RWS-Diff: Flexible and Efficient Change Detection in Hierarchical Data

Jan Finis Martin Raiber Nikolaus Augsten
Robert Brunel Alfons Kemper Franz Färber

Technische Universität München
University of Salzburg
SAP AG

- Hierarchical Data: Rooted, labeled tree
- XML, HTML

- File System
- Abstract Syntax Tree
- Bills of Materials
- Siblings are either ordered (e.g., XML) or unordered (e.g., file systems)
- Greatly affects the complexity of various algorithms
- We aim at supporting both
- Task: Given two hierarchies A and B, determine an edit script that transforms A into B
- An edit script is a sequence of edit operations
- Various types of edit operations possible:
- Leaf insertion/deletion/relocation
- Subtree deletion/relocation/copy
- ...
- A cost-minimal edit script is an edit script whose operations have the minimal cost
- Finding a minimal script is computationally hard
\Rightarrow Approximations required for scalability

- Task: Given two hierarchies A and B, determine an edit script that transforms A into B
- An edit script is a sequence of edit operations
- Various types of edit operations possible:
- Leaf insertion/deletion/relocation
- Subtree deletion/relocation/copy
- ...
- A cost-minimal edit script is an edit script whose operations have the minimal cost
- Finding a minimal script is computationally hard
\Rightarrow Approximations required for scalability

- Version Control
- XML/HTML Warehousing
- Source Code Revision Control
- Change visualization
- Synchronization
- File Systems (cf. delete/insert versus move)
- Tree differencing in general
- Given trees A and B, an edit mapping m is a function $V(B) \mapsto V(A)$ mapping corresponding nodes
- Given an edit mapping, inferring an edit script is simple
\Rightarrow Finding a good edit mapping is the hardest part
- Good mapping maps as many nodes as possible
- Good mapping maps the "right" nodes

\Rightarrow Rest of this talk: How to find a good mapping fast
- Finding an exact solution (minimal edit script) is computationally hard
- Exact approaches do not scale at all
- Most existing contributions approximate the minimal edit script
- Finding an exact solution (minimal edit script) is computationally hard
- Exact approaches do not scale at all
- Most existing contributions approximate the minimal edit script
- Finding a good approximation is still hard
- Elaborated solutions: $O\left(n^{2}\right)$ or worse runtime complexity
- Simple solutions: $O(n \log n)$ complexity but not robust
\Rightarrow No robust and scalable solutions exist
- Finding an exact solution (minimal edit script) is computationally hard
- Exact approaches do not scale at all
- Most existing contributions approximate the minimal edit script
- Finding a good approximation is still hard
- Elaborated solutions: $O\left(n^{2}\right)$ or worse runtime complexity
- Simple solutions: $O(n \log n)$ complexity but not robust
\Rightarrow No robust and scalable solutions exist
- Tailoring the problem definition makes the problem even harder
- Ordered versus unordered
- Varying types of edit operations (e.g. no copy, no subtree move,...)
\Rightarrow All to be supported by our algorithm

Simple Mapping Strategies

Simple Mapping Strategies

- Bottom-up hash mapping
- Start from the leaves and calculate subtree hashes
- Map nodes with the same hash
\Rightarrow Problem: Changing, adding or removing leaf makes mapping fail for all subtrees including the leaf

Simple Mapping Strategies

- Bottom-up hash mapping
- Start from the leaves and calculate subtree hashes
- Map nodes with the same hash
\Rightarrow Problem: Changing, adding or removing leaf makes mapping fail for all subtrees including the leaf
- Top down mapping
- Start from the root and match as long as nodes are equal
\Rightarrow Simple renaming of inner nodes prevents matching of all nodes below this node

Simple Mapping Strategies

- Bottom-up hash mapping
- Start from the leaves and calculate subtree hashes
- Map nodes with the same hash
\Rightarrow Problem: Changing, adding or removing leaf makes mapping fail for all subtrees including the leaf
- Top down mapping
- Start from the root and match as long as nodes are equal
\Rightarrow Simple renaming of inner nodes prevents matching of all nodes below this node
- Both strategies only work as long as subtrees are equal

Simple Mapping Strategies

- Bottom-up hash mapping
- Start from the leaves and calculate subtree hashes
- Map nodes with the same hash
\Rightarrow Problem: Changing, adding or removing leaf makes mapping fail for all subtrees including the leaf
- Top down mapping
- Start from the root and match as long as nodes are equal
\Rightarrow Simple renaming of inner nodes prevents matching of all nodes below this node
- Both strategies only work as long as subtrees are equal

\Rightarrow Solution: Match subtrees that are similar
$P, Q-G r a m s$ are used for computing tree similarity

P, Q-Grams are used for computing tree similarity

- "p-grams for trees"
- Idea: Cut trees a into small excerpts $P_{a}=p_{1}, p_{2}, \ldots$ (grams)
\Rightarrow More grams equal \Leftrightarrow subtrees more similar
- Symmetric bag distance $D_{\text {bag }}(a, b)=\left|\left(P_{a} \backslash P_{b}\right) \cup\left(P_{b} \backslash P_{a}\right)\right|$ measures dissimilarity
- If trees are equal, then $D_{\text {bag }}(a, b)=0$

P, Q-Grams are used for computing tree similarity

- "p-grams for trees"

- Idea: Cut trees a into small excerpts
$P_{a}=p_{1}, p_{2}, \ldots$ (grams)
\Rightarrow More grams equal \Leftrightarrow subtrees more similar
- Symmetric bag distance $D_{\text {bag }}(a, b)=\left|\left(P_{a} \backslash P_{b}\right) \cup\left(P_{b} \backslash P_{a}\right)\right|$ measures dissimilarity
- If trees are equal, then $D_{\text {bag }}(a, b)=0$
- Structure:
- chain of p ancestors (stem)
- q leaves (base)
- Dummy elements (*) for missing ancestors
\Rightarrow Capture ancestry and sibling relationsips

Generating P,Q-Grams

- p,q-grams are generated by sliding a window over the children of a node
- p,q-grams from subtrees can be reused for overall construction time of $O(n)$

Generating P,Q-Grams

- p,q-grams are generated by sliding a window over the children of a node
- p,q-grams from subtrees can be reused for overall construction time of $O(n)$

- p,q-grams are generated by sliding a window over the children of a node
- p,q-grams from subtrees can be reused for overall construction time of $O(n)$

- p,q-grams are generated by sliding a window over the children of a node
- p,q-grams from subtrees can be reused for overall construction time of $O(n)$

Similarity mapping:

- Use a distance function $D(a, b)$
- Symmetric bag distance $D_{\text {bag }}(a, b)$ in case of p,q-grams
- For an unmapped subtree a from A, map the subtree b from B with smallest $D(a, b)$
- Problem: Even if computing $D(a, b)$ is fast - say $O(1)$ - we still have to compare all unmapped subtrees in A with all in B
$\Rightarrow O\left(n^{2}\right)$ complexity
\Rightarrow Solution: Avoid comparing all pairs! ©
- For each unmatched subtree a, compute a d-dimensional feature vector v_{a}
- Desired property: $D(a, b) \approx D\left(v_{a}, v_{b}\right)=\left\|v_{a}-v_{b}\right\|$
\Rightarrow Euclidean distance is approximation of dissimilarity
\Rightarrow Similar subtrees have close feature vectors in euclidean space!

- Choose d meaningfully!
- Too high \Rightarrow curse of dimensionality
- Too small \Rightarrow too much loss of information
- For each unmapped subtree a in A, compute v_{a}

Matching with Feature Vectors

- For each unmapped subtree a in A, compute v_{a}
- Insert each v_{a} into an index structure
- k-D tree, hierarchical k-means clustering, or k-means locality sensitive hashing

Matching with Feature Vectors

- For each unmapped subtree a in A, compute v_{a}
- Insert each v_{a} into an index structure
- k-D tree, hierarchical k-means clustering, or k-means locality sensitive hashing
- For each unmatched subtree b in B find nearest neighbor a in index and match nodes if similar
- $D\left(v_{a}, v_{b}\right)$ only approximation
\Rightarrow False positives possible!
\Rightarrow Pick k (const) nearest neighbours, choose best or none
- Open challenge: How to compute feature vector v_{a} ?
- Computation of all $v_{a} s$ must be in $O(n \log n)$
\Rightarrow single v_{a} computation must be in $O(\log n)$
- Vectors must possess similarity condition: $D(a, b) \approx\left\|v_{a}-v_{b}\right\|$
- Open challenge: How to compute feature vector v_{a} ?
- Computation of all $v_{a} s$ must be in $O(n \log n)$
\Rightarrow single v_{a} computation must be in $O(\log n)$
- Vectors must possess similarity condition: $D(a, b) \approx\left\|v_{a}-v_{b}\right\|$
- Solution: Random Walk Similarity (RWS)
- v_{a} is the endpoint of a special pseudo-random walk in d-dimensional space
- RWS's properties make it a very good choice for feature vectors

Generating RWS Feature Vectors

1. Generate p,q-grams

Generating RWS Feature Vectors

1. Generate p, q-grams
2. Hash each p,q-gram p_{i} to h_{i}

Generating RWS Feature Vectors

1. Generate p, q-grams
2. Hash each p,q-gram p_{i} to h_{i}
3. From each hash h_{i}, generate a point v_{i} on the d-dimensional unit sphere
$\Rightarrow v_{i}$ is step of length 1 into "random" direction

Generating RWS Feature Vectors

1. Generate p, q-grams
2. Hash each p,q-gram p_{i} to h_{i}
3. From each hash h_{i}, generate a point v_{i} on the d-dimensional unit sphere
$\Rightarrow v_{i}$ is step of length 1 into "random" direction
4. Add up all v_{i} to get v_{a}
$\Rightarrow v_{a}$ corresponds to a d-dimensional random walk

Mathematical Properties of $\operatorname{RWD}(a, b)=\left\|v_{a}-v_{b}\right\|^{2}$:

- $E[R W D(a, b)]=D_{\text {bag }}(a, b)=z$
- $\operatorname{Var}[R W D(a, b)]=\frac{2 z(z-1)}{d}$
\Rightarrow More dimensions \Rightarrow better approximation
\Rightarrow More similar points \Rightarrow better approximation
\Rightarrow Equal subtrees a and $b: \operatorname{RWD}(a, b)=0$
\Rightarrow RWD is useful approximation for bag distance!

b_{A}				$x=4$			
$\begin{aligned} & \mathrm{O} \\ & 80 \end{aligned}$	$\begin{aligned} & \hline \% \\ & \hline 0 \end{aligned}$	18	$\begin{aligned} & \text { \% } \\ & \text { o } \end{aligned}$	$\begin{aligned} & \circ \\ & \hline 0 \end{aligned}$	\%	$\begin{aligned} & \circ \\ & \hline 0 \end{aligned}$	\%
57	57	73	9	62	34	68	23
b_{B}							
\%	$\begin{aligned} & \text { O } \\ & \text { o } \end{aligned}$	\%	\%	$\begin{aligned} & 0 \\ & \hline 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \% \\ & 08 \end{aligned}$		
57	57	73	9	18	97		

UNIVERSITÄT
SALZBURG

Creating an edit script between trees A and B :

Creating an edit script between trees A and B :

1. Perform simple top down and hash matching
\Rightarrow Match nodes cheaply if possible

Creating an edit script between trees A and B :

1. Perform simple top down and hash matching
\Rightarrow Match nodes cheaply if possible
2. Generate RWS feature vectors for all unmapped subtrees in A and store into index

Creating an edit script between trees A and B :

1. Perform simple top down and hash matching
\Rightarrow Match nodes cheaply if possible
2. Generate RWS feature vectors for all unmapped subtrees in A and store into index
3. Probe index for all unmapped subtrees in B, use best candidate

Creating an edit script between trees A and B :

1. Perform simple top down and hash matching
\Rightarrow Match nodes cheaply if possible
2. Generate RWS feature vectors for all unmapped subtrees in A and store into index
3. Probe index for all unmapped subtrees in B, use best candidate
4. Generate edit script from mapping

Experiments:

- XML data, randomly altered
- HTML data from news websites, snapshotted every 20 minutes Baselines:
- XyDiff as best $O(n \log n)$ approach (only simple matching)
- DiffXML as an $O\left(n^{2}\right)$ approach and prominent open source tool

Results:

Experiments:

- XML data, randomly altered
- HTML data from news websites, snapshotted every 20 minutes Baselines:
- XyDiff as best $O(n \log n)$ approach (only simple matching)
- DiffXML as an $O\left(n^{2}\right)$ approach and prominent open source tool

Results:

- Robustness (1/max number of edit operations) increased by order(s) of magnitude

Experiments:

- XML data, randomly altered
- HTML data from news websites, snapshotted every 20 minutes Baselines:
- XyDiff as best $O(n \log n)$ approach (only simple matching)
- DiffXML as an $O\left(n^{2}\right)$ approach and prominent open source tool

Results:

- Robustness (1/max number of edit operations) increased by order(s) of magnitude
- Average quality (1/avg number of edit operations) increased by order(s) of magnitude

Experiments:

- XML data, randomly altered
- HTML data from news websites, snapshotted every 20 minutes Baselines:
- XyDiff as best $O(n \log n)$ approach (only simple matching)
- DiffXML as an $O\left(n^{2}\right)$ approach and prominent open source tool

Results:

- Robustness (1/max number of edit operations) increased by order(s) of magnitude
- Average quality (1/avg number of edit operations) increased by order(s) of magnitude
- Runtime comparable to simple matching (\approx doubled)

Number of emitted edit operations after performing 10 leaf node changes

- RWS-Diff \quad DiffXML \quad XyDiff

UNIVERSITÄT
SALZBURG

- Using similarity for tree differencing increases edit script quality and robustness drastically
- Using similarity for tree differencing increases edit script quality and robustness drastically
- The random walk similarity measure can be used for rapidly finding similar subtrees
- Using similarity for tree differencing increases edit script quality and robustness drastically
- The random walk similarity measure can be used for rapidly finding similar subtrees
- The runtime cost in comparison to simple matchings is bearable
- Using similarity for tree differencing increases edit script quality and robustness drastically
- The random walk similarity measure can be used for rapidly finding similar subtrees
- The runtime cost in comparison to simple matchings is bearable
- Note that random walk similarity is always applicable when the objects to be compared can be decomposed into small excerpts
\Rightarrow approach not limited to trees, various other applications possible!

Thank you for your attention!

Any questions?

