

E B

*

A

E D

14 / 20

Generating RWS Feature Vectors /
1. Generate p,q-grams
2. Hash each p,q-gram pi to hi

3. From each hash hi , generate a point vi on the d -dimensional
unit sphere
⇒ vi is step of length 1 into “random” direction

4. Add up all vi to get va
⇒ va corresponds to a d -dimensional random walk

A

DE B

FG

*

A

B D

*|A|B|D *|A|B|E*|A|D|E *|A|D|B *|A|E|B*|A|E|D

*

A

B E

*

A

D E

*

A

D B

*

A

E B

*

A

E D

53 198 17 78 55 14

14 / 20

Generating RWS Feature Vectors /
1. Generate p,q-grams
2. Hash each p,q-gram pi to hi

3. From each hash hi , generate a point vi on the d -dimensional
unit sphere
⇒ vi is step of length 1 into “random” direction

4. Add up all vi to get va
⇒ va corresponds to a d -dimensional random walk

A

DE B

FG

*

A

B D

*|A|B|D *|A|B|E*|A|D|E *|A|D|B *|A|E|B*|A|E|D

*

A

B E

*

A

D E

*

A

D B

*

A

E B

*

A

E D

53 198 17 78 55 14

14 / 20

Generating RWS Feature Vectors /
1. Generate p,q-grams
2. Hash each p,q-gram pi to hi

3. From each hash hi , generate a point vi on the d -dimensional
unit sphere
⇒ vi is step of length 1 into “random” direction

4. Add up all vi to get va
⇒ va corresponds to a d -dimensional random walk

A

DE B

FG

*

A

B D

*|A|B|D *|A|B|E*|A|D|E *|A|D|B *|A|E|B*|A|E|D

*

A

B E

*

A

D E

*

A

D B

*

A

E B

*

A

E D

53 198 17 78 55 14

14 / 20

Random Walk Similarity: Properties /

Mathematical Properties of RWD(a, b) = ||va − vb||2:
I E [RWD(a, b)] = Dbag(a, b) = z

I Var [RWD(a, b)] = 2z(z−1)
d

⇒ More dimensions ⇒ better approximation
⇒ More similar points ⇒ better approximation
⇒ Equal subtrees a and b: RWD(a, b) = 0

⇒ RWD is useful approximation for bag distance!

57
73

9 62 34

68

23

18

97

 57 7357 9 62 34 68 23

57 7357 9 18 97

y = 2

x = 4

yx
57

bA

bB

vA

vB

15 / 20

Approach Overview /

Creating an edit script between trees A and B :

1. Perform simple top down and hash matching
⇒ Match nodes cheaply if possible

2. Generate RWS feature vectors for all unmapped subtrees in A
and store into index

3. Probe index for all unmapped subtrees in B , use best candidate
4. Generate edit script from mapping

16 / 20

Approach Overview /

Creating an edit script between trees A and B :
1. Perform simple top down and hash matching

⇒ Match nodes cheaply if possible

2. Generate RWS feature vectors for all unmapped subtrees in A
and store into index

3. Probe index for all unmapped subtrees in B , use best candidate
4. Generate edit script from mapping

16 / 20

Approach Overview /

Creating an edit script between trees A and B :
1. Perform simple top down and hash matching

⇒ Match nodes cheaply if possible

2. Generate RWS feature vectors for all unmapped subtrees in A
and store into index

3. Probe index for all unmapped subtrees in B , use best candidate
4. Generate edit script from mapping

16 / 20

Approach Overview /

Creating an edit script between trees A and B :
1. Perform simple top down and hash matching

⇒ Match nodes cheaply if possible

2. Generate RWS feature vectors for all unmapped subtrees in A
and store into index

3. Probe index for all unmapped subtrees in B , use best candidate

4. Generate edit script from mapping

16 / 20

Approach Overview /

Creating an edit script between trees A and B :
1. Perform simple top down and hash matching

⇒ Match nodes cheaply if possible

2. Generate RWS feature vectors for all unmapped subtrees in A
and store into index

3. Probe index for all unmapped subtrees in B , use best candidate
4. Generate edit script from mapping

16 / 20

Evaluation /

Experiments:
I XML data, randomly altered
I HTML data from news websites, snapshotted every 20 minutes

Baselines:
I XyDiff as best O(n log n) approach (only simple matching)
I DiffXML as an O(n2) approach and prominent open source

tool
Results:

I Robustness (1/max number of edit operations) increased by
order(s) of magnitude

I Average quality (1/avg number of edit operations) increased
by order(s) of magnitude

I Runtime comparable to simple matching (≈ doubled)

17 / 20

Evaluation /

Experiments:
I XML data, randomly altered
I HTML data from news websites, snapshotted every 20 minutes

Baselines:
I XyDiff as best O(n log n) approach (only simple matching)
I DiffXML as an O(n2) approach and prominent open source

tool
Results:

I Robustness (1/max number of edit operations) increased by
order(s) of magnitude

I Average quality (1/avg number of edit operations) increased
by order(s) of magnitude

I Runtime comparable to simple matching (≈ doubled)

17 / 20

Evaluation /

Experiments:
I XML data, randomly altered
I HTML data from news websites, snapshotted every 20 minutes

Baselines:
I XyDiff as best O(n log n) approach (only simple matching)
I DiffXML as an O(n2) approach and prominent open source

tool
Results:

I Robustness (1/max number of edit operations) increased by
order(s) of magnitude

I Average quality (1/avg number of edit operations) increased
by order(s) of magnitude

I Runtime comparable to simple matching (≈ doubled)

17 / 20

Evaluation /

Experiments:
I XML data, randomly altered
I HTML data from news websites, snapshotted every 20 minutes

Baselines:
I XyDiff as best O(n log n) approach (only simple matching)
I DiffXML as an O(n2) approach and prominent open source

tool
Results:

I Robustness (1/max number of edit operations) increased by
order(s) of magnitude

I Average quality (1/avg number of edit operations) increased
by order(s) of magnitude

I Runtime comparable to simple matching (≈ doubled)

17 / 20

Evaluation /

Number of emitted edit operations after performing 10 leaf node
changes

10

100

1000

0 20000 40000 60000 80000 100000

E
di

to
pe

ra
tio

ns

Number of nodes

RWS-Diff DiffXML XyDiff

18 / 20

Conclusion /

I Using similarity for tree differencing increases edit script
quality and robustness drastically

I The random walk similarity measure can be used for rapidly
finding similar subtrees

I The runtime cost in comparison to simple matchings is
bearable

I Note that random walk similarity is always applicable when the
objects to be compared can be decomposed into small excerpts

⇒ approach not limited to trees, various other applications
possible!

19 / 20

Conclusion /

I Using similarity for tree differencing increases edit script
quality and robustness drastically

I The random walk similarity measure can be used for rapidly
finding similar subtrees

I The runtime cost in comparison to simple matchings is
bearable

I Note that random walk similarity is always applicable when the
objects to be compared can be decomposed into small excerpts

⇒ approach not limited to trees, various other applications
possible!

19 / 20

Conclusion /

I Using similarity for tree differencing increases edit script
quality and robustness drastically

I The random walk similarity measure can be used for rapidly
finding similar subtrees

I The runtime cost in comparison to simple matchings is
bearable

I Note that random walk similarity is always applicable when the
objects to be compared can be decomposed into small excerpts

⇒ approach not limited to trees, various other applications
possible!

19 / 20

Conclusion /

I Using similarity for tree differencing increases edit script
quality and robustness drastically

I The random walk similarity measure can be used for rapidly
finding similar subtrees

I The runtime cost in comparison to simple matchings is
bearable

I Note that random walk similarity is always applicable when the
objects to be compared can be decomposed into small excerpts

⇒ approach not limited to trees, various other applications
possible!

19 / 20

Questions /

Thank you for your attention!

Any questions?

20 / 20

