
EdgeFrame: Worst-Case Optimal Joins for
Graph-Pattern Matching in Spark

Per Fuchs∗
per.fuchs@cs.tum.edu

Technische Universität München
München, Germany

Peter Boncz
peter.boncz@cwi.nl

CWI
Amsterdam, the Netherlands

Bogdan Ghit
bogdan.ghit@databricks.com

Databricks Inc.
Amsterdam, the Netherlands

ABSTRACT

We describe the design and implementation of EdgeFrame: a
graph-specialized Spark DataFrame that caches the edges of
a graph in compressed form on all worker nodes of a cluster,
and provides a fast and scalable Worst-Case-Optimal Join
(WCOJ) that is especially useful for matching of complex
and cyclical patterns in large graphs. Our choice to forego
shuffle- or communication-based WCOJ is motivated by our
analysis of the Shares algorithm for distributed WCOJ, that
was proven communication-optimal, but which we show to
quickly deteriorate to a full broadcast of all data already with
moderately complex graph patterns. Our work shows that
specializing WCOJ to a multi-way self-join, and leveraging
compressed storage, provides a significant opportunity for
better WCOJ performance. Finally, we investigate WCOJ
parallelization and load-balancing strategies and show that
fine-grained dynamic load-balancing with work-stealing is
to be preferred, creating interesting insights and challenges
for the future evolution of the Spark scheduler.
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1 INTRODUCTION

Pattern-matching is an important use-case of graph query
processing [7, 21, 38]. In essence, such queries evaluate a join
graph, shaped by the graph-pattern over one table holding
the edges of the graph. Each edge in the graph pattern corre-
sponds to one join in the join graph. Such multi-join queries
are traditionally executed by operators that compute one join
at-a-time (binary joins: a join between two tables); of course,
preceded by query optimization that determines an efficient
order of their computation. However, important – mostly
theoretical – work in the past years has shown that so-called,
worst-case optimal join (wcoj) [32] algorithms, such as the
Leapfrog TrieJoin (lftj) [40] can perform multi-way joins
with lower time complexity than running multiple binary
joins [10]. This finding has had little impact on data ware-
housing and olap systems where the most popular join pat-
terns are primary-foreign-key (pk-fk) with tree or snowflake
shapes which are acyclic. Since such joins have linear com-
plexity in the input size, binary joins such as hash joins are
indeed worst-case optimal. In contrast, pattern-matching in
graphs typically employs foreign-foreign-key (fk-fk) joins
(i.e. over an edge table), and are likely to include cycles. These
two conditions tend to cause binary-joins to generate inter-
mediate results that can be much larger than the final result,
i.e. under these circumstances they are very far from worst-
case optimal. Examples of cyclic graph-processing queries
include the diamond query pattern used by Twitter [20] to
recommend people to follow, the detection of cycles for fraud
detection [12, 36, 37], and the community detection in net-
works [15, 30].

In this paper, we present the design and implementation of
GraphWCOJ, a worst-case optimal join specialized for graph-
processing queries. To put these algorithms in the hands of
practitioners who analyze large graph data, we developed
GraphWCOJ inside the Spark framework, which is by far
the most widely used scalable data science processing frame-
work and is often used for large graph data. For example,
GraphFrames [14], GraphX [18] (a Pregel [27] implemen-
tation) or graph query languages such as G-CORE [6] and
openCypher with Cypher for Apache Spark or CAPS [35] all
aim to ease graph processing on Spark – and CAPS became
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standard part of Apache Spark 3.0. However, pattern match-
ing operations with all these interfaces are still executed
using multiple binary join operators, which – as we argued
– is suboptimal.

Our work focused on two research questions. Firstly, ex-
isting wcoj algorithms are designed for n-ary joins between
n different tables. In contrast, graph pattern matching per-
forms these joins over the same relationship (the edge table),
making this an n-ary self-join. Our first research question
thus is: how can wcoj algorithms be specialized for graphs
with such self-joins, and what performance benefits does
this bring? Secondly, the scaling of previous attempts to
run wcoj algorithms on clusters (e.g., using MapReduce and
Spark) has been relatively poor. A state-of-the-art implemen-
tation – called Shares – in the distributed system Myria [13]
achieved a speedup of only 8 on 64 workers. Although there
are theoretical results on communication costs of wcoj in
a distributed setting [2, 3, 11, 23] and the Shares algorithm
was proven communication-optimal [13], communication
costs are observed to be significant specifically in highly-
connected graph pattern matching queries. Therefore, de-
signing a distributed wcoj with both high performance and
good scalability remains an unsolved challenge, which we
try to address in our work.

The results of our effort is the EdgeFrame, a special Spark
DataFrame that incorporates GraphWCOJ and caches the edge
structure of a graph in compressed form on all workers in
the cluster. This is a practical approach that circumvents
the inherent communication bottlenecks of wcoj on dis-
tributed graphs, and maximally profits from specializing the
algorithm to graph workloads. We analyze the performance
of EdgeFrame with analytical graph queries on real-world
datasets and release it in open source.

Our work makes the following contributions:

(1) We find that the Shares algorithm for distributed wcoj,
which has proven optimal communication cost, must
replicate over 50% of all edge tuples on each worker
even for simple graph patterns (Section 3), effectively
causing close to worst case communication cost and
memory consumption. This inherently leads to poor
scalability. Hence, we propose EdgeFrame, which
caches in compressed form the edge relationship on
all workers, to enable a shuffle-free wcoj for arbitrary
queries afterwards.

(2) We design and implement GraphWCOJ, which is a
worst-case optimal join specialized to graph pattern
matching (section 4.1). We demonstrate a speedup of
up to 11 times over a non-specialized LFTJ implemen-
tation.

(3) We then focus on effectively parallelizing GraphWCOJ
on an EdgeFrame, that is cached on all workers. Since,
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most real world graphs today have a heavily skewed
degree distribution, we propose to use dynamic work-
stealing to partition the work (section 5). This provides
good results when applied between the executors on
each worker. However, our results suggest that to scale
well on many workers, the Spark scheduler should
evolve to facilitate more dynamic task creation and
better handle jobs consisting of many tasks.

2 BACKGROUND

The worst-case time-complexity of a wcoj algorithm
matches the theoretical bound on the join output size, given
by taking the join input size to the power of the frac-
tional edge cover derived from the join query shape’s hyper-
graph [10, 33]. This bound can be asymptotically lower than
the complexity achieved by traditional, binary join plans,
where each such binary join has a worst-case complexity
that is quadratic to its input size. The advantage of this worst-
case bound surfaces in practice when join connectivity is
skewed, but also in multi-join queries which cyclical join
shape, where the individual joins have a high out-degree.
Next, we explain the Leapfrog TrieJoin, a worst-case

optimal join which was implemented in the LogicBlox com-
mercial database system. The Leapfrog TrieJoin (lftj)
is a variable-oriented join which requires an order over
the variables of the join query to produce the result. As
an example, consider the triangle query trianдles (a,b, c ) ←
R (a,b), S (b, c ),T (a, c ), with the variable ordering as a,b, c .
Executing an lftj requires the input relationships to be
sorted lexicographically in increasing order by the given
variable ordering. For instance, R needs to be sorted by a
and b respectively. We first fix a possible binding for variable
a, while further setting bindings for b given a, and finally c
given both a and b. We call the algorithm variable-oriented

as it allows to enumerate the query result by means of a
backtracking depth-first search for possible bindings which
requires no intermediate results. Finding the best variable
ordering for a wcoj is important [8, 13, 28] and somewhat
analogous to join ordering in query optimization.



We now explain how lftj works in case of the triangle
query shown in Figure 1a. At a high-level, a lftj employs
three layered components, each of which may have multiple
instances. The first layer is the TrieIterator which is in-
stantiated for each input relationship. The TrieIterator
interface represents the input relationship as a trie data
structure with all values for the first attribute on the first
level, the values for the second attribute on the second level
and so on, as we show in Figure 1b. As each level stores
all possible values for its attribute, we can enumerate all
tuples of the relationship by a depth-first traversal of the
trie. The TrieIterator component offers the ability to tra-
verse each edge of the trie, the sequence of all siblings and
an upper-bound search over the values of all siblings in at
most O (logN ), e.g. by employing binary search over sorted
arrays [13]. The second layer incorporates a LeapfrogJoin
for each variable referenced in the join. To generate the
bindings for a join variable, a LeapfrogJoin uses the un-
derlying TrieIterators to intersect the possible values for
all input relationships that contain the variable. Figure 1a
shows three LeapfrogJoin instances for variables a,b, and c ,
each of which employ two TrieIterators. Finally, a single
Leapfrog TrieJoin instance interacts with the previous
layers to generate all possible bindings for the join. To do so,
we can acquire one binding for each variable using the under-
lying LeapfrogJoins. After setting a binding for the current
variable, we move the TrieIterators that contain the vari-
able to the next level. Finally, the lftj operator emits a tuple
when all variables have a binding. We repeat this process to
find the next possible binding through backtracking.
Besides the lftj, there are two other wcoj algorithms:

nprr [31] and Generic Join [33]. We use the lftj as the
base for our work because it is implemented by two com-
mercial products, i.e., LogicBlox [8] and RelationalAI [1].
Furthermore, the performance of the lftj is well understood
by prior work [13, 34] and it has multiple open-source im-
plementations [13, 39].

3 DISTRIBUTEDWCOJ ANALYSIS

Myria is a MapReduce-based system with a typical multi-
worker architecture which incorporates a distributed wcoj
implementation for graph pattern matching based on the
Shares algorithm [13]. The Shares shuffle algorithm [3] en-
ables Myria to solve n-ary joins in a single shuffle round. Nev-
ertheless, shuffling leads to a significant amount of duplicated
work done by multiple worker nodes. As a consequence, the
scalability of the Shares algorithm is rather limited, with a
speedup of 8 on 64 workers relatively to the execution on 2
workers. In this section, we present the operation of Shares
and we analyze its scaling properties.

Pattern Edges 64 workers 128 workers

Triangle 3 0.18 0.12
House 5 0.42 0.32
4-clique 6 0.59 0.44
Diamond 8 0.76 0.67
5-clique 10 0.90 0.82

Table 1: Fraction of all edges assigned to every worker

by the optimal Shares algorithm. A replication free ap-

proach with linear scaling would require 1/#workers
edges per worker.

Given an n-ary join and all input relationships, the Shares
shuffle overestimates the tuples that can be joined and en-
sures they are co-located on at least one worker. Then, we
join the local tuples on each worker and so, we obtain the
n-ary join result as the union of each worker output. To
achieve such a partitioning, we organize the cluster workers
in a multi-dimensional hypercube with one dimension per
join attribute. In each dimension we set a number of work-
ers pi such that p0 · p1 . . .pk ≤ w , where k and w are the
number of dimensions and the cluster size, respectively. We
employ the same method proposed by the Myria system [13]
to build a hypercube in which each worker is assigned a
multi-dimensional coordinate. We employ a hash function to
map the join attributes in each tuple to multiple of these coor-
dinates and assign tuples to thematchingworkers. Hence, we
replicate the tuples of a relationship across each dimension of
the variables which are unbounded. In other words, we need
to replicate the tuples of each variable that is unbound in a
relationship across all workers in the corresponding dimen-
sion. Because graph pattern matching is an n-ary self-join
with two attributes in each relationship, the Shares shuffle
scales poorly with the number of variables because tuples
are replicated along all but two dimensions. Furthermore,
scaling with the cluster size is also rather limited because
the dimension sizes increase with the number of workers.

We analyze Shares scalability by giving a closed-form for-
mula of the fraction of tuples of the edge relationship that are
allocated on each worker. We model the likelihood of a tuple
being assigned to a worker with a Poisson binomial distribu-
tion. Given n independent binary trials and the probability
ui of the ith trial succeeding, we set the probability that k out
of n trials succeed to Pr(n,k,u0 . . .un ). Let R be the number
of relationships (edges) in the join. Further, we denote the
sizes of the two dimensions bound by the attributes of the ith
relationship by size1 (ri ) and size2 (ri ). Thus, we estimate the
probability that a tuple is not assigned to an arbitrary, fixed
worker by setting k = 0, n = R, and ui = 1

size1 (ri )∗size2 (ri )
.

In this way we can predict the number of tuples assigned



to each worker by |E | × (1 − Pr( |R |, 0,u0, . . . ,u |R | ), where E
represents the edge relationship.
Table 1 shows the fractions of all edge tuples per worker

for typical graph patterns. Two things stand out. Firstly, even
for relatively small patterns like the 4-clique and diamond,
each of the 64 workers holdsmore than half of all tuples.
Secondly, doubling the size of the cluster to 128 workers is
not an efficient way of reducing the number of replicated
tuples per worker. From this analysis and the fact that Shares
was proven to be optimal in communication cost [11], we
conclude that for graph pattern matching, wcoj algorithms
that re-partition the edge relationship among nodes in a clus-
ter by definition deteriorate to replicating the entire graph
everywhere, causing maximal communication cost and mem-
ory usage.
This analysis motivated EdgeFrame: it is a Spark

DataFrame in a broadcast variable that is cached on all Spark
workers; and it stores the graph in a compact, compressed,
format to limit memory consumption. Graph pattern match-
ing on EdgeFrame therefore does not need to move any
graph edges over the network, its GraphWCOJ method can
exploit the compressed format to make wcoj even faster, and
the main challenge is how to parallelize its computational
work evenly over all workers and CPU cores.

4 EDGEFRAME DESIGN

This section presents the design and implementation of our
Spark EdgeFrame. First, we describe the specialization of
a generic lftj to graphs by the use of csr and a simpler
intersection algorithm in Section 4.1.We expose GraphWCOJ
in Spark [16] through an API resembling the GraphFrames
API described in Section 4.2. Further, we detail the integration
into Catalyst, Spark’s SQL optimizer, in Section 4.3.

4.1 Graph-Specific Optimizations

Using csr is a common approach of representing static
graphs in a compact format. For simplicity, we assume that
the graph’s vertices are identified by non-negative integers
from 0 to |V | − 1. However, we support arbitrary node identi-
fiers by storing a translation in an additional array of size |V |.
In particular, csr uses two arrays to represent the topology
of a graph. The Adjacency Lists array of |E | elements is a
projection of the edge relationship on the dst attribute. The
Indices array of |V | + 1 elements stores the indices in the
AdjacencyLists array. Therefore, we can find all vertices
directly reachable from a given source vertex src by retriev-
ing the index stored in Indices at position src to access the
AdjacencyLists array.

We use the csr of the graph as the underlying data struc-
ture of the TrieIterators of the lftj algorithm. This has a

(a) Smallest iterator (b) Biggest intersec-

tion

(c) Total intersection

Figure 2: Metrics characterizing the lftj intersection
when running the 5-clique on the snb dataset of scale
factor 1.

major advantage over using a sorted, columnar representa-
tion as in previous work [13, 40]. The csr acts as an index
for the first level of the TrieIterators allowing us to find
the upper bound of any value by single array access instead
of using a binary search which is the most expensive oper-
ation in the lftj algorithm [13]. In contrast, searching on
the second level of the TrieIterators is fast because most
graphs have low out-degrees.
We found the n-way intersection algorithm used by the

LeapfrogJoin operators to be inefficient for graph pattern
matching. The algorithm repeatedly searches the upper-
bound for the largest value in the iterator at the lowest value
until all iterators point to the same value. This is done to leap
over many values in the lowest iterator which is inefficient
for lists with huge gaps between the values, i.e. for graph
adjacency lists. Besides, it requires the iterators are sorted
on initialization. Instead, we propose a simpler algorithm
which we describe in next.

To illustrate the motivation for our intersection algorithm,
we use the 5-clique query on the snb dataset and gather
runtime statistics that characterize the intersection. Figure 2a
shows that for roughly 80% of the intersections the smallest
iterator has a size that is lower than 80 elements. This dis-
tribution is different than the typical long-tail distribution
encountered in power-law graphs because the smallest itera-
tor is selected from a total of 5 iterators. We find that in 80%
of the intersections the largest intersection of the smallest
iterator with other iterators contains less than 21 elements (
Figure 2b) and the size of the total intersection is less than 5
(Figure 2c). Given these observations, we propose to use mul-
tiple pair-wise intersections starting with the intersection
between the smallest iterator and any other second-level
iterator. Also, we defer intersection with all first-level itera-
tors towards the end because they are unlikely to limit the
intersection. Given the fast convergence to the final size of
the intersection, this approach is faster than the original
algorithm because it limits the searches on iterators that are
intersected later. Furthermore, instead of sorting the iterators
upfront, we only need to find the smallest iterator.



4.2 The EdgeFrame API

The API of our wcoj implementation is inspired by the ex-
isting Spark GraphFrames API [14]. The user can define a
pattern, so that each edge is expressed as (a) - [] -> (b),
where a and b represent the source and the destination, re-
spectively. A pattern may consist of multiple edges separated
by semicolons. We use standard homomorphism semantics:
a variable in a pattern is not guaranteed to be a distinct el-
ement in the graph. For example, the pattern (a) - [] ->
(b); (b) - [] -> (c)may be either a linear path of length
two or a circle between a and b. The wcoj is invoked by call-
ing the findPatternmethod on the input DataFrame which
typically has two columns, one for source and the other for
the destination. The method takes the graph pattern and the
variable ordering as input parameters.
// Load the edge relationships

val df = spark.read.csv("edge_relationships")

// Set of node identifiers

val nodes = Seq("a", "b", "c")

// Triangle pattern

val pattern = """

| (a) - [] -> (b);

| (b) - [] -> (c);

| (a) - [] -> (c)

""".stripMargin

// Invoke WCOJ to find triangles

df.findPattern(pattern , nodes).show()

Listing 1: Finding triangles in graph with EdgeFrame

4.3 Catalyst Integration

In this section, we present the details of integrating
GraphWCOJ into Catalyst [9]. To this end, we created new op-

erators for the logical and physical plans andwe implemented
a strategy for performing the wcoj execution planning.

At the logical plan level, we introduce a new logical WCOJ

operator. The logical operator has three children, the first
two of which represent the input relationship, whereas the
remaining one is an empty RDD with as many partitions
as the desired level of parallelism. Our Catalyst strategy
converts the logical operator intomultiple physical operators.
The strategy replaces the two logical operators denoting the
input relationship with two physical operators which either
represent formerly build and broadcasted CSRs of the graph
or built fresh CSRs if the edge relationship is queried for the
first time. For each partition of the empty RDD, we execute
the wcoj backing its TrieIterator with the broadcasted
CSRs while partitioning the data logically using one of the
schemes presented in Section 5.

The physical operator to materialize an edge relationship
into one csr per edge direction builds both data structures
from the two row-wise iterators over the edge relationship
sorted by (src, dst) and (dst, src), respectively. We build the
CSRs in tandem because some vertices might have no outgo-
ing or incoming edges which would lead to an incompatible

(a) triangle (b) 4-clique (c) 5-clique (d) 4-cycle

(e) 5-cycle (f) Diamond (g) Kite

Figure 3: An overview of the graph query patterns

used in our experiments.

csrs if they were built separately. We do so by zipping the
row-wise input iterators and aligning them on their first
attribute. Scanning and sorting the input relationships as
well as broadcasting the result is supported by existing Spark
operators.
We only compute these CSRs once when an edge rela-

tionship is queried for the first time and we cache them after.
The caching is backed by broadcast variables which allow
data reuse over multiple tasks in Spark and guarantee that
the data is shipped at most once to each worker. Whenever
we translate a logical WCOJ plan into a physical one, we
check if the csrs for the edge relationship has already been
broadcasted and can be reused.

5 LOAD-BALANCING STRATEGY

Our design decision to replicate the graph on all workers
requires us to partition the work into multiple Spark tasks.
First, experiments with various static partitioning schemes
show that it is very challenging to find a scalable trade-off
between duplicated work and skew-resilience on the skewed
degree distribution of real-world graphs (see appendix A).
Therefore, we design a dynamic work-stealing approach
to actively fight skew while replicating no work. We start
by describing a work-stealing scheme for a single-machine
execution (local mode) which we further extend to a cluster
execution (distributed mode).

Local Mode. Our work-stealing strategy aims to organize
the work in a large number of small tasks which can be
executed by any worker in the system. Thus, we place the
tasks in a queue that is accessible to all workers to poll
tasks whenever they are idle. Therefore, tasks are naturally
load-balanced across workers, while the maximum skew is
roughly the size of the smallest task. To avoid duplicated
work, we define a task as the work required to find all pos-
sible tuples for a single binding of the first join variable. In
local mode, the Spark master and workers run in the same
jvm process. So, a simple thread-safe queue can be used



to implement the scheme. Tasks are assigned in batches to
avoid contention. Integration within the lftj algorithm is
done by a LeapfrogJoin component which only returns
first attribute values that have been polled from the queue.

This way of work-stealing has two main drawbacks which
we discuss in turn. Firstly, our work-stealing scheme leads
to an unpredictable partitioning of the results: we cannot
guarantee the bindings per partitions nor the partition sizes.
However, the user can repartition the results afterwards.
Secondly, our implementation is not fault-tolerant. This can
be overcome either by restarting the computation upon a
single task failure or by making the master aware of the set
of values assigned to each worker and re-add them to the
queue when failures occur.

DistributedMode. In this section, we describe a simple, yet
effective way of integrating work-stealing in Spark running
in distributed mode. The main challenge is that Spark work-
ers cannot communication with each other. Therefore, we
seek a communication-free approach: we statically partition
the total amount of work across multiple workers and enable
work sharing only between threads on the same machine.
We implement this using barrier scheduling execution mode
for the worst-case optimal join operator. In this mode, all
tasks of a stage are scheduled simultaneously with access
to the location of other tasks for this stage. Hence, we can
employ the local mode as explained above by partitioning
the task queue in a round-robin fashion.
This approach is limited to mitigate skew at the level of

individual workers, skew between workers may still exist.
Furthermore, the barrier mode requires enough free resources
in the cluster to schedule all tasks at once which may be
difficult in a cluster used by multiple users.

6 EXPERIMENTAL RESULTS

In this section, we introduce our experimental setup. Then,
we compare the performance of the GraphWCOJ with vanilla
Spark and with different flavors of the lftj algorithm
(Section 6.1). Finally, we assess the scaling properties of
GraphWCOJ both in a single worker and multi-worker dis-
tributed setting (Section 6.2).

We run our experiments on the SciLens cluster of the CWI
Database Architecture research group [19]. Each cluster ma-
chine is equipped with 4 Intel Xeon E5-4657Lv2 processors
with a total of 48 cores. Whereas each core has 32 KB on
the first two levels of cache, the third cache level provides
30 MB which is shared across the 12 physical cores. The
main memory consists of 1 TB of RAM DDR-3 memory. The
machines run a Fedora version 30 Linux system. In our ex-
periments, we use a standard deployment of Spark 2.4.0 with
Scala 2.11.12 on Java OpenJDK 1.8.

Figure 4: The query runtime of the basic lftj algo-
rithm versus vanilla Spark.

Figure 3 depicts the graph patterns used in our experi-
ments. We extend the clique queries with inequality filters,
while for the others we require distinct bindings. We use the
snb [25], LiveJournal, and Orkut [26] datasets which rep-
resent social network friendship graphs. We generated snb
with default parameters and the scale factor set to 1, keeping
only the friendship relationship in the snb benchmark, thus
obtaining 10k vertices and 453k edges. The LiveJournal
dataset consists of roughly 5 million vertices and 69 million
edges. Similarly, Orkut has roughly 3 million vertices and
117 million edges.

We report the run-time of the algorithms without setup
costs, e.g. sorting of the input relationships or creation and
broadcasting of the CSR data structure. This is because the
system is designed to do this once at start up and reuse the
built graph for all queries. After, start up no further sorting
or input preparation is necessary for any query.

6.1 Performance of GraphWCOJ

In this section, we compare the performance of our lftj algo-
rithm relatively to vanilla Spark on a single-worker cluster
using one thread and no parallelism. Furthermore, we assess
the performance of the graph-specialized GraphWCOJ algo-
rithm relatively to the wcoj+csr implementation, having the
original lftj algorithm as a baseline. We use count queries
for different patterns as shown in Figure 3 on the snb dataset.
Spark employs broadcast hash join operators to execute

the queries. The broadcast hash join avoids shuffling and
so, it is the fastest join implementation available in Spark
when run on a single worker. Moreover, Spark also gener-
ates Java byte-code for its SQL operators [4, 29] which our
lftj implementation doesn’t support yet. Despite the code
generation optimization in Spark, Figure 4 shows that our
generic lftj outperforms vanilla Spark on all query patterns.
Whereas lftj performs at its best on the 3-clique with
a speedups of 13.9, for a 5-clique query it obtains a rela-
tively low speedup of 1.1. The reason of this result is that an
n-clique query typically has a large number of semi-joins
which decrease the size of intermediate results, and so Spark
can execute them relatively fast as well. Indeed, we find that



Figure 5: The query runtime with lftj+csr and

GraphWCOJ versus the lftj baseline.

for the 5-clique query only 3 out of 9 joins in Spark’s plan
lead to larger intermediate results.

Figure 5 depicts the comparison of the different wcoj im-
plementations. We first analyze the performance gain from
using the csr data structure in the lftj+csr algorithm over
vanilla lftj. We find that all queries run faster with the
lftj+csr algorithm when compared to the basic lftj base-
line. In particular, we observe that the higher the clique size,
the larger speedup of the lftj+csr is. In contrast, LFTJ+csr
provides lower improvements on the house and kite query
patterns . Whereas the original lftj implementation uses
a column-based implementation, csr enables searches on
the first level of the TrieIterators as a two-array reads in-
stead of a binary search. Therefore, the denser the query, the
more first-level TrieIterator accesses are needed. For ex-
ample, the 5-clique query employs 10 TrieIteratorswith
10 first-levels to iterate on, while the 4-cycle and diamond
patterns only need 4 TrieIterators.

Next, we assess the impact of the graph-specialized inter-
section algorithm which we incorporated in our GraphWCOJ
implementation. Overall, we find that it provides a relatively
low improvement over the lftj+csr algorithm. While this
technique achieves the largest speedup on dense queries
such as the 5-clique, it slows down sparse cyclic queries
by a small margin. In Table 2 we show the number of upper
bound searches with and without the specialized intersec-
tion algorithm enabled. We observe that the improvement
on dense queries can be explained by the larger number of
adjacency lists that are intersected. In contrast, the diamond
and the 4-cycle queries intersect at most two such lists. The
slow-down is incurred by our implementation which builds
the complete intersection at once by copying the result to a
new array, this fails to pay off for sparser queries and could
be improved with little engineering effort.

6.2 GraphWCOJ Scalability

In this section we assess the vertical scalability of the
GraphWCOJ. In particular, we show the benefit of the work-
stealing scheme relatively to the best static partitioning
scheme Shares (details see Appendix A) and we assess the

Query lftj GraphWCOJ Difference [%]

3-clique 34.739.080 33.526.024 3.4
4-clique 118.451.741 99.402.372 16.1
5-clique 262.304.687 192.296.784 26.7
Kite 346.636.041 272.840.747 21.2
4-cycle 4.591.408.924 4.402.790.869 4.1
Diamond 10.230.067.028 9.680.437.365 5.3
House 5985.294.145 5.550.487.243 7.2

Table 2: Difference in upper bound searches for lftj
versus GraphWCOJ due to the specialized intersection al-

gorithm.

(a) Single worker (b) Four workers

Figure 6: The speedup achieved by the GraphWCOJ algo-
rithmon n-clique querieswith a singleworker (a) and

4 workers (b).

impact of the query size on the GraphWCOJ performance. We
run GraphWCOJwith work-stealing on a single machine with
one executor with up to 48 threads. Furthermore, we con-
sider a distributed setting with 4 machines having a total of
192 threads. In these experiments we employ the 3-clique
and 5-clique queries on the Orkut dataset.

Figure 6a depicts the speedup achieved by each partition-
ing scheme on a single worker when increasing the num-
ber of threads from 1 to 48. We observe that work-stealing
outperforms the Shares logical partitioning scheme for all
queries irrespective the level of parallelism.Whenwe execute
the 4-clique query on 96 threads, our work-stealing scheme
achieves a speedup of 42.5 which is significantly higher than
the speedup of 25.4 obtained by Shares. Figure 6a also shows
the Shares logical partitioning is insensitive to the query size.
However, for work-stealing, we notice that increasing the
query size leads to worse scaling behavior. The reason for
this result is that in our work-stealing scheme we set the task
size to a single first variable binding. Having tasks which
increase with the query size can lead to significant skew. In
the single worker setup, we measure the skew as the ratio
between the average and the slowest tasks. While the skew
for the 3-clique query is below 3%, the skew caused by the
4-clique and 5-clique increases with the number of total
threads in the cluster and can be up to 16.3% and 32.3%, re-
spectively. As a consequence of the increasingly large skew



with the number of utilized threads, we observe the flatten-
ing of the speedup curves for those queries. An extension of
work-stealing on any variable of the join is described in the
thesis accompanying this paper [17].
Figure 6b shows the performance of GraphWCOJ in a dis-

tributed setting with 4 workers. We find that the 3-clique
query scales significantly better in the distributed setting
than on a single worker. However, the 5-clique scales less
well in a distributed setting. For the distributed setting, we
measure the skew as the ratio between the wall-clock execu-
tion time of the average and slowest executor. The skew of
the 3-clique query is negligible in the distributed setting.
Furthermore, for the 5-clique query the skew decreases
from 62.7% to 37.7% when the number of threads increases
from 16 to 192.

Finally, we compare the execution of the 3-clique query
on the LiveJournal dataset with Spark and GraphWCOJ. We
find that our GraphWCOJ is roughly 100 times as fast as Spark
when using a distributed setting with 4 workers. Spark has
relatively poor scalability as it takes 424 s and 467.2 s to
execute the query on 192 and 384 threads, respectively. In
contrast, GraphWCOJ requires only 4.3 s and 3.5 s when run-
ning on 192 and 384 threads, respectively. As such, we believe
our EdgeFrame offers significant performance advantages
to systems and APIs that perform graph pattern matching
on Spark.

7 RELATEDWORK

In this section, we report on alternative implementations
of distributed WCOJs. Prior work proposes a distributed
worst-case optimal join based on three algorithms which
incorporate a Generic Join [33] in the Timely Dataflow
system [5]. These algorithms run in multiple rounds, each
of which is binding a single variable in the join query and
uses the prefixes from the previous round as input. This
requires finding the relationship that provides the smallest
set of possible bindings for the current variable for each
prefix. The join is executed in multiple batches of work to
avoid high memory usage when storing all prefixes. Overall,
this mechanism requires 2R × V steps of communication
for a query with R relations and V variables. We argue that
this approach is not suitable for Spark because it requires
a modality of incremental query execution that is not well-
supported in Spark since each communication step triggers
a shuffle operation which is relatively expensive in Spark
(which e.g. materializes all shuffle output locally, rather than
streaming it). The straightforward approach based on binary
joins requires only R − 1 shuffle operations.

GraphWCOJ is computational- and communication-optimal
with respect to the agm bound, thus providing the same theo-
retical guarantees as the Timely Dataflow system. Whereas

Timely Dataflow only partially attempts to balance work,
GraphWCOJ provides a dynamic load-balancing mechanism
through work-stealing. In addition, Timely Dataflow can
handle graphs which exceed the memory of a single ma-
chine by distributing the graph edge relationship across all
workers.

L. Lai et al. surveyed different strategies to distribute graph
pattern matching in Timely Data Flow [24]. They include
BigJoin, Shares, fully replicating the graph and compare to bi-
nary joins as a baseline. Additionally, they study the effect of
triangle indexing and compression of the intermediary join
results. They empirically find that fully replicating the graph
is the best option because it beats all other approaches in to-
tal run-time, has the lowest memory footprint and shows the
best scaling behavior. Our analysis using the Poisson bino-
mial distribution complements this observation with analyt-
ical backing. Like us, they find that Shares does not scale for
graph pattern matching and is overall the weakest strategy.
Their implementation of a fully replicated approach differs
from ours. First, the local algorithm they use is DualSim [22]
which has been developed for an out-of-core memory set-
ting and is not known to be worst-case optimal. Second,
they logically partition the work by round-robin partition-
ing on the second variable. As we report in appendix A.1,
this scheme does not offer good skew resilience compared
to work-stealing and is likely to hinder their scalability in
terms of number workers used as well as query size.

8 CONCLUSIONS

Providing a fast and scalable Worst-Case Optimal Join (wcoj)
is an attractive yet challenging target for data processing
frameworks when matching complex and cyclical patterns
in large graphs. Towards this end, we have presented Edge-
Frame, a graph-specialized Spark DataFrame that caches the
edges of a graph in compressed form on all cluster nodes, thus
avoiding expensive shuffle operations. The design of Edge-
Frame is based on our analysis of the state-of-the-art Shares
algorithm for distributedwcoj, whichwe show to degenerate
into a full broadcast of all data already for moderately com-
plex graph patterns. In order to store graph data compactly
in compressed form, EdgeFrame is based on the well-known
csr representation. We show that the csr representation
maps naturally on the conceptual Trie data structure used by
the Leapfrog TrieJoin, a well-studied wcoj algorithm. Edge-
Frame enables GraphWCOJ, our graph-specialized Leapfrog
TrieJoin to provide a fast intersection algorithm and achieve a
speedup of up to 11 relative to a non-graph-specific Leapfrog
TrieJoin implementation. We also propose a work-stealing
mechanism for efficient parallel task processing that avoids
duplicate work and mitigates skew.
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A STATIC PARTITIONING SCHEMES

In this section, we motivate why we decided dynamic work-
stealing was needed, by describing our earlier attempts to
parallelize GraphWCOJ using two static work partitioning
approaches which failed to scale properly.

Baseline.Our baseline static partitioning is a single-variable
partitioning scheme in which we partition the value of a
single variable into as many ranges as the desired level of
parallelism. The domain of each variable is equal to V , the
number of vertices in the graph. Therefore, if we partition
by the first variable, the first worker processes only the first
V /w values for bindings of the first variable, wherew is the
number of workers.

Logical Shares.We also extend the main idea behind Shares
to a logical partitioning scheme. Instead of physically parti-
tioning the graph before computing the join, we determine
if a tuple should be considered by the task using the Shares
logic. We do so by organizing the cluster workers in a hy-
percube in which we assign a coordinate to each worker.
Similar to Shares, each worker processes only those tuples
that match its coordinate.
Integrating Shares and lftj comes with two important

design decisions. Firstly, we need to compute the optimal
hypercube configuration, which we solve by employing the
exhaustive search algorithm proposed by Myria [13]. Sec-
ondly, the lftj operates on a complete copy of the edge
relationship and so, we need to filter out the values that do
not match the coordinate of the worker. Using a hash-based
filter directly on the TrieIterators is relatively expensive
because it can only filter one value at a time, thus causing
repeated searches. Instead, we filter the values after build-
ing the intersection by applying the filter over the set of
LeapfrogJoins.

We improve the physical Shares scheme by using the same
csr data structure for all TrieIterators. As a consequence,
we avoid materializing a prefiltered data structure for each
TrieIterator which reduces both time and memory if the
partitions become large for long-running queries.

Range Shares. Our first Shares implementation filters out
values after building the intersections. In this section, we
explain how to push it into the TrieIterators by applying
relatively inexpensive rang e based filters instead of hashing.
The main idea behind Shares is to map each attribute

from the value space to the hypercube coordinate space
through hashing. However, this can also be achieved by using
ranges so that a value matches a coordinate if it is in the
corresponding range. For instance, in a three-dimensional
hypercube with three workers per dimension, we can divide
the value space into three ranges.

(a) Speedup (b) Skew

Figure 7: Contrasting the speedup and the skew

achieved by the static partitioning schemes using a 3-

clique algorithm on the LiveJournal dataset.

Intuitively, we expect this way of mapping to scale better
than a hash-based Shares because it requires less intersec-
tion work. However, it turns out that the same range can
be assigned multiple times to the same worker for different
attributes. As Figure 7b shows, this may result in significant
skew, thus degrading the performance as compared to the
standard hash-based Shares. To mitigate this issue, we divide
the vertex identifiers into more ranges than the number of
workers in the hypercube dimension corresponding to the at-
tributes. We assign multiple ranges to each TrieIterator in
such a way that the overlap of the first two attributes equals
the overlap of the hash-based implementation. We further
assign the later attributes randomly so that all combinations
are covered. Nevertheless, we find that the search pattern
instances are still unevenly distributed over the ranges of
vertex identifiers. In particular, for the triangle query on
the LiveJournal dataset, we find that the ratio between
the number of triangles generated by the fastest and slowest
worker is only 40%. Therefore, our experiments in Section A.1
show that the standard hash-based Shares outperforms the
range-based version.

A.1 Experiments

In this section, we analyze the scalability and skew intro-
duced by the static partitioning scheme introduced above
when running a 3-clique query on the LiveJournal dataset.
To assess scalability we run the query with 1 to 48 threads.
We define skew of a scheme as the ratio between the time it
takes to compute the largest and smaller partitions.
Figures 7a and 7b show the speedup and skew of the 3-

clique query when increasing the number of threads. We find
that all schemes scale sublinearly with the number of threads
and that logical Shares outperforms the other schemes. In-
terestingly, partitioning on the second variable is slightly
worse than Shares, while the other two schemes perform
much worse. The reason for this result is that both logical
Shares and partitioning on the second variable introduce the
lowest skew, as we see in Figure 7b.



We observe that there is a strong correlation between
the speedup and the skew depicted in Figures 7a and 7b,
respectively. In all partitioning schemes except the Shares-
RangeMulti, the amount of skew relates directly to the scaling
behavior. SharesRangeMulti is more skew resilient than both
first variable partitioning and SharesRange, but fails to scale
better. The reason for this result is that the first variable

partitioning avoids replicating any work and so, scaling is
better even with higher skew between workers.
Overall, static partitioning schemes have relatively poor

scaling properties. Even partitioning schemes such as par-
titioning on the first variable which avoid replicating work
are outperformed by logical Shares which is the best static
policy in mitigating skew.
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