Two Birds With One Stone: Designing a Hybrid Cloud Storage
Engine for HTAP

Tobias Schmidt

Technische Universitat Minchen
tobias.schmidt@in.tum.de

Viktor Leis
Technische Universitat Minchen
leis@in.tum.de

ABSTRACT

Businesses are increasingly demanding real-time analytics on up-
to-date data. However, current solutions fail to efficiently combine
transactional and analytical processing in a single system. Instead,
they rely on extract-transform-load pipelines to transfer transac-
tional data to analytical systems, which introduces a significant
delay in the time-to-insight. In this paper, we address this need by
proposing a new storage engine design for the cloud, called Colibri,
that enables hybrid transactional and analytical processing beyond
main memory. Colibri features a hybrid column-row store opti-
mized for both workloads, leveraging emerging hardware trends.
It effectively separates hot and cold data to accommodate diverse
access patterns and storage devices. Our extensive experiments
showcase up to 10x performance improvements for processing
hybrid workloads on solid-state drives and cloud object stores.

PVLDB Reference Format:

Tobias Schmidt, Dominik Durner, Viktor Leis, and Thomas Neumann. Two
Birds With One Stone: Designing a Hybrid Cloud Storage Engine for HTAP.
PVLDB, 17(11): 3290 - 3303, 2024.

doi:10.14778/3681954.3682001

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/umbra-db/colibri-vldb2024.

1 INTRODUCTION

Data-intensive applications increasingly demand real-time ana-
lytics on up-to-date data. Current approaches require extract-
transform-load (ETL) pipelines to transfer transactional business
data into analytical systems, delaying the time to insight. To address
this challenge, modern database systems should support both on-
line transactional processing (OLTP) for small updates and online
analytical processing (OLAP) for complex queries on large data
sets within a single system [47]. Systems extend their support for
hybrid transactional and analytical processing (HTAP) to meet this
demand. Snowflake, for instance, recently added HTAP capabilities
to its cloud data warehouse [63].

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 11 ISSN 2150-8097.
doi:10.14778/3681954.3682001

Dominik Durner
CedarDB
durner@cedardb.com

Thomas Neumann
Technische Universitat Miinchen
neumann@in.tum.de

OLAP i
™ : HTAP
oy, |

2
co,) oy,
'szt ¢

Analytical Performance

Transactional Performance

Figure 1: Performance characteristics and technologies of
OLTP and OLAP systems.

Earlier research on in-memory database systems has shown
the feasibility of hybrid transactional and analytical processing
when the entire database fits into the server’s main memory. By
keeping all records in main memory, these systems can overcome
the limitations of traditional storage engines. In-memory tables and
index structures allow for efficient point lookups and sequential
scans, and the absence of disk I/O reduces access times. However,
the capacity and price of main memory have stagnated [29, 49],
limiting scalability and making these systems uneconomical.

To alleviate the stagnation of main memory, current systems rely
on persistent storage to handle larger-than-memory workloads. In
such systems, the storage engine is one of the most important com-
ponents for achieving high performance. Storage engines retrieve
the data from persistent storage, buffer the data in memory, and
synchronize access to the data. They are at the heart of any database
management system, tightly coupled with the query engine, the
transaction management, and the logging system. Implementation
details of the storage engine, such as the physical data representa-
tion, the supported access paths, and the storage technology itself
determine whether a database system is suitable for transactional
or analytical workloads.

Current larger-than-memory systems struggle to combine trans-
actional and analytical processing. Because these workloads have
diverging requirements, existing storage engines optimize only
for one of the workloads, as illustrated in Figure 1. For example,
OLTP systems use a row-based storage format that is ideal for
small updates and point lookups. However, row stores are ineffi-
cient for OLAP workloads due to high read amplification: analytical
queries scan many tuples but typically access only a fraction of

https://doi.org/10.14778/3681954.3682001
https://github.com/umbra-db/colibri-vldb2024
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3681954.3682001

the columns. OLAP systems leverage compressed columnar for-
mats for fast sequential scans. Because compression and columnar
layout complicate updates to individual records, the system must
rewrite large chunks of data to incorporate small changes. Addi-
tionally, some analytical systems lack secondary indexes, making
point lookups prohibitively expensive for transactional workloads.

Besides the data layout, the storage technology is crucial for the
overall performance. In the last decade, two trends have redefined
the design of the storage engines: (1) the widespread adoption of
Solid-State Drives (SSDs) and (2) the migration of data processing
pipelines to the cloud. SSDs offer superior bandwidth and lower
latency than traditional Hard Disk Drives (HDDs), making them
a cost-efficient alternative to main memory for storage-intensive
workloads. Cloud database-as-a-service (DBaaS) offerings provide
unparalleled flexibility, elasticity, higher availability, and data dura-
bility. The separation of storage and compute, facilitated by inex-
pensive cloud storage, is driving the success of DBaa$ solutions.
They already account for 50 % of the database market [59].

The cloud offers multiple storage options, including instance-
local SSDs, remote instances, and object stores. These technologies
share similar characteristics: (a) high bandwidth, (b) moderate la-
tencies, and (c) (almost) unlimited capacities. A single SSD achieves
aread bandwidth of up to 7 GB/s (PCle 4), and RAID configurations
can retrieve more than 50 GB/s. Access latencies on modern SSDs
are in the order of 100 ps [30]. Similarly, data centers nowadays pro-
vide network bandwidths of 100 Gbit/s or more, and cross-instance
network latencies can be less than 80 us, with further reduction
opportunities using RDMA [75]. Cloud object stores, like Amazon
S3, also achieve bandwidths of up to 200 Gbit/s. However, request
latencies are significantly higher: 100 ms per request are to be ex-
pected [21]. Nevertheless, they offer almost unlimited capacities,
high durability, and availability. While SSD RAIDs do not offer
unlimited storage size, hundred TB configurations are practical.

In this paper, we propose the Colibri storage engine design. It
optimizes for hybrid transactional and analytical processing beyond
main memory, leveraging new hardware trends. The design (a) fea-
tures a hybrid column-row store for HTAP workloads, (b) separates
hot and cold data to optimize the different access patterns and stor-
age devices, and (c) exploits the high bandwidth modern storage
devices offer. Colibri retains the transactional performance of row
stores and achieves the analytical performance of column stores.
The proposed storage engine design is tailored to solid-state drives
and cloud object stores and exploits their similarities. It efficiently
processes hybrid workloads in on-premise and cloud deployments.

The paper is organized as follows: First, we analyze existing
cloud-native OLTP, OLAP, and HTAP systems and highlight the
design decisions that lead to the architectures in Section 2. Based
on the insights, we propose the Colibri system architecture for
cloud-native HTAP systems in Section 3. Section 4 describes the
implementation of a storage engine optimized for the sketched
architecture. We highlight several optimizations that improve trans-
actional performance on a hybrid column-row store. In Section 5,
we describe optimizations to fully utilize high-bandwidth storage
devices and improve point lookups in column stores. We implement
Colibri in the relational DBMS Umbra and evaluate it against other
systems in Section 6.

2 CLOUD-NATIVE DATABASE DESIGNS

To design an efficient storage engine capable of processing analyti-
cal and transactional queries simultaneously, we first analyze state-
of-the-art cloud-native database engine designs. Figure 2 depicts
the architecture and components common to most systems devel-
oped by cloud service providers such as Amazon AWS, Microsoft
Azure, or Alibaba Cloud. We distinguish three classes of designs
based on the workloads they support: OLTP, OLAP, and HTAP.

OLTP. Early transactional designs have utilized the high avail-
ability disaster recovery (HADR) architecture, replicating the data-
base to secondary nodes to improve availability and durability [26].
However, this architecture limits the database’s size and fails to
meet customer demands for elasticity and performance. Therefore,
cloud-native designs separate the storage layer from the database
system and provide a dedicated infrastructure, as shown in Fig-
ure 2a. The primary node ships the log entries to dedicated log
servers. The log servers are responsible for persisting log entries
and sending log records to secondary nodes and page servers. In
contrast to the HADR architecture, page servers store the database
state and serve buffer pages to the compute layer. The primary goal
of the log servers is to ensure durability, while page servers provide
availability. Microsoft’s Socrates pioneered this architecture [8],
and Huawei’s Taurus database later adopted it [18].

Other systems, such as Amazon Aurora or PolarDB, follow this
architecture but do not separate the log and page servers. Aurora
combines the log and page servers into one storage node [66], and
PolarDB writes logs and pages to a custom low-latency distributed
filesystem [46, 69]. While the general architecture is based on a sin-
gle writer, recent work has explored multiple write nodes through
sharding [13] or multi-master designs [19].

Most cloud-native OLTP systems evolved from existing on-

premise systems: Taurus, Aurora, and PolarDB are based on MySQL
and Socrates builds upon SQL Server. Cloud vendors adapt the stor-
age system and transaction management but reuse the other parts of
the database. The cloud systems maintain the row-oriented storage
format to support high transaction rates.
Insights — Cloud-native OLTP systems introduce an optimized stor-
age layer to improve elasticity, availability, and durability. The new
architecture allows to process workloads that exceed the capacity
of a single machine. Separating the storage from the database is
pivotal for scaling the two layers independently and sharing stor-
age servers between multiple tenants. However, the row-oriented
storage format limits the performance on analytical workloads.

OLAP. The architecture of cloud-native OLAP systems, depicted
in Figure 2c, differs from OLTP designs. The leader, also known as
the coordinator node, accepts queries, manages a cluster of worker
nodes, and handles transactions. This node optimizes the incoming
queries, generates execution plans, and assigns tasks to the worker
nodes. The user data is typically stored in a column-oriented format
on high-availability object stores like Amazon S3 or Azure Blob
Storage and retrieved by the worker nodes. This storage-separated
design is implemented by several cloud data warehouses, such as
Redshift [11, 28], Snowflake [17], and AnalyticDB [72], enabling
them to process petabytes of data.

1 1 1

1 i i 1 1

| (erensactions Load Balancer _@ P s Load Balancer f Leader
5 \ / Leader 1 Query Transaction
5, 1 () I 1 1 Optimizer Manager
= Primary (RW 1 !

Secondary (RO ~

g = .-, Secondary (o) ! [Primary (RW) TG) \ i
2 XY = o o | = o P 1 [Worker | | Worker
o | rowstore indexes — o000 1 © © 1
o rowstore indexes = 0000 > 0 | Worker H| Worker ﬁ

1 1 columnstore caches 1 Worker 9 Worker 9

0 \ \ SD sD| fhes

: : o B i 2

1 Ir Log Servers : 1 l 1 columnstore caches columnstore caches

1 i 1 1
B 0 0 1 1
Z el s - ! ¥

[] —_—————— === —_——_————— e e = e = e = === = =

= : o= —I ————————— *— - - : 1 Object Storage Service : : | Metadata Servers
[! 1 1
8o 1 — i ~— I e
J ¢ ocobooocoloooooooodoooodoo ! - 1
¥ EElEE]
S [N | 1 v 0

=SB=EseEeeses . R 1

[' 1 ‘

1 1 1 1 . . 1

———————————————————————— <——— queries / transactions il et ol it

: * : q : 1 Object Storage Service !

| cogpdosocoogad -——— 1 @ log files ! : - I~ N —— :
g 1 Object Storage Service : 1 ' | data files log files W !
e : : " : buffer pages / metadata : | 1
3 (e | —nre L
. 1 g 1 1 data files !

(a) OLTP architecture

(b) HTAP architecture

(c) OLAP architecture

Figure 2: Cloud-native database designs. We sketch the components common to most systems and the data flow between them.

While object stores serve as the primary storage layer for user
data, metadata like table schemas, transaction logs, and visibility in-
formation of data files are stored in a separate database. Snowflake,
for instance, relies on FoundationDB [74], a distributed key-value
store, to manage the metadata and guarantee transactional consis-
tency (e.g., snapshot isolation) [65]. Open table formats like Delta
Lake or Apache Iceberg avoid the metadata layer. Instead, they write
a transaction log directly to the object store but sacrifice transac-
tional performance for the simplicity of the architecture [2, 10].
Insights — Cloud data warehouses rely on column stores and scale
out to process analytical workloads at petabyte-scale efficiently. The
storage layer is decoupled from the database using object stores
that offer high durability and availability. An external metadata
service stores transactional data and ensures ACID properties.

HTAP. The customer demand for real-time analytics on trans-
actional data has led to the development of cloud-based HTAP
systems working on a single state. Cloud offerings like MySQL
HeatWave [4] or PolarDB-IMCI [67] evolved from existing OLTP
systems and copy the data to column stores to improve analytical
performance. Similar to OLTP systems, a primary node processes
write requests and ships the log entries to the replica nodes (cf. Fig-
ure 2b). The replica nodes replay the log and apply the changes to
an in-memory column store. Analytical queries are answered on the
columnar replica, while the primary node retains its transactional
performance. F1 Lightning proposes a database-agnostic approach
that allows seamless integration with existing OLTP systems [68].
ByteHTAP is a cloud-native OLTP system with page and log servers
that integrates a distributed OLAP engine. The log servers send the
log entries to the storage layer of the OLAP engine, which creates
a column store for fast analytics [15].

SingleStore, a cloud-native HTAP system, follows a similar archi-
tecture but uses an in-memory row store for the most recent data.

New records are periodically transformed into columnar format
and written to an object store by the primary node. A cluster of
worker nodes answers analytical queries on the database [57].
Insights — Most HTAP architectures are built upon OLTP systems
and maintain a read-optimized replica of the data for fast analytics.
Cloud-native systems like SingleStore avoid duplication and persist
the data in a column store.

3 COLIBRI: A CLOUD-NATIVE HTAP DBMS
ARCHITECTURE

Based on the analysis from Section 2, we propose Colibri, a cloud-
native HTAP architecture illustrated in Figure 3. The design inte-
grates the key features of OLTP and OLAP systems to support both
workloads. Resembling a cloud-native OLAP system, the compute
layer consists of a primary node (leader) and a cluster of worker
nodes that execute queries. The leader node accepts incoming re-
quests and executes transactions, similar to cloud-native OLTP
systems. Analytical queries can be forwarded to worker nodes. A
storage layer with dedicated log and page servers persists the data
and ensures durability and availability. Furthermore, Colibri relies
on a hybrid column-row storage format for transactional and ana-
lytical processing. In the following, we briefly explain our design
considerations that led to this architecture:

(1) Separation of hot and cold data. Whereas OLTP transactions
generally only access a small fraction of the data, OLAP workloads
often scan large parts of the database. We, therefore, partition tables
into hot and cold areas based on the access pattern and choose
different data placement strategies and formats for each part. Hot
data items are frequently queried by OLTP transactions through
point accesses, requiring multiple columns to perform updates. We,
therefore, store them in an uncompressed row-based format on page

1

: Leader Worker
% 0DpDooo o Worker o
> = o o b o
o | 00 eeee—> Worker © |eee
= 1 |row & column indexes P O |ndexes
o Worker © |eoe
3! [”:”][”]D o (XX}
2, == O O [ndexes A
S 1 D00== eeee
o \ P [row & column indexes

1

1
1;) 1

oo __1T I .
E’ | : Log Servers \ 1 Page Servers !

1 1 1
@ I — | 1
g0 ! 1
el slEling SIS IE S| S S
ORI —————— I —————) e 0
3
n |

1

1

0 Scococococmocooooicoeccccodaooos
é- 1 : Object Storage Service :
S | P~ Y —— Y —
O 1 | data files| | log files W =

1 1 !

<——— queries / transactions
buffer pages / metadata

g log files
= data files

Figure 3: Colibri, a cloud-native HTAP architecture, combines
the benefits of OLAP and OLTP systems.

servers for fast access. Cold data elements, in contrast, are primarily
used for analytics in sequential scans. Analytical queries typically
access only some columns, making columnar storage formats with
compression ideal for improving query runtime.

Colibri’s hybrid column-row store is the key to achieving good
HTAP performance. Several in-memory HTAP systems, such as
SAP HANA or SQL Server, utilize a combination of row and column
storage layouts to effectively handle both workloads [40, 61]. Sin-
gleStore also combines row and column stores but does not provide
a storage layer with page servers. It relies on LSM-Trees instead of
page-based data structures like B-trees [57].

(2) Exploiting high bandwidth storage devices. Cloud storage ser-
vices like Amazon S3 offer up to 200 Gbit/s network bandwidth to a
single compute node. Table scans on large datasets can exploit these
high bandwidths and process data at the speed of local solid-state
drives [21]. Therefore, all nodes in the cluster have direct access to
the object storage service.

(3) Minimize the number of log entries. For durability and recov-
erability, most modern systems, including cloud-native databases,
rely on ARIES-style logging [52]. Before a transaction can commit,
the write-ahead log must be made persistent and sent to the log
servers. Minimizing the number of log entries improves perfor-
mance, especially in a cloud-native OLTP architecture: the primary
node spends less time creating and shipping log entries, the log
servers persist less data, and the page servers replay fewer changes.

(4) Bypassing page and log servers for bulk operations. Loading
large amounts of data is a common pattern in analytical workloads.
OLAP systems like Redshift or Snowflake directly write the data
to object stores and only update the metadata referencing the new
files. A single write to the metadata suffices to insert thousands of
rows. Cloud-native HTAP systems must also adopt this approach
to avoid excessive logging for bulk operations.

Data Block Files

Figure 4: Hybrid column-row store. A B*-tree indexes com-
pressed and uncompressed blocks.

Compared to OLTP systems, Colibri stores most of the data in
object stores, which offer high durability and availability. Only hot
data items and indexes are kept on the page servers, to reduce access
latencies. From the perspective of an analytical system, we add log
and page servers to support transactional processing. The servers
avoid high latencies caused by logging changes to the object store
or an external database. In addition, the system uses a traditional
buffer manager, including page-based index structures, which are
essential for transactional workloads.

The sketched architecture relies on remote instances and ob-
ject stores as storage layer. We can also deploy the system to a
single instance with local storage: the system writes the buffer
pages, write-ahead log, and data files to local drives instead of a
remote storage layer. While this option reduces operation costs, it
strongly impacts durability and availability. Since SSDs have similar
characteristics, Colibri works for the cloud and on-premise.

This paper focuses on the efficient implementation of Colibri’s ar-
chitecture, in particular, the hybrid column-row storage format. We
provide a blueprint for HTAP storage engine and describe various
optimizations. Colibri facilitates high-performance query process-
ing for transactional and analytical workloads. We describe the
integration with object stores and adapt data access patterns to
high-bandwidth storage devices. For the design of the page and log
servers, we refer the reader to existing work [8, 18, 66].

4 HYBRID STORAGE ENGINE

Designing an HTAP storage engine is challenging due to the oppos-
ing characteristics of transactional and analytical processing. Our
solution to this problem is the Colibri architecture from Section 3,
which relies on a hybrid column-row store to separate hot and cold
data. In this section, we describe the storage engine’s design, the
efficient implementation of transactional operations, such as insert,
update, and delete, and the integration into the RDBMS Umbra [53].

4.1 Column-Row Store

To achieve fast performance for both transactional and analytical
workloads, we use two different data formats within the same
relation. Based on the access pattern, we decide which format to
employ. Hot data items are stored in an uncompressed row-based
format for fast OLTP, while cold data is compressed and stored in a
columnar format. Our storage engine with a hybrid column-row
store seamlessly queries and transitions between these two formats.
Individual records are located through a sorted record tree.

We utilize a B*-tree to organize the records based on their as-
sociated row ID. Every tuple is assigned a unique and monotonic
increasing row ID upon creation, i.e., the records are implicitly
sorted by the insertion order. The B*-tree stores blocks of records,
which are either compressed or uncompressed. A block is identi-
fied by the smallest row ID of its contained records. Our storage
engine design is based on the observation that the newest tuples
are typically hot tuples. Therefore, the most recent blocks in the
B*-tree will contain the uncompressed hot data items. In contrast,
earlier created blocks will be compressed to minimize bandwidth
constraints during cold data analytics. Note that once a cold record
is updated, we decompress it and move it to the hot section.

Figure 4 shows the hybrid column-row store and the record
tree. The B*-tree consists of (1) inner nodes and (2) leaf nodes. We
sort the tree using (3) row IDs as keys in both node types. Inner
nodes reference child nodes, while the leaf nodes reference the
blocks. A block consists of several thousand records in compressed
columnar or uncompressed row-based formats. (4) Compressed
blocks reference exactly one (5) data block file; (6) Uncompressed
blocks reference several (7) data pages. Besides the file reference,
the compressed blocks contain a header with statistics like min-
max-bounds for pruning the search space during query processing.
Data block files and data pages store the user data.

Uncompressed data pages use traditional buffer pages that store a
few hundred records. We refer to these pages as row-store; however,
the uncompressed pages materialize records in a PAX (partition
attributes across) layout, i.e., every column is stored in a separate
array on the page [6]. To ensure durability and recoverability, all
modifications are written to the write-ahead log. Uncompressed
data pages support inserting, deleting, and updating individual
records. Colibri stores B*-tree nodes on traditional buffer pages.

While uncompressed data pages are efficient for transactional
workloads, they are suboptimal for analytical workloads since all
columns are on the same buffer page. OLAP queries usually access
only a few columns of a relation; thus, column stores are more effi-
cient. Especially for datasets larger than main memory, reading un-
necessary data wastes precious bandwidth. To overcome the band-
width bottleneck, we compress the data to minimize the storage
size using the read-optimized Data Blocks format [39]. Data Blocks
offers fast decompression and predicate evaluation on encoded data
and filters data based on small materialized aggregates [51].

A compressed data block file is immutable after creation, and
we persist it before committing the transaction. Hence, logging the
changes to the referencing leaf node in the B*-tree is sufficient and
no additional log entries for the data block files are required. The
column-row store, therefore, consists of two parts: (1) the buffer
pages stored in the buffer file or on page servers, where every
change must be recorded in the write-ahead log, and (2) the data
block files stored as regular files on disk or in an object store without
any logging overhead.

This design is beneficial for large tables and saves a lot of space
in the buffer file. For instance, the lineitem table of the TPC-H
benchmark (SF1000) stores 354 GB in data block files, and only
41 MB of buffer pages are needed. Table 1 breaks down the space
consumption of the different components of the column-row store.
One data block file contains up to 262 144 records, and every leaf
has a fan-out of 51 blocks, resulting in 13 million records per node.

Table 1: Structure of the column-store for the TPC-H table
lineitem at SF1000. We report the size of the components
and how often they are used. Note that the (un-) compressed
blocks are part of leaf nodes and do not consume disk space.

‘ Size Count Comment

(O inner node 64KB 1 4093 children per inner node
(@) leaf node 64KB 450 up to 51 blocks per leaf
(») compressed block 1272B 22909 1 data block file per block
(5) data block file ~16 MB 22909 262 144 records per file
() uncompressed block | 1272B 3 up to 78 data pages per block
(7) data page 64KB 202 ~380 records per page

A two-layer tree already stores more than 50 billion records, as
inner nodes have up to 4 000 children. Only the last 73 000 tuples
at the end of the table are uncompressed and use buffer pages.

4.2 Inserts

HTAP systems must optimize for two kinds of inserts: OLTP transac-
tions that add only a few records to a table and analytical workloads
that insert large batches. We implement two variants for inserting
new tuples.

If the transaction inserts only a few tuples, we add the new
records to an uncompressed data page. New tuples are always
appended to the end of the table, i.e., the right-most leaf node
in the B*-tree. Each thread has an exclusive page to insert new
rows into to minimize contention!. For batch inserts, we bypass
the uncompressed data pages and immediately create a data block
file. New records are first materialized in thread-local buffers large
enough to fit an entire compressed block. Once the buffer is full,
the collected rows are compressed, and a new block is added to
the B*-tree. Before the transaction commits, the database system
flushes the data block files and syncs the data. The left-over tuples
in the buffers are inserted into uncompressed data pages.

Compared to the first variant, the second implementation pro-
duces only one log entry per block instead of one per tuple. It also
avoids torn writes, as the transaction only commits after persist-
ing the data. Without this optimization, every new record requires
three writes: (1) to the write-ahead log, (2) the dirty page is copied
to a double-write buffer to avoid torn writes, and (3) it is written
to the buffer file. Compressing the tuples upfront reduces the data
size even further. Especially in the cloud, batching reduces cost and
improves performance as we minimize the number of log entries
and bypass the OLTP infrastructure.

4.3 Deletes

Deleting records from the hybrid column-row store requires two
steps: (a) first, the database collects the row IDs of the tuples to
remove, and (b) then removes the records. For an uncompressed
block, we locate the data page containing the record and mark the
tuple as deleted on the buffer page. This operation requires one log
entry to update the page.

For compressed blocks, deletions are more involved as the file is
immutable. Because the records are stored in a columnar format,

! A maintenance task later merges the thread-local pages to avoid underfull nodes.

deleting a single tuple and rewriting all columns is too expensive.
Similar to SQL Server and SingleStore [40, 57], we maintain an
additional buffer page with a bitset to track the deleted tuples based
on their position in the block. The bitset page is kept on page servers
for faster access and in-place updates. Deleting a compressed tuple
sets the corresponding bit in the bit vector to indicate that the
record is not visible anymore. This operation requires one log entry
to update the bitset page and make the change durable.

Like inserts, deletions often occur in batches in OLAP workloads.
We optimize for this pattern and delete multiple tuples in a single
operation. Row IDs are sorted upfront, and all records from the
same block are deleted together. We create a single log entry that
contains the identifiers of all tuples to remove from the block.

After the delete operation is globally visible, i.e., no other trans-
action started before, we remove the deleted records and files.
We schedule asynchronous maintenance tasks that rewrite a com-
pressed data block if more than one-fourth is deleted. Empty blocks
without visible records are removed from the B*-tree, and the cor-
responding pages and files are freed.

4.4 Updates

In column stores, updates can be implemented as deletion of the
old record, followed by inserting a new tuple with the modified
columns. We also adopt this approach for the compressed data
blocks: we mark the tuples as deleted, extract the original values,
and then insert a new tuple using the regular insertion logic. The
row-based layout makes in-place updates possible on uncompressed
data pages: we modify the record on the page and log the old values
in case of a rollback. We assume that modifications to hot tuples are
more common, and most updates happen on uncompressed pages
using the in-place logic. Especially for OLTP applications, in-place
updates improve the throughput significantly.

Column stores can avoid out-of-place updates using differential
update structures like the Positional Delta Tree [32]. However, this
approach requires an additional tree structure to store the deltas
and complicates data retrieval. We, therefore, prefer out-of-place
updates and only use in-place updates for hot tuples. Additionally,
reinserting the tuple at the end of the relation moves them from the
cold section to the hot section, and subsequent updates are faster.

4.5 Maintenance

The hybrid column-row store requires several maintenance tasks
to keep the B*-tree balanced, eliminate dead records, and compact
cooling parts of the table. We implement the following four tasks
to avoid degradations:

(1) Merge under-full tree nodes and blocks.

(2) Move hot uncompressed tuples to cold compressed blocks.

(3) Remove deleted tuples from uncompressed data pages and
compressed data blocks.

(4) Delete empty data files from the object store.

The cost of the maintenance tasks depends on the storage format. In
hot areas, the data pages are small and contain only a few hundred
tuples. Compressed data blocks, in contrast, are much larger and
store more than 100 000 tuples. We, therefore, differentiate between
short-running and long-running maintenance tasks.

Table 2: Query performance for varying hot-cold thresholds
and buffer sizes (TPC-H SF100, queries per second).

hot-cold threshold
0.1s 03s 1s 3s 10s 30s 100s 300s

8GB| 045 045 046 042 043 031 029 0.23
16GB| 0.60 059 0.60 0.57 0.54 044 035 0.30
32GB| 1.10 1.09 1.08 098 094 0.89 0.79 061
64GB | 204 208 196 185 1.82 174 169 1.60

128GB | 2.77 277 271 262 257 257 254 246

buffer size

Short maintenance tasks are executed on the fly while travers-
ing the B*-tree. They are fast and touch only a few buffer pages,
e.g., merging under-full leaves and inner nodes in the B*-tree or
removing deleted tuples from uncompressed data pages that are not
visible anymore. We also merge blocks in the leaves and half-full
data pages from the same uncompressed block. Both tasks typically
run in 50 ps and consume in total less than 0.5 % of the computa-
tional resources for TPC-C.

Long-running tasks, on the other hand, involve multiple pages
and create a new compressed block. We execute these tasks in the
background to avoid blocking queries. For tasks (1) and (3), we
collect the IDs of compressed blocks that are less than half full and
then schedule a background job to merge two data blocks. Similarly,
for task (4), a background job deletes the data files from the object
store and removes the block from the B*-tree.

Compressing tuples is crucial for query performance. However,
moving tuples to the cold section too early or too late can degrade
transactional or analytical workloads. For example, if we compress
tuples and a subsequent transaction tries to modify them, we can-
not use the in-place update logic. Hence, every leaf in the B*-tree
tracks the transaction ID and timestamp of the last transaction that
performed an insert, update, or delete in one of the blocks. If this
transaction has become globally visible, i.e., no older transaction
exists, and the last modification happened more than 10 seconds
ago, the leaf and its blocks are cold, and we schedule a background
job to compress multiple data pages into one data block.

The five-minute rule suggests a 40s threshold for PCle v3
SSDs [9, 27]; yet, our microbenchmarks show that a 10 s threshold
works better for newer PCle generations. Table 2 lists the query
performance for different hot-cold thresholds on TPC-H. We use
two clients: one to continuously insert new (hot) data and another
to execute the 22 queries. The buffer size impacts the performance
and the threshold to use. When the data fits in memory, scanning
hot and cold data is equally fast. Compression enhances scan per-
formance once the dataset exceeds the buffer pool. For small buffer
sizes (8 to 32 GB), performance varies by 2x between a 0.1s and a
300 s threshold. The 10s are a tradeoff between performance and a
reasonable threshold for transactional workloads.

4.6 Integration with Modern Buffer Managers

When loading the data block files into memory for query processing,
we must store the files somewhere in memory. Umbra implements
a state-of-the-art buffer manager optimized for transactional work-
loads [42]. We cache the retrieved data blocks in the buffer manager
and store them beside traditional buffer pages. Note that we load
the compressed column individually to avoid read amplification.

Table 3: Database recovery (TPC-H SF1000, 1ineitem).

Table 4: Data Format Comparison (TPC-H SF100, 1ineitem).

‘ Load time WAL size #Log entries Recovery
Umbra 3099s 1.28TB 6166 M 5352s
Colibri 453s 1.02GB 5.17M 2.99s

Storing all data in one buffer pool simplifies memory manage-
ment and allows evicting data blocks in case of memory pressure.
However, unlike regular pages, the size of the columns varies and
depends on the compression ratio and the number of records in
the block. We, therefore, use variable-sized pages to store the com-
pressed columns [53]. Colibri loads the columns from the local file
system or an external object store into the buffer manager. As the
columns are immutable, the buffer manager does not need to write
the pages back.

4.7 Multi-Version Concurrency Control

Database systems provide isolation and consistency guarantees
through concurrency control. For transactions, isolation is crucial to
ensure correctness but requires careful implementation to avoid per-
formance degradation. Like many other in-memory and disk-based
systems [20, 35, 40, 56, 61], Umbra implements a timestamp-based
multi-version concurrency control protocol (MVCC). It maintains
multiple versions of a tuple, and transactions read the version valid
at their start. Updating an existing tuple adds a new version of this
record to the database. MVCC allows efficient transaction isolation
through snapshots and improves concurrency for long-running
queries and transactional workloads.

Umbra adpots HyPer’s version chain approach [54] to support
in-place updates. Updates move the old version of a tuple into a
version chain and link them to the modified page. We implement
this protocol in the hybrid column-row store to ensure snapshot
isolation. The in-memory version chains track the creation, deletion,
or updates of blocks and tuples. This lightweight MVCC protocol
provides the necessary isolation and consistency guarantees for
transactional workloads and the required performance [24].

4.8 Recovery

Colibri exploits the immutable data block files to reduce the number
of log entries. We batch inserts, compress tuples into data blocks,
and bypass the log. In this section, we analyze the benefits and how
it affects correctness in case of a crash.

Table 3 compares the recovery of Umbra and Colibri. We consider
the case where the database crashes immediately after loading
the 1ineitem table but before writing a checkpoint, forcing a full
recovery from the WAL. Loading the 6 billion rows in Umbra takes
52 minutes, with a log size of 1.28 TB. Analyzing and replaying the
changes takes more than one hour. Colibri, in contrast, only logs
the changes to the B*-tree and the uncompressed data pages. The
vast majority of the data is compressed and written to a durable
storage device before the transaction commits, reducing the WAL
to 1 GB. Hence, Colibri recovers in less than 3 seconds.

Colibri considers data block files durable and, therefore, does
not duplicate them in the WAL. We flush the data block files to a
durable storage device before committing to ensure correctness and

Full Table Filtered Point Look-

Scan [row/s] Scan [row/s] ups [row/s] Size
PAX (uncompr.) 68.4M 98.2M 1.01M 88.7 GB
Arrow 341 M 16.8 M 183 96.8 GB
Data Blocks 31.5M 99.4M 1.18M 34.1GB
Parquet 19.0M 7.29M 758 34.5GB
Parquet (Snappy) 112M 5.82M 752 23.9GB

avoid data loss. The files can be viewed as part of the database’s
log; however, they do not need to be replayed and compress the
data efficiently. In cloud environments, object stores like Amazon
S3 or Azure Blob Storage offer sufficient bandwidths and are highly
reliable and durable [21]. As a result, Colibri writes only 1 GB of
log data and 354 GB of data block files, four times less than Umbra.

4.9 Columnar Data Formats

With the rise of data lakes and data warehouses, open storage for-
mats such as Apache Parquet [3] and Apache ORC [1] have become
popular. They offer interoperability between systems, high compres-
sion ratios, and optimize for analytical access patterns. Although
some systems, like DeltaLake [10] or Iceberg [2], adopt these for-
mats as primary storage formats, most databases use them only to
import or export data. They lack efficient support for transactional
workloads and cannot be fine-tuned for the system’s query engine.
However, off-the-shelf formats, such as CSV, JSON, or Apache Par-
quet, can leverage server-side filtering (e.g., S3 Select [7]) to reduce
network requirements for an additional surcharge.

For the hybrid column-row store, two features are essential: (i)
fast decompression of individual tuples for point access and (ii)
evaluating filters on encoded data for query performance. The Data
Blocks format supports both operations [39]. It employs only simple
compression schemes like frame of reference, single value, or dic-
tionary encoding and avoids heavyweight compression algorithms
like LZ4 or Snappy [37]. Hence, the format is fast to decode, and
conditions like equality or range filters can be evaluated on the
compressed data [5, 77]. This is a good trade-off in cloud systems
as the CPU is more expensive than storage space, and network
bandwidths match decompression speeds nowadays.

Table 4 compares the Data Blocks format, Apache Parquet,
Apache Arrow, and Umbra’s PAX layout. We evaluate three com-
mon HTAP access patterns: full table scans, filtered scans?, and
point lookups. PAX and Arrow perform best for full table scans,
storing data in memory without decompressing it. For filtered scans
and point lookups, Data Blocks is superior due to vectorized filters
and lightweight encodings. Parquet is slightly slower for sequential
scans but still within the same order of magnitude. Point lookups
are slow due to complex encodings, like run-length or delta encod-
ing. Regarding the data size, Parquet and Data Blocks are almost
identical: compressing the data using Snappy reduces the size fur-
ther by 31 % but increases access times. Formats like ORC perform
similarly to Parquet [48, 71].

2We disabled data skipping indexes like small materialized aggregates and zone maps
for this workload.

(1) collect Blocks 1

retrieve comp-
ressed blocks

E-®

—-0>© © © (———>

E+®
[

B*-tree scan

DENEEEEE @)
o oo

process uncompressed
blocks synchronously

(2) Prepare 1/0 requests

all columns are
cached, process
block immediately

1 1
| (3 Async. 1/0 | (@) Process Blocks
1 1
submit | io_uring X a OO .

requests | |
1 1
1 ! a (|
1 1
/4 | e eBO
1 G 1 a D D
1 ° 1
P8 8 | 808
1 local remote ! process retrieved
! ocal RAID object store ' blocks in parallel

Figure 5: Bandwidth-optimized table scan. The scan is split into four tasks to asynchronously retrieve compressed blocks from
local or remote storage devices. We use io_uring for asynchronous I/O as proposed by [21].

4.10 Retrieval Cost Optimization

In cloud object stores, customers pay for every request. Retrieving
large objects is cheaper, and higher download bandwidths are pos-
sible. For Amazon S3, Durner et al. show that 16 MB requests are
cost optimal and achieve the full per-request bandwidth [21]. The
Data Blocks format typically requires one or two bytes per com-
pressed value. With 262 144 records per block, a column is 0.25 MB
or 0.5 MB large, far from the optimum.

We, therefore, combine multiple compressed data block files into
a segment to increase the request size. A segment puts together the
columns from multiple blocks, such that a single request retrieves
one column from all merged blocks. We allocate one segment per
leaf page in the B*-tree and store the segment files in the object store.
The segment files are created either on the fly during bulk inserts
or through maintenance tasks. For the 1ineitem table, we merge
51 data blocks into one segment, and downloading one column for
the entire table takes only 450 requests. This optimization reduces
retrieval costs by up to 10x.

4.11 Secondary Indexes

Our relation does not sort the data but instead orders the tuples by
time of insertion. This is beneficial for splitting the relation into hot
and cold parts, as we assume that the most recent records are the
most frequently modified ones. However, transactional workloads
require efficient point lookups. Umbra, therefore, uses B*-trees to
access individual records efficiently. In Section 5.1, we explain how
to efficiently extract individual tuples from compressed data blocks.

The secondary indexes are stored on standard buffer pages,
and all modifications are logged. In a cloud setting, we can also
use the secondary indexes efficiently as they reside on the page
servers. Cloud-native OLAP systems fail to support traditional in-
dex structures, a critical component for transactional workloads.
Instead, they rely on small-materialized aggregates (SMA) [51],
zone maps [25], or caches [60, 62] to skip data. Colibri exploits both
secondary indexes and SMAs to avoid full table scans.

5 QUERY PROCESSING

After describing the transactional operations, this section ex-
plores query processing on the hybrid column-row store. High-
performance query engines provide outstanding analytical perfor-
mance for in-memory data. However, if the data is not cached in
memory, it is difficult to read sufficiently many records to exploit

the query engine’s full potential. Especially datasets larger than
main memory pose a challenge to row-stores.

HTAP systems access relational data in two different ways: point
lookups and (filtered) table scans. We first describe how we extract
individual records efficiently. Then, we introduce a bandwidth-
optimized table scan for reading data from SSDs and object stores.

5.1 Point Lookups

Point lookups are a common access pattern in OLTP workloads,
but they also occur in OLAP queries with index nested-loop joins.
Databases avoid expensive full table scans using indexes to search
for individual tuples. A secondary index maps the searched key to a
row ID and retrieves the corresponding tuple from the table. In the
case of the column-row store, lookups (A) first traverse the B*-tree,
(B) find the corresponding block on the leaf page, and either (C.1)
read an uncompressed data page or (C.2) extract the compressed
tuple. For high scalability, it is essential to minimize contention on
shared resources and efficiently decompress individual tuples [45].
We optimize these steps as follows: Colibri uses optimistic lock
coupling to traverse the tree in steps (A) and (B) without acquiring
a mutex [23, 44]. It combines lock coupling and optimistic latches
to minimize contention [43]. On the leaf page, we perform a binary
search to find the block that contains the row ID. In case of an
uncompressed block, we search for the uncompressed data page,
load it using lock coupling, and continue in step (C.1). For step (C.2),
we use optimistic latches to read the columns of a compressed block
without acquiring multiple shared latches for every column.

5.2 Bandwidth-Optimized Table Scans

Networks and SSDs easily retrieve multiple gigabytes per second
nowadays. However, the database must adapt its storage engine to
exploit these high bandwidths and hide I/O latencies [34]. Asynchro-
nous I/O interfaces, like io_uring or Linux AIO, allow the system
to schedule sufficient many requests to leverage the available band-
width. We implement an asynchronous table scan that optimizes
bandwidth and transparently handles network storage services and
local solid-state drives. The scan is split into four tasks and builds
on the cloud storage integration of Durner et al. [21].

Figure 5 illustrates the individual tasks and their interaction.
Task (1) is executed upfront and collects all blocks that qualify in
a ring buffer. Task (2) - (4) run in parallel and retrieve the missing
files either from the SSD or an object store and process them. We

Table 5: Hardware Platforms Colibri ~-e= Umbra =¥ Postgres =+ DBMS X DBMS Y
& S 30
‘ epyc i3en.metal = o

k= =

cpU AMD EPYC 7713 Intel Xeon 8175 & 22T A

Threads 256 (2.0 GHz) 96 (3.1 GHz) %" £ 0d ~, [T

Memory 1024 GB 768 GB A g k._;\\\
= < 0 e ~

SSDs 8x Samsung PM9A3 8x NVMe SSD
Storage 14 TB (56 GB/s)

Network

60'TB (16 GB/s)
100 Gbit/s

(a) TPC-C: transactional throughput

Number of Clients

- T T T T T
0 50K 100K 150 K 200 K 250 K 300 K
Transactional TP [Tx/s]

(b) CH-benCHmark: combined throughput

Figure 6: Performance comparison on the TPC-C and Ch-benCHmark workload.
We use up to 64 transactional and analytical clients.

adaptively schedule threads to each task depending on the cur-
rent processing speed, retrieval bandwidth, and buffer space usage.
Morsel-driven parallelism allows multiple threads to process the
same block simultaneously in task (4).

We ensure that the speed at which new requests are created
matches the retrieval bandwidth and that the retrieval speed does
not overtake the processing speed. Furthermore, we limit the size
of the outstanding requests to 10 % of the buffer pool; otherwise,
performance degrades as other queries steal the buffer pages. We
maintain global statistics to track resource usage and balance all
tasks to fully utilize the available resources.

Efficient data filtering is crucial for analytical processing. Besides
the small materialized aggregates, Umbra uses optimized vector-
ized scans to efficiently eliminate records before passing them on.
Simple restrictions, like equality or comparisons with a constant,
are evaluated on the compressed data block using modern SIMD in-
structions. Additionally, we use bloom filters as semi-join reducers
and push them into table scans to apply joins early on. Cloud-native
OLAP systems apply similar optimizations [11, 40]

6 EVALUATION

In the following section, we evaluate the performance of the Colibri
design with the hybrid column-row store. All components are inte-
grated into the relational database management system Umbra [53].
Our experiments show that the proposed approach processes ana-
lytical and transactional workloads efficiently. Colibri runs queries
on data sizes that exceed the main memory and exploits the high
bandwidth of modern storage devices. The proposed architecture
is cost-effective and fits well into modern cloud environments.

6.1 Experimental Setup

We conduct experiments in two different settings on the machines
from Table 5. Instance-local storage experiments use our local server
epyc and the cloud storage experiments run on an AWS i3en.metal
instance. Both systems have similar characteristics, and we maxi-
mize SSDs’ bandwidth and capacity using a RAID 0 configuration.

For the instance-local experiments, we evaluate the performance
of our storage engine against several other analytical and transac-
tional database systems. We use the following systems: (a) three
OLTP-optimized databases with row stores, the original version
of Umbra, PostgreSQL, and a commercial system DBMS X, (b) two

OLAP systems, the commercial DBMS Y and the open-source data-
base DuckDB [58], (c) and the HTAP database SingleStore. DBMS
Y and DuckDB use a column store, and SingleStore combines a
column store for analytical queries with an in-memory row store
for recent changes [57]. Note that Umbra uses PAX to organize the
columns within a buffer page more efficiently [6]. In the following
experiments, we refer to Umbra with the Colibri architecture as
Colibri. All systems write their data and log files to the RAID array.

Our benchmarks assess the OLTP and OLAP performance in a
combined setting using the throughput frontier metric [50]. Each
system is evaluated with varying combinations of analytical and
transactional clients, ranging from 1 to 64 clients each. The through-
put frontier reports the skyline of the measured throughput a sys-
tem achieves in each dimension. We prepare queries and transac-
tions upfront and send multiple requests through message pipelin-
ing to minimize the communication overhead.

For the cloud experiments, we compare the performance of
Colibri against Snowflake (large cluster) and Amazon Redshift (4-
node ra3.16xlarge cluster) on AWS. For Umbra and Colibri, we use
i3en.metal instances and S3 buckets in the eu-central-1 region.

6.2 Instance-local HTAP Performance

We first evaluate the column-row store on a single instance to
highlight analytical and transactional performance differences. Our
experiments demonstrate that the Colibri design outperforms the
other systems on OLTP, OLAP, and HTAP workloads.

6.2.1 TPC-C. We begin our evaluation by comparing the trans-
actional capabilities of the different systems. Figure 6a shows the
transactional rates for the TPC-C benchmark with 100 warehouses.
The workload consists of 92 % write and 8 % read transactions.

Umbra achieves the highest transaction throughput starting at
26 000 Tx/s, and scales to 325 000 Tx/s with 32 clients. The OLTP-
optimized systems, PostgreSQL and DBMS X, peak at 90 000 Tx/s
and 30 000 Tx/s. DBMS Y, which entirely relies on a column store,
executes only 210 Tx/s, and the performance decreases with mul-
tiple clients. Colibri, with its row store for the hot part of data
processes 300 000 Tx/s, only 8 % less than the row store.

Table 6 breaks down the performance improvements by combin-
ing column and row stores. Without any of the optimizations from
an OLTP system, the column store processes only a few transactions
per second. Adding secondary indexes improves the performance

=+ DBMS X

DBMS Y SingleStore == DuckDB

800 48

600

400

Analytical TP [Q/s
1
| “‘\
{
Analytical TP [Q/h

200

Colibri == Umbra =¥ Postgres

— — 6

4

&

o, 4

& 4

<

2

g

=

<

é 0 T T T 0 T
50 K 100 K 150 K 200 K 0.5
Transactional TP [Tx/s]

(a) HATtrick SF100

Transactional TP [Tx/s]
(b) TPC-H SF100

0 = T T T T
1 1.5 100 200 300 400

Transactional TP [Tx/h]
(c) TPC-H SF1000

Figure 7: HTAP performance. We limit the buffer pool size to 128 GB (note that the buffer space for SingleStore is not restricted).

Table 6: Breakdown of the transactional performance. Colibri
without secondary indexes, row store, and in-place updates
is the baseline. We enable the optimizations step-by-step and
report the transaction rates on TPC-C with a 100 warehouses.

Colibri versions 1 client 32 clients
column store 3Tx/s 45Tx/s
+ secondary indexes 465 Tx/s 2685 Tx/s
+ row store 5404 Tx/s 94 644 Tx/s
+ in-place updates 21508 Tx/s 288719 Tx/s

by two orders of magnitude. The row store further increases trans-
action rates by more than 10x. In-place updates, which are only
supported in row stores, speed up the transactions by a factor of 4.
Without the OLTP components, it is impossible to process transac-
tional workloads efficiently.

Insights — Multi-versioning in combination with Umbra’s in-
memory version chains provides the highest transactional through-
put. The Colibri design with a hybrid column-row store has only
a small overhead and improves the transactional performance of
analytical column stores by more than three orders of magnitude.

6.2.2 CH-benCHmark. Next, we run the TPC-C benchmark with
analytical queries to evaluate the systems’ HTAP capabilities as
suggested by Cole et al. [16]. The benchmark consists of 22 queries
executed in parallel on the changing TPC-C tables; the queries
are derived from the TPC-H benchmark. Figure 6b visualizes the
transactional and analytical throughput: we execute the benchmark
for different combinations of transactional and analytical clients to
demonstrate how these workloads affect each other. The plotted
line shows the skyline of the measured throughput for each system.
The OLTP-optimized systems (PostgreSQL and DBMS X) achieve
the same transactional throughput as before but fail to provide a
competitive analytical performance. Both systems execute no more
than five queries per second, even without any update transactions.
The OLAP system DBMS Y achieves a higher query throughput,
but the transactional rates are low. We observe that neither of the
other systems dominates in both dimensions. The OLAP and HTAP
systems perform better in analytical workloads and OLTP systems
in transactional workloads. Only Umbra maintains high transac-
tional and analytical throughput at the same time. As the data set
fits into the buffer pool, the system processes the analytical queries
in memory, and the data format does not affect the performance.

Insights — Row stores provide competitive performance for in-
memory analytics. However, systems must optimize both dimen-
sions to achieve high HTAP throughput.

6.2.3 HATtrick. Milkai et al. introduced the HATtrick benchmark
as an HTAP workload derived from the star schema benchmark [50].
Besides the analytical queries, the benchmark includes three dif-
ferent transactions: two small update transactions and a read-only
query that accesses roughly two hundred records.

This benchmark shows the benefits of column stores: Colibri,
SingleStore, DuckDB, and DBMS Y run the analytical queries with
high throughput. Umbra achieves similar performance, as the data
fits into the buffer pool. Compression improves the performance
even further: Colibri eliminates many blocks using small material-
ized aggregates and filters the data more efficiently. Surprisingly,
Umbra’s transactional performance is lower, and PostgreSQL and
Colibri surpass it. Umbra performs a full table scan in a read-only
transaction instead of using an index, as PostgreSQL does.
Insights — Read-heavy workloads benefit from columnar layouts
and small materialized aggregates. However, column stores must
optimize for small updates to compete with OLTP systems.

6.2.4 HyBench. We further investigate the performance of the
Colibri design with the HyBench benchmark [73]. The benchmark
simulates a real-world finance application and consists of three
stages that measure the OLAP (QPS), OLTP (TPS), and HTAP (XPS)
performance. Figure 8 shows the performance of Colibri, Umbra,
and Postgres using write-heavy (left) and read-heavy (right) work-
load patterns. Colibri performs better for the OLAP and HTAP
stages, while Umbra executes more transactions in the OLTP stage.
Postgres cannot match the performance of the other systems and
executes up to 10 times fewer transactions and queries.

K Colibri EZ Colibri (w/o indexes)

64 TC, 8 AC

Bl Umbra [EH Postgres
8 TC, 64 AC

100

10

Throughput

QPS TPS XPS

Figure 8: HyBench with different numbers of transaction
(TC) and analytical (AC) clients (scale factor 100).

Table 7: Per query execution times for TPC-H SF1000 for on-premise and cloud. Colibri with the column-row store is used
in in-memory and on disk / remote; the last two versions load all data from solid-state drives or from the object store. The
bandwidth plots show the per-query data retrieval speed from disk of Colibri’s asynchronous scan.

On-Premise GM Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Qi1 QI2 QI3 Q14 Q15 Ql6 Q17 QI8 Q19 Q20 Q21 Q22
Row store [s] 156 191 030 274 241 244 232 265 250 414 275 056 258 101 246 249 320 466 60.1 234 237 731 337
In-Memory [s] 214 073 026 499 310 391 020 394 289 248 519 052 271 929 137 161 305 078 137 030 083 675 3.35
On disk [s] 388 190 070 562 3.65 489 131 599 536 268 7.08 074 439 111 286 3.08 3.15 264 148 205 277 105 3.67
= 50 -
B e P T A
o
Bandwidth — 0 - AN AN /\ .M. //\
Cloud | GM Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 QI3 Q14 QI5 Ql6 Q17 QI8 Q19 Q20 Q21 Q22
In-Memory [s] 192 174 040 3.09 259 3.03 028 248 238 103 3.84 052 159 7.9 082 092 240 179 116 085 0.83 638 1.58
On-disk [s] 473 414 141 520 3.69 591 302 652 749 118 720 091 467 101 425 424 249 534 136 468 528 127 194
Remote [s] 923 653 452 997 707 111 524 122 141 218 173 231 907 236 752 7.96 373 9.04 202 765 117 230 534
Redshift [s] 234 494 129 406 176 302 021 295 193 7.05 349 063 095 755 073 186 200 183 811 272 3.05 871 251
Snowflake [s] 915 730 410 111 7.02 122 279 105 114 297 211 241 916 186 663 925 660 719 276 813 804 214 519
The benchmark also shows the impact of indexes on the runtime. g — Umbra Colibri Colibri (w/0 async scan)
. . . . Q
We turned off all index lookups and measured Colibri without g 16 i 10 +
indexes. The performance decreased in the OLTP and HTAP stage g?ﬁ 12 7]
by more than 2x and 4x, while the analytical performance remains s 8- 1 E
unaffected, as Colibri uses full table scans for the queries. g 4 0.1 4)
Insights — The HyBench benchmark confirms the performance of g] bl
the Colibri design in a real-world scenario. Efficient index lookups o:é 500 100 10 10 30 100 300 1K 3K

are crucial for transactional and hybrid workloads.

6.2.5 TPC-H. Lastly, we run the TPC-H benchmark with scale
factors 100 and 1000 to evaluate the analytical performance. We
also include transactions that update large parts of the orders and
lineitem tables to simulate an evolving data set. Figure 7b shows
the same picture as before: the OLTP-optimized systems achieve
high transaction rates while DBMS Y, DuckDB, and SingleStore
perform well for analytics. DuckDB’s vectorized execution engine
is better suited for processing large transactions; hence, the transac-
tional throughput increases compared to the HATtrick benchmark.

However, this time, Umbra is significantly slower than Colibri:
both queries and updates are faster with a column store. The data-
base size exceeds the 128 GB buffer space without compression, and
the row store must access the disk. For scale factor 1000, this effect
is even more visible (see Figure 7c). With compression, the database
is already larger than the buffer pool, and every system must read
from disk. Only the column-based systems provide competitive per-
formance, as row stores suffer from high read amplification. Colibri
executes 50 times more queries than Umbra using the bandwidth-
optimized scan from Section 5.2.

Table 7 shows the importance of the bandwidth-optimized scan.
The upper part of the table lists the execution times of the 22 TPC-
H queries on Umbra (first row) and Colibri with cached data and
without (second row and third row). Even as we load all the data
from disk, the column-row store is 4x faster than the row store.
When scanning the large lineitem or orders tables Colibri reads
at least 25 GB/s for compute-heavy queries, and up to 56 GB/s.

Figure 9 investigates the impact of data set size and buffer pool
size on the performance. The left plot gradually reduces the buffer
size from 500 GB to 10 GB. A fraction of the buffer space is enough
for Colibri to process the TPC-H queries efficiently. Without the
asynchronous scan, the performance drops by more than 3x once

Buffer Size [GB] Scale Factor

(a) TPC-H SF1000 (b) Buffer Size: 500 GB

Figure 9: Impact of the buffer pool size and the data set size
on the performance. Umbra always uses 500 GB buffer space.

records must be loaded from disk. Figure 9b shows that the column-
row store scales almost linearly with the data set size. The row-
based version provides competitive performance only if the data
fits into the main memory.

Insights — Data sets that exceed the buffer pool are challenging.
The column-row store, combined with the bandwidth-optimized
scan, efficiently processes large data sets. Our architecture provides
competitive performance for analytical and transactional workloads
and exploits the high bandwidth that modern storage devices offer.

6.3 Cloud-Store Performance

We also evaluate the performance of Colibri with the hybrid row-
column store in the cloud. Our experiments measure the analytical
and transactional performance with different storage options. The
proposed design achieves similar performance compared to com-
mercial data warehouses.

6.3.1 OLAP. The analytical performance of Colibri on object stores
or local SSDs is almost identical. Compared to the in-memory run,
reading the data from disk is only 2.5x slower (cf. Table 7). Yet,
the gap between the in-memory and the remote run, where Col-
ibri retrieves all data from S3, is larger: The network is limited to
100 Gbit/s, and Colibri reads only 12 GB/s from S3, a quarter of
the SSDs’ bandwidth. Besides, network communication is more
expensive than disk I/O, and Colibri schedules more threads as I/O
workers to saturate the available bandwidth. As a result, queries an-
swered from the object store are 4x slower than in-memory queries.

Compared to cloud-native OLAP systems, Colibri’s query execu-

tion times are on par. Redshift uses four compute nodes with half the
number of threads and memory each: roughly twice the compute
power and memory Colibri uses. Nevertheless, Colibri achieves sim-
ilar performance in a single instance. Snowflake does not disclose
its hardware specifications, but a large cluster costs eight credits,
equaling 16 $/h>. The Snowflake cluster costs one-fourth of a 4-
node Redshift cluster, where each node costs 13 $/h. Hence, a four
times performance slowdown is expected of Snowflake compared
to Redshift. We use one i3en.metal instance that costs 10.85 $/h,
without SSDs a similar instance costs 7.15 $/h.
Insights — The column-row store also performs well in the cloud.
Fast data retrieval from the object store is crucial for the perfor-
mance of analytical queries. The bandwidth-optimized scan exploits
the available resources and provides competitive performance.

6.3.2 OLTP. Cloud-native transactional systems have multiple op-
tions where to store the database pages and log files. We evaluate
the performance of Colibri on TPC-C with different storage config-
urations on the i3en.metal instance: (a) on the local SSDs, (b) using
Amazon’s elastic block storage (EBS)%, and (c) shipping the data to
another compute instance (EC2). The columnar files are stored on
Amazon S3. Shipping the log to another instance corresponds to
the proposed HTAP architecture in Section 3.

Surprisingly, on all three storage options, Colibri executes around
230000 Tx/s for 32 clients. Umbra uses a low-overhead logging
protocol with group commit that hides latencies [23, 31]. For all
storage options, the available bandwidth is much higher than the
amount of data written.

Insights — The cloud offers the necessary infrastructure to sustain
high transactional throughput. Remote storage options like elastic
block storage or log/page servers perform similarly to local storage.

7 RELATED WORK

This section reviews several on-premise and cloud-native database
systems and their analytical and transactional capacity. In addition,
we discuss how the different systems try to bridge the gap between
OLAP and OLTP performance. Most systems are first implemented
for one of the two workloads and use the respective storage format.
High-Performance OLTP Systems. Main-memory OLTP sys-
tems provide excellent transactional performance as the entire data
set is already cached [20, 22, 35]. With the adaption of solid-state
drives, modern systems try to extend this performance to larger
data sets, exceeding the capacity of the main memory. Systems like
LeanStore rely on asynchronous I/O to exploit the high throughput
of SSDs [30, 43]. However, they struggle to provide competitive an-
alytical performance once the data exceeds the capacity of the main
memory. Some systems, like Oracle Dual-Format or HyPer, improve
OLAP performance using in-memory column stores [38, 39].

Efficient Updates in Column Stores. Several on-premise systems
base their storage on column stores to process analytical queries
efficiently [41, 61, 64, 76]. The systems rely on delta stores [40, 61]
or differential updates [32, 36] to avoid rewriting the column store

3assuming the cheapest option with 2 $ per credit

4We use the ebs-optimized r5b.metal instance instead of i3en.metal and combine
multiple ebs devices to reach 7.5 GB/s upload and download bandwidth.

for every update. However, this comes at a cost: the changes must
be merged with the columnar data every time the table is scanned.

Other systems try to bridge the gap between row and column
stores using a flexible storage format. Arulraj et al. propose a system
that decides whether to represent an attribute in a row or columnar
format based on the workload [12].

Transactions in Cloud-Native OLAP Systems. Analytical sys-
tems, like Snowflake [17], Amazon Redshift [11], or Analyt-
icDB [72], rely on a distributed query engine combined with a
compressed column store on object storage services, like Amazon
S3. Transactional data is stored in an external database, like Founda-
tionDB [74], or on the object storage itself [10]. This design limits
OLTP performance as every update modifies the column store. To
improve transaction rates, Snowflake recently added support for
tables in row format with secondary indexes [63].

Analytics in Cloud-Native OLTP Systems. Socrates efficiently
exploits the cloud’s infrastructure to provide a scalable and elastic
OLTP system. Besides separating computation and storage, Socrates
further splits the storage layer into log and page servers [8]. Other
cloud-native OLTP systems, like Amazon Aurora [66], Taurus [18],
or PolarDB [46], implement similar architectures.

MySQL Heatwave [4], PolarDB-IMCI [67], and F1 Lightning [68]
evolve transactional databases into HTAP systems. They replicate
the row store into a columnar format and use a distributed query
engine to process analytical queries. The database system man-
ages both representations and eliminates the need for extracting,
transforming, and loading records into external analytical systems.
Cloud-native HTAP Systems. SingleStore relies on an in-memory
row store on the primary node for transaction processing and a
distributed column store for analytics. It converts the accumulated
records from the row store into a column format and stores them
in an LSM tree. SingleStore’s design shows similarities with Colibri,
e.g., it stores cold data on object stores. However, we rely on B*-tree
for fast point accesses and integrate with page-based systems [57].

TiDB and ByteHTAP implement a similar design: TiDB uses a
distributed row store based on the Raft consensus protocol [55] and
replicates the data into a column store to process analytical queries
using Spark [33, 70]. ByteHTAP combines a cloud-native OLTP
engine based on MySQL with an OLAP engine based on Flink [14]
and creates a column store from the log message [15].

8 CONCLUSION

This paper introduces the Colibri storage engine design for hybrid
transactional and analytical processing in the cloud and on-premise.
Our design integrates the strengths of OLAP and OLTP architec-
tures, enabling efficient analytics on larger-than-memory data sets
while accommodating high transaction rates. We separate hot and
cold data and leverage optimized storage formats for different ac-
cess patterns and storage devices. Colibri’s hybrid column-row
store bridges the gap between these two worlds.

Our experiments demonstrate that Colibri’s implementation in
Umbra outperforms state-of-the-art OLAP and OLTP systems. On
combined workloads, the proposed design achieves up to one order
of magnitude better performance than specialized systems. We
showcase that hybrid transactional and analytical processing can
be achieved efficiently on solid-state drives and cloud object stores.

REFERENCES

(1]
(2]
(3]
(4]
(5]

(6

=

[10]

(1]

[12]

[13]

[14]

[15

[16

[17

(18]

[19]

[20

[21]

2023. Apache ORC. Retrieved July 1, 2024 from https://orc.apache.org/

2024. Apache Iceberg. Retrieved July 1, 2024 from https://iceberg.apache.org/
2024. Apache Parquet. Retrieved July 1, 2024 from https://parquet.apache.org/
2024. MySQL HeatWave. Retrieved July 1, 2024 from https://www.oracle.com/
mysql/heatwave/

Daniel J. Abadi, Samuel Madden, and Miguel Ferreira. 2006. Integrating compres-
sion and execution in column-oriented database systems. In SIGMOD Conference.
ACM, 671-682.

Anastassia Ailamaki, David J. DeWitt, and Mark D. Hill. 2002. Data page layouts
for relational databases on deep memory hierarchies. VLDB . 11, 3 (2002),
198-215.

Amazon. 2024. Filtering and retrieving data using Amazon S3 Select. Retrieved July
1, 2024 from https://docs.aws.amazon.com/AmazonS3/latest/userguide/selecting-
content-from-objects.html

Panagiotis Antonopoulos, Alex Budovski, Cristian Diaconu, Alejandro Hernan-
dez Saenz, Jack Hu, Hanuma Kodavalla, Donald Kossmann, Sandeep Lingam,
Umar Farooq Minhas, Naveen Prakash, Vijendra Purohit, Hugh Qu, Chai-
tanya Sreenivas Ravella, Krystyna Reisteter, Sheetal Shrotri, Dixin Tang, and
Vikram Wakade. 2019. Socrates: The New SQL Server in the Cloud. In SIGMOD
Conference. ACM, 1743-1756.

Raja Appuswamy, Renata Borovica-Gajic, Goetz Graefe, and Anastasia Ailamaki.
2017. The Five-minute Rule Thirty Years Later and its Impact on the Storage
Hierarchy. In ADMS@VLDB. 1-8.

Michael Armbrust, Tathagata Das, Sameer Paranjpye, Reynold Xin, Shixiong
Zhu, Ali Ghodsi, Burak Yavuz, Mukul Murthy, Joseph Torres, Liwen Sun, Peter A.
Boncz, Mostafa Mokhtar, Herman Van Hovell, Adrian Ionescu, Alicja Luszczak,
Michal Switakowski, Takuya Ueshin, Xiao Li, Michal Szafranski, Pieter Senster,
and Matei Zaharia. 2020. Delta Lake: High-Performance ACID Table Storage
over Cloud Object Stores. Proc. VLDB Endow. 13, 12 (2020), 3411-3424.

Nikos Armenatzoglou, Sanuj Basu, Naga Bhanoori, Mengchu Cai, Naresh
Chainani, Kiran Chinta, Venkatraman Govindaraju, Todd J. Green, Monish Gupta,
Sebastian Hillig, Eric Hotinger, Yan Leshinksy, Jintian Liang, Michael McCreedy,
Fabian Nagel, Ippokratis Pandis, Panos Parchas, Rahul Pathak, Orestis Poly-
chroniou, Foyzur Rahman, Gaurav Saxena, Gokul Soundararajan, Sriram Sub-
ramanian, and Doug Terry. 2022. Amazon Redshift Re-invented. In SIGMOD
Conference. ACM, 2205-2217.

Joy Arulraj, Andrew Pavlo, and Prashanth Menon. 2016. Bridging the Archipelago
between Row-Stores and Column-Stores for Hybrid Workloads. In SIGMOD
Conference. ACM, 583-598.

Wei Cao, Feifei Li, Gui Huang, Jianghang Lou, Jianwei Zhao, Dengcheng He,
Mengshi Sun, Yinggiang Zhang, Sheng Wang, Xueqiang Wu, Han Liao, Zilin
Chen, Xiaojian Fang, Mo Chen, Chenghui Liang, Yanxin Luo, Huanming Wang,
Songlei Wang, Zhanfeng Ma, Xinjun Yang, Xiang Peng, Yubin Ruan, Yuhui Wang,
Jie Zhou, Jianying Wang, Qingda Hu, and Junbin Kang. 2022. PolarDB-X: An
Elastic Distributed Relational Database for Cloud-Native Applications. In ICDE.
IEEE, 2859-2872.

Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache Flink™: Stream and Batch Processing in a
Single Engine. IEEE Data Eng. Bull. 38, 4 (2015), 28-38.

Jianjun Chen, Yonghua Ding, Ye Liu, Fangshi Li, Li Zhang, Mingyi Zhang, Kui
Wei, Lixun Cao, Dan Zou, Yang Liu, Lei Zhang, Rui Shi, Wei Ding, Kai Wu,
Shangyu Luo, Jason Sun, and Yuming Liang. 2022. ByteHTAP: ByteDance’s
HTAP System with High Data Freshness and Strong Data Consistency. Proc.
VLDB Endow. 15, 12 (2022), 3411-3424.

Richard L. Cole, Florian Funke, Leo Giakoumakis, Wey Guy, Alfons Kemper,
Stefan Krompass, Harumi A. Kuno, Raghunath Othayoth Nambiar, Thomas
Neumann, Meikel Poess, Kai-Uwe Sattler, Michael Seibold, Eric Simon, and
Florian Waas. 2011. The mixed workload CH-benCHmark. In DBTest. ACM, 8.
Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin
Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
Jiansheng Huang, Allison W. Lee, Ashish Motivala, Abdul Q. Munir, Steven Pelley,
Peter Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp Unterbrunner. 2016.
The Snowflake Elastic Data Warehouse. In SIGMOD Conference. ACM, 215-226.
Alex Depoutovitch, Chong Chen, Jin Chen, Paul Larson, Shu Lin, Jack Ng, Wenlin
Cui, Qiang Liu, Wei Huang, Yong Xiao, and Yongjun He. 2020. Taurus Database:
How to be Fast, Available, and Frugal in the Cloud. In SIGMOD Conference. ACM,
1463-1478.

Alex Depoutovitch, Chong Chen, Per-Ake Larson, Jack Ng, Shu Lin, Guanzhu
Xiong, Paul Lee, Emad Boctor, Samiao Ren, Lengdong Wu, Yuchen Zhang, and
Calvin Sun. 2023. Taurus MM: bringing multi-master to the cloud. Proc. VLDB
Endow. 16, 12 (2023), 3488-3500.

Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin Mittal,
Ryan Stonecipher, Nitin Verma, and Mike Zwilling. 2013. Hekaton: SQL server’s
memory-optimized OLTP engine. In SIGMOD Conference. ACM, 1243-1254.
Dominik Durner, Viktor Leis, and Thomas Neumann. 2023. Exploiting Cloud
Object Storage for High-Performance Analytics. Proc. VLDB Endow. 16, 11 (2023),

[32

(33]

[34

(35]

(37]

[38

[40]

[41]

[42

[43]

2769-2782.

Franz Farber, Norman May, Wolfgang Lehner, Philipp Grofle, Ingo Miiller, Hannes
Rauhe, and Jonathan Dees. 2012. The SAP HANA Database — An Architecture
Overview. IEEE Data Eng. Bull. 35, 1 (2012), 28-33.

Michael Johannes Freitag. 2023. Building an HTAP Database System for Modern
Hardware. Ph.D. Dissertation. Technische Universitat Miinchen.

Michael]. Freitag, Alfons Kemper, and Thomas Neumann. 2022. Memory-
Optimized Multi-Version Concurrency Control for Disk-Based Database Systems.
Proc. VLDB Endow. 15, 11 (2022), 2797-2810.

Goetz Graefe. 2009. Fast Loads and Fast Queries. In DaWaK (Lecture Notes in
Computer Science), Vol. 5691. Springer, 111-124.

Jim Gray, Pat Helland, Patrick E. O’Neil, and Dennis E. Shasha. 1996. The Dangers
of Replication and a Solution. In SIGMOD Conference. ACM Press, 173-182.
Jim Gray and Gianfranco R. Putzolu. 1987. The 5 Minute Rule for Trading
Memory for Disk Accesses and The 10 Byte Rule for Trading Memory for CPU
Time. In SIGMOD Conference. ACM Press, 395-398.

Anurag Gupta, Deepak Agarwal, Derek Tan, Jakub Kulesza, Rahul Pathak, Stefano
Stefani, and Vidhya Srinivasan. 2015. Amazon Redshift and the Case for Simpler
Data Warehouses. In SIGMOD Conference. ACM, 1917-1923.

Gabriel Haas, Michael Haubenschild, and Viktor Leis. 2020. Exploiting Directly-
Attached NVMe Arrays in DBMS. In CIDR. www.cidrdb.org.

Gabriel Haas and Viktor Leis. 2023. What Modern NVMe Storage Can Do, And
How To Exploit It: High-Performance I/O for High-Performance Storage Engines.
Proc. VLDB Endow. 16, 9 (2023), 2090-2102.

Michael Haubenschild, Caetano Sauer, Thomas Neumann, and Viktor Leis. 2020.
Rethinking Logging, Checkpoints, and Recovery for High-Performance Storage
Engines. In SIGMOD Conference. ACM, 877-892.

Sandor Héman, Marcin Zukowski, Niels J. Nes, Lefteris Sidirourgos, and Peter A.
Boncz. 2010. Positional update handling in column stores. In SIGMOD Conference.
ACM, 543-554.

Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu
Tang, Yuxing Zhou, Menglong Huang, Wan Wei, Cong Liu, Jian Zhang, Jianjun
Li, Xuelian Wu, Lingyu Song, Ruoxi Sun, Shuaipeng Yu, Lei Zhao, Nicholas
Cameron, Liquan Pei, and Xin Tang. 2020. TiDB: A Raft-based HTAP Database.
Proc. VLDB Endow. 13, 12 (2020), 3072-3084.

Kaisong Huang, Tianzheng Wang, Qingqing Zhou, and Qingzhong Meng. 2023.
The Art of Latency Hiding in Modern Database Engines. Proc. VLDB Endow. 17,
3 (2023), 577-590.

Alfons Kemper and Thomas Neumann. 2011. HyPer: A hybrid OLTP&OLAP
main memory database system based on virtual memory snapshots. In ICDE.
IEEE Computer Society, 195-206.

Jens Kriger, Changkyu Kim, Martin Grund, Nadathur Satish, David Schwalb,
Jatin Chhugani, Hasso Plattner, Pradeep Dubey, and Alexander Zeier. 2011. Fast
Updates on Read-Optimized Databases Using Multi-Core CPUs. Proc. VLDB
Endow. 5,1 (2011), 61-72.

Maximilian Kuschewski, David Sauerwein, Adnan Alhomssi, and Viktor Leis.
2023. BtrBlocks: Efficient Columnar Compression for Data Lakes. Proc. ACM
Manag. Data 1, 2 (2023), 118:1-118:26.

Tirthankar Lahiri, Shasank Chavan, Maria Colgan, Dinesh Das, Amit Ganesh,
Mike Gleeson, Sanket Hase, Allison Holloway, Jesse Kamp, Teck-Hua Lee, Juan
Loaiza, Neil MacNaughton, Vineet Marwah, Niloy Mukherjee, Atrayee Mullick,
Sujatha Muthulingam, Vivekanandhan Raja, Marty Roth, Ekrem Soylemez, and
Mohamed Zait. 2015. Oracle Database In-Memory: A dual format in-memory
database. In ICDE. IEEE Computer Society, 1253-1258.

Harald Lang, Tobias Miihlbauer, Florian Funke, Peter A. Boncz, Thomas Neu-
mann, and Alfons Kemper. 2016. Data Blocks: Hybrid OLTP and OLAP on
Compressed Storage using both Vectorization and Compilation. In SIGMOD
Conference. ACM, 311-326.

Per-Ake Larson, Adrian Birka, Eric N. Hanson, Weiyun Huang, Michal
Nowakiewicz, and Vassilis Papadimos. 2015. Real-Time Analytical Processing
with SQL Server. Proc. VLDB Endow. 8, 12 (2015), 1740-1751.

Per-Ake Larson, Eric N. Hanson, and Susan L. Price. 2012. Columnar Storage in
SQL Server 2012. IEEE Data Eng. Bull. 35, 1 (2012), 15-20.

Viktor Leis, Adnan Alhomssi, Tobias Ziegler, Yannick Loeck, and Christian
Dietrich. 2023. Virtual-Memory Assisted Buffer Management. Proc. ACM Manag.
Data 1,1 (2023), 7:1-7:25.

Viktor Leis, Michael Haubenschild, Alfons Kemper, and Thomas Neumann. 2018.
LeanStore: In-Memory Data Management beyond Main Memory. In ICDE. IEEE
Computer Society, 185-196.

Viktor Leis, Michael Haubenschild, and Thomas Neumann. 2019. Optimistic Lock
Coupling: A Scalable and Efficient General-Purpose Synchronization Method.
IEEE Data Eng. Bull. 42, 1 (2019), 73-84.

Viktor Leis, Florian Scheibner, Alfons Kemper, and Thomas Neumann. 2016. The
ART of practical synchronization. In DaMoN. ACM, 3:1-3:8.

Feifei Li. 2019. Cloud native database systems at Alibaba: Opportunities and
Challenges. Proc. VLDB Endow. 12, 12 (2019), 2263-2272.

Guoliang Li and Chao Zhang. 2022. HTAP Databases: What is New and What is
Next. In SIGMOD Conference. ACM, 2483-2488.

https://orc.apache.org/
https://iceberg.apache.org/
https://parquet.apache.org/
https://www.oracle.com/mysql/heatwave/
https://www.oracle.com/mysql/heatwave/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/selecting-content-from-objects.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/selecting-content-from-objects.html

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Chunwei Liu, Anna Pavlenko, Matteo Interlandi, and Brandon Haynes. 2023.
A Deep Dive into Common Open Formats for Analytical DBMSs. Proc. VLDB
Endow. 16, 11 (2023), 3044-3056.

David B. Lomet. 2018. Cost/performance in modern data stores: how data caching
systems succeed. In DaMoN. ACM, 9:1-9:10.

Elena Milkai, Yannis Chronis, Kevin P. Gaffney, Zhihan Guo, Jignesh M. Patel,
and Xiangyao Yu. 2022. How Good is My HTAP System?. In SIGMOD Conference.
ACM, 1810-1824.

Guido Moerkotte. 1998. Small Materialized Aggregates: A Light Weight Index
Structure for Data Warehousing. In VLDB. Morgan Kaufmann, 476-487.

C. Mohan, Don Haderle, Bruce G. Lindsay, Hamid Pirahesh, and Peter M. Schwarz.
1992. ARIES: A Transaction Recovery Method Supporting Fine-Granularity
Locking and Partial Rollbacks Using Write-Ahead Logging. ACM Trans. Database
Syst. 17,1 (1992), 94-162.

Thomas Neumann and Michael J. Freitag. 2020. Umbra: A Disk-Based System
with In-Memory Performance. In CIDR. www.cidrdb.org.

Thomas Neumann, Tobias Miihlbauer, and Alfons Kemper. 2015. Fast Serializable
Multi-Version Concurrency Control for Main-Memory Database Systems. In
SIGMOD Conference. ACM, 677-689.

Diego Ongaro and John K. Ousterhout. 2014. In Search of an Understandable Con-
sensus Algorithm. In USENIX Annual Technical Conference. USENIX Association,
305-319.

Dan R. K. Ports and Kevin Grittner. 2012. Serializable Snapshot Isolation in
PostgreSQL. Proc. VLDB Endow. 5, 12 (2012), 1850-1861.

Adam Prout, Szu-Po Wang, Joseph Victor, Zhou Sun, Yongzhu Li, Jack Chen,
Evan Bergeron, Eric N. Hanson, Robert Walzer, Rodrigo Gomes, and Nikita
Shamgunov. 2022. Cloud-Native Transactions and Analytics in SingleStore. In
SIGMOD Conference. ACM, 2340-2352.

Mark Raasveldt and Hannes Miihleisen. 2019. DuckDB: an Embeddable Analytical
Database. In SIGMOD Conference. ACM, 1981-1984.

Adam Ronthal, Rick Greenwald, Xingyu Gu, Ramke Ramakrishnan, Aaron Rosen-
baum, and Henry Cook. 2023. Magic Quadrant for Cloud Database Management
Systems.

Tobias Schmidt, Andreas Kipf, Dominik Horn, Gaurav Saxena, and Tim Kraska.
2022. Predicate caching: Query-driven secondary indexing for cloud data ware-
houses. In SIGMOD Conference. ACM.

Vishal Sikka, Franz Farber, Wolfgang Lehner, Sang Kyun Cha, Thomas Peh, and
Christof Bornhovd. 2012. Efficient transaction processing in SAP HANA database:
the end of a column store myth. In SIGMOD Conference. ACM, 731-742.
Snowflake. 2023. Search Optimization Service. https://docs.snowflake.com/en/
user-guide/search-optimization-service. accessed: 2024-05-29.

Snowflake. 2024. Snowflake Hybrid Tables. Retrieved July 1, 2024 from https:
//docs.snowflake.com/en/user-guide/tables-hybrid

Michael Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch Cher-
niack, Miguel Ferreira, Edmond Lau, Amerson Lin, Samuel Madden, Elizabeth J.
O’Neil, Patrick E. O’Neil, Alex Rasin, Nga Tran, and Stanley B. Zdonik. 2005.
C-Store: A Column-oriented DBMS. In VLDB. ACM, 553-564.

(65

66]

[67

(68

[69

[70]

[72

[73

[74

[75

<
S

[77

Alexander van Renen and Viktor Leis. 2023. Cloud Analytics Benchmark. Proc.
VLDB Endow. 16, 6 (2023), 1413-1425.

Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam,
Kamal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz
Kharatishvili, and Xiaofeng Bao. 2017. Amazon Aurora: Design Considerations
for High Throughput Cloud-Native Relational Databases. In SIGMOD Conference.
ACM, 1041-1052.

Jianying Wang, Tongliang Li, Haoze Song, Xinjun Yang, Wenchao Zhou, Feifei
Li, Baoyue Yan, Qianqian Wu, Yukun Liang, Chengjun Ying, Yujie Wang, Baokai
Chen, Chang Cai, Yubin Ruan, Xiaoyi Weng, Shibin Chen, Liang Yin, Chengzhong
Yang, Xin Cai, Hongyan Xing, Nanlong Yu, Xiaofei Chen, Dapeng Huang, and
Jianling Sun. 2023. PolarDB-IMCI: A Cloud-Native HTAP Database System at
Alibaba. Proc. ACM Manag. Data 1, 2 (2023), 199:1-199:25.

Jiacheng Yang, Ian Rae, Jun Xu, Jeff Shute, Zhan Yuan, Kelvin Lau, Qiang Zeng,
Xi Zhao, Jun Ma, Ziyang Chen, Yuan Gao, Qilin Dong, Junxiong Zhou, Jeremy
Wood, Goetz Graefe, Jeffrey F. Naughton, and John Cieslewicz. 2020. F1 Lightning:
HTAP as a Service. Proc. VLDB Endow. 13, 12 (2020), 3313-3325.

Xinjun Yang, Yinggiang Zhang, Hao Chen, Chuan Sun, Feifei Li, and Wenchao
Zhou. 2023. PolarDB-SCC: A Cloud-Native Database Ensuring Low Latency for
Strongly Consistent Reads. Proc. VLDB Endow. 16, 12 (2023), 3754-3767.

Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Armbrust,
Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J.
Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker, and Ion Stoica. 2016.
Apache Spark: a unified engine for big data processing. Commun. ACM 59,
11 (2016), 56-65.

Xinyu Zeng, Yulong Hui, Jiahong Shen, Andrew Pavlo, Wes McKinney, and
Huanchen Zhang. 2023. An Empirical Evaluation of Columnar Storage Formats.
Proc. VLDB Endow. 17, 2 (2023), 148-161.

Chaoqun Zhan, Maomeng Su, Chuangxian Wei, Xiaogiang Peng, Liang Lin,
Sheng Wang, Zhe Chen, Feifei Li, Yue Pan, Fang Zheng, and Chengliang Chai.

2019. AnalyticDB: Real-time OLAP Database System at Alibaba Cloud. Proc.
VLDB Endow. 12, 12 (2019), 2059-2070.

Chao Zhang, Guoliang Li, and Tao Lv. 2024. HyBench: A New Benchmark for
HTAP Databases. Proc. VLDB Endow. 17, 5 (2024), 939-951.

Jingyu Zhou, Meng Xu, Alexander Shraer, Bala Namasivayam, Alex Miller, Evan
Tschannen, Steve Atherton, Andrew J. Beamon, Rusty Sears, John Leach, Dave
Rosenthal, Xin Dong, Will Wilson, Ben Collins, David Scherer, Alec Grieser,
Young Liu, Alvin Moore, Bhaskar Muppana, Xiaoge Su, and Vishesh Yadav.
2021. FoundationDB: A Distributed Unbundled Transactional Key Value Store.
In SIGMOD Conference. ACM, 2653-2666.

Tobias Ziegler, Dwarakanandan Bindiganavile Mohan, Viktor Leis, and Carsten
Binnig. 2022. EFA: A Viable Alternative to RDMA over InfiniBand for DBMSs?.
In DaMoN. ACM, 10:1-10:5.

Marcin Zukowski and Peter A. Boncz. 2012. Vectorwise: Beyond Column Stores.
IEEE Data Eng. Bull. 35, 1 (2012), 21-27.

Marcin Zukowski, Sandor Héman, Niels Nes, and Peter A. Boncz. 2006. Super-
Scalar RAM-CPU Cache Compression. In ICDE. IEEE Computer Society, 59.

 https://docs.snowflake.com/en/user-guide/search-optimization-service
 https://docs.snowflake.com/en/user-guide/search-optimization-service
https://docs.snowflake.com/en/user-guide/tables-hybrid
https://docs.snowflake.com/en/user-guide/tables-hybrid

	Abstract
	1 Introduction
	2 Cloud-Native Database Designs
	3 Colibri: A cloud-native HTAP DBMS Architecture
	4 Hybrid Storage Engine
	4.1 Column-Row Store
	4.2 Inserts
	4.3 Deletes
	4.4 Updates
	4.5 Maintenance
	4.6 Integration with Modern Buffer Managers
	4.7 Multi-Version Concurrency Control
	4.8 Recovery
	4.9 Columnar Data Formats
	4.10 Retrieval Cost Optimization
	4.11 Secondary Indexes

	5 Query Processing
	5.1 Point Lookups
	5.2 Bandwidth-Optimized Table Scans

	6 Evaluation
	6.1 Experimental Setup
	6.2 Instance-local HTAP Performance
	6.3 Cloud-Store Performance

	7 Related Work
	8 Conclusion
	References

