RWS-Diff: Flexible and Efficient Change Detection in Hierarchical Data

Jan Finis Martin Raiber Nikolaus Augsten Robert Brunel Alfons Kemper Franz Färber

Technische Universität München

University of Salzburg

SAP AG

Hierarchical Data

- Hierarchical Data: Rooted, labeled tree
 - XML, HTML
 - File System
 - Abstract Syntax Tree
 - Bills of Materials
 - . . .
- Siblings are either ordered (e.g., XML) or unordered (e.g., file systems)
 - Greatly affects the complexity of various algorithms
 - We aim at supporting both

Diff'ing Hierarchical Data

- ► Task: Given two hierarchies A and B, determine an edit script that transforms A into B
- An edit script is a sequence of edit operations
- Various types of edit operations possible:
 - Leaf insertion/deletion/relocation
 - Subtree deletion/relocation/copy
 - ▶ ...
- A cost-minimal edit script is an edit script whose operations have the minimal cost
 - Finding a minimal script is computationally hard
 - \Rightarrow Approximations required for scalability

Diff'ing Hierarchical Data

- ► Task: Given two hierarchies A and B, determine an edit script that transforms A into B
- An edit script is a sequence of edit operations
- Various types of edit operations possible:
 - Leaf insertion/deletion/relocation
 - Subtree deletion/relocation/copy
 - ▶ ...
- A cost-minimal edit script is an edit script whose operations have the minimal cost
 - Finding a minimal script is computationally hard
 - \Rightarrow Approximations required for scalability

Version Control

- XML/HTML Warehousing
- Source Code Revision Control
- Change visualization
- Synchronization
 - File Systems (cf. delete/insert versus move)
- Tree differencing in general

The Edit Mapping

- Given trees A and B, an edit mapping m is a function V(B) → V(A) mapping corresponding nodes
- Given an edit mapping, inferring an edit script is simple
- \Rightarrow Finding a good edit mapping is the hardest part
 - Good mapping maps as many nodes as possible
 - Good mapping maps the "right" nodes

 \Rightarrow Rest of this talk: How to find a good mapping fast

- Finding an exact solution (minimal edit script) is computationally hard
 - Exact approaches do not scale at all
 - Most existing contributions approximate the minimal edit script

- Finding an exact solution (minimal edit script) is computationally hard
 - Exact approaches do not scale at all
 - Most existing contributions approximate the minimal edit script
- Finding a good approximation is still hard
 - Elaborated solutions: $O(n^2)$ or worse runtime complexity
 - Simple solutions: O(n log n) complexity but not robust
 - \Rightarrow No robust and scalable solutions exist

- Finding an exact solution (minimal edit script) is computationally hard
 - Exact approaches do not scale at all
 - Most existing contributions approximate the minimal edit script
- Finding a good approximation is still hard
 - Elaborated solutions: $O(n^2)$ or worse runtime complexity
 - Simple solutions: O(n log n) complexity but not robust
 - \Rightarrow No robust and scalable solutions exist
- Tailoring the problem definition makes the problem even harder
 - Ordered versus unordered
 - Varying types of edit operations
 (e.g. no copy, no subtree move,...)
 - \Rightarrow All to be supported by our algorithm

- Bottom-up hash mapping
 - Start from the leaves and calculate subtree hashes
 - Map nodes with the same hash
 - ⇒ Problem: Changing, adding or removing leaf makes mapping fail for all subtrees including the leaf

- Bottom-up hash mapping
 - Start from the leaves and calculate subtree hashes
 - Map nodes with the same hash
 - ⇒ Problem: Changing, adding or removing leaf makes mapping fail for all subtrees including the leaf
- Top down mapping
 - Start from the root and match as long as nodes are equal
 - $\Rightarrow\,$ Simple renaming of inner nodes prevents matching of all nodes below this node

- Bottom-up hash mapping
 - Start from the leaves and calculate subtree hashes
 - Map nodes with the same hash
 - ⇒ Problem: Changing, adding or removing leaf makes mapping fail for all subtrees including the leaf
- Top down mapping
 - Start from the root and match as long as nodes are equal
 - $\Rightarrow\,$ Simple renaming of inner nodes prevents matching of all nodes below this node
- Both strategies only work as long as subtrees are equal

- Bottom-up hash mapping
 - Start from the leaves and calculate subtree hashes
 - Map nodes with the same hash
 - ⇒ Problem: Changing, adding or removing leaf makes mapping fail for all subtrees including the leaf
- Top down mapping
 - Start from the root and match as long as nodes are equal
 - ⇒ Simple renaming of inner nodes prevents matching of all nodes below this node
- Both strategies only work as long as subtrees are equal

 \Rightarrow Solution: Match subtrees that are similar

P,Q-Grams are used for computing tree similarity

Tree Similarity: P,Q-Grams

P,Q-Grams are used for computing tree similarity

- "p-grams for trees"
- Idea: Cut trees a into small excerpts P_a = p₁, p₂, ...(grams)
 - ⇒ More grams equal ⇔ subtrees more similar

- Symmetric bag distance $D_{\text{bag}}(a, b) = |(P_a \setminus P_b) \cup (P_b \setminus P_a)|$ measures dissimilarity
- If trees are equal, then $D_{bag}(a, b) = 0$

Tree Similarity: P,Q-Grams

P,Q-Grams are used for computing tree similarity

- "p-grams for trees"
- Idea: Cut trees a into small excerpts P_a = p₁, p₂, ...(grams)
 - ⇒ More grams equal ⇔ subtrees more similar

- Symmetric bag distance $D_{\text{bag}}(a, b) = |(P_a \setminus P_b) \cup (P_b \setminus P_a)|$ measures dissimilarity
- If trees are equal, then $D_{bag}(a, b) = 0$
- Structure:
 - chain of p ancestors (stem)
 - q leaves (base)
 - Dummy elements (*) for missing ancestors
 - $\Rightarrow~$ Capture ancestry and sibling relationsips

- p,q-grams are generated by sliding a window over the children of a node
- ▶ p,q-grams from subtrees can be reused for overall construction time of O(n)

 p,q-grams are generated by sliding a window over the children of a node

UNIVERSITÄT

SAD

 p,q-grams from subtrees can be reused for overall construction time of O(n)

 p,q-grams are generated by sliding a window over the children of a node

UNIVERSITÄT

SAD

 p,q-grams from subtrees can be reused for overall construction time of O(n)

 p,q-grams are generated by sliding a window over the children of a node

UNIVERSITÄT

SAD

▶ p,q-grams from subtrees can be reused for overall construction time of O(n)

Similarity mapping:

- Use a distance function D(a, b)
 - ▶ Symmetric bag distance D_{bag}(a, b) in case of p,q-grams
- ► For an unmapped subtree a from A, map the subtree b from B with smallest D(a, b)
- Problem: Even if computing D(a, b) is fast say O(1) we still have to compare all unmapped subtrees in A with all in B
 - $\Rightarrow O(n^2)$ complexity \bigcirc
 - \Rightarrow Solution: Avoid comparing all pairs! \odot

Feature Vectors

- For each unmatched subtree a, compute a d-dimensional feature vector v_a
- Desired property: $D(a, b) \approx D(v_a, v_b) = ||v_a v_b||$
- \Rightarrow Euclidean distance is approximation of dissimilarity
- \Rightarrow Similar subtrees have close feature vectors in euclidean space!

- Choose d meaningfully!
 - Too high \Rightarrow curse of dimensionality
 - Too small \Rightarrow too much loss of information

► For each unmapped subtree *a* in *A*, compute *v_a*

- ► For each unmapped subtree *a* in *A*, compute *v_a*
- Insert each v_a into an index structure
 - k-D tree, hierarchical k-means clustering, or k-means locality sensitive hashing

- For each unmapped subtree a in A, compute v_a
- Insert each v_a into an index structure
 - k-D tree, hierarchical k-means clustering, or k-means locality sensitive hashing
- For each unmatched subtree b in B find nearest neighbor a in index and match nodes if similar
 - $D(v_a, v_b)$ only approximation
 - \Rightarrow False positives possible!
 - \Rightarrow Pick k (const) nearest neighbours, choose best or none

- Open challenge: How to compute feature vector v_a ?
 - Computation of all v_a s must be in $O(n \log n)$
 - \Rightarrow single v_a computation must be in $O(\log n)$
 - Vectors must possess similarity condition: $D(a, b) \approx ||v_a v_b||$

- Computation of all v_a s must be in $O(n \log n)$
- \Rightarrow single v_a computation must be in $O(\log n)$
 - Vectors must possess similarity condition: $D(a, b) \approx ||v_a v_b||$
- Solution: Random Walk Similarity (RWS)
 - v_a is the endpoint of a special pseudo-random walk in d-dimensional space
 - RWS's properties make it a very good choice for feature vectors

1. Generate p,q-grams

- 1. Generate p,q-grams
- 2. Hash each p,q-gram p_i to h_i

UNIVERSITÄT

- 1. Generate p,q-grams
- 2. Hash each p,q-gram p_i to h_i
- 3. From each hash h_i , generate a point v_i on the *d*-dimensional unit sphere

UNIVERSITÄT

 \Rightarrow v_i is step of length 1 into "random" direction

- 1. Generate p,q-grams
- 2. Hash each p,q-gram p_i to h_i
- 3. From each hash h_i , generate a point v_i on the *d*-dimensional unit sphere

 \Rightarrow v_i is step of length 1 into "random" direction

4. Add up all v_i to get v_a

 $\Rightarrow v_a$ corresponds to a *d*-dimensional random walk

Random Walk Similarity: Properties

Mathematical Properties of $RWD(a, b) = ||v_a - v_b||^2$:

UNIVERSITÄT

- $\blacktriangleright E[RWD(a, b)] = D_{bag}(a, b) = z$
- $Var[RWD(a, b)] = \frac{2z(z-1)}{d}$
 - \Rightarrow More dimensions \Rightarrow better approximation
 - \Rightarrow More similar points \Rightarrow better approximation
 - \Rightarrow Equal subtrees *a* and *b*: *RWD*(*a*, *b*) = 0
- \Rightarrow RWD is useful approximation for bag distance!

- 1. Perform simple top down and hash matching
 - \Rightarrow Match nodes cheaply if possible

- 1. Perform simple top down and hash matching
 - \Rightarrow Match nodes cheaply if possible
- 2. Generate RWS feature vectors for all unmapped subtrees in A and store into index

- 1. Perform simple top down and hash matching
 - \Rightarrow Match nodes cheaply if possible
- 2. Generate RWS feature vectors for all unmapped subtrees in A and store into index
- 3. Probe index for all unmapped subtrees in *B*, use best candidate

- 1. Perform simple top down and hash matching
 - \Rightarrow Match nodes cheaply if possible
- 2. Generate RWS feature vectors for all unmapped subtrees in A and store into index
- 3. Probe index for all unmapped subtrees in B, use best candidate
- 4. Generate edit script from mapping

Experiments:

- XML data, randomly altered
- ► HTML data from news websites, snapshotted every 20 minutes Baselines:
 - XyDiff as best O(n log n) approach (only simple matching)
 - DiffXML as an O(n²) approach and prominent open source tool

Results:

Experiments:

- XML data, randomly altered
- ► HTML data from news websites, snapshotted every 20 minutes Baselines:
 - XyDiff as best O(n log n) approach (only simple matching)
 - DiffXML as an O(n²) approach and prominent open source tool

Results:

 Robustness (1/max number of edit operations) increased by order(s) of magnitude

Experiments:

- XML data, randomly altered
- ► HTML data from news websites, snapshotted every 20 minutes Baselines:
 - XyDiff as best O(n log n) approach (only simple matching)
 - DiffXML as an O(n²) approach and prominent open source tool

Results:

- Robustness (1/max number of edit operations) increased by order(s) of magnitude
- Average quality (1/avg number of edit operations) increased by order(s) of magnitude

Experiments:

- XML data, randomly altered
- ► HTML data from news websites, snapshotted every 20 minutes Baselines:
 - XyDiff as best O(n log n) approach (only simple matching)
 - DiffXML as an O(n²) approach and prominent open source tool

Results:

- Robustness (1/max number of edit operations) increased by order(s) of magnitude
- Average quality (1/avg number of edit operations) increased by order(s) of magnitude
- Runtime comparable to simple matching (\approx doubled)

Number of emitted edit operations after performing 10 leaf node changes

 Using similarity for tree differencing increases edit script quality and robustness drastically

- Using similarity for tree differencing increases edit script quality and robustness drastically
- The random walk similarity measure can be used for rapidly finding similar subtrees

- Using similarity for tree differencing increases edit script quality and robustness drastically
- The random walk similarity measure can be used for rapidly finding similar subtrees
- The runtime cost in comparison to simple matchings is bearable

- Using similarity for tree differencing increases edit script quality and robustness drastically
- The random walk similarity measure can be used for rapidly finding similar subtrees
- The runtime cost in comparison to simple matchings is bearable

- Note that random walk similarity is always applicable when the objects to be compared can be decomposed into small excerpts
- ⇒ approach not limited to trees, various other applications possible!

Thank you for your attention!

Any questions?