aws TUM

Predicate Caching: Query-Driven Secondary
Indexing for Cloud Data Warehouses
Tobias Schmidt, Andreas Kipf, Dominik Horn, Gaurav Saxena, Tim Kraska

TUM, UTN, Amazon Webservices

13.06.2024

Motivation aws TUT

Traditional indexes are not suited for the cloud:
» large data volumes
» high update costs
» slow lookup times

Cloud data warehouses rely on more lightweight caching techniques:
» result caching
» materialized views

» sorting

= Caches are query-driven and adapt to the workload.

Tobias Schmidt 13.06.2024

Workload Analysis aws TUM

Query Repetitiveness

Caches require repetitive workloads to be effective.

Tobias Schmidt 13.06.2024

Workload Analysis aws Tum

Query Repetitiveness

Caches require repetitive workloads to be effective.

— 100 % -
75 %
50 % +

25 %

Repetition Rate [%

0% -

0% 25% 50% 75% 100%
Percentile of Clusters [%]

For more than half of the clusters, 75 % of the queries repeat.

Tobias Schmidt 13.06.2024

Workload Analysis aws TUM

Result Cache Hit Rate

— 100 % 4 100 % 4
o)]]
L 75% = 5%
~ 1 3} 1
o 50% - 2 509 -
.S] ~]
p= =
g % 1 £ 25% 1
QL
0% 0%
T T T T T T T T T T T T T T T T T T
0% 25% 50% 75% 100% 0% 25% 50% 75% 100%
Percentile of Clusters [%] Percentile of Clusters [%]
Figure: Query Repetitiveness Figure: Result Cache Hit Rate

However, the result cache hit rate is relatively low.

Tobias Schmidt 13.06.2024

Workload Analysis aws TUM
Types of SQL Statements

200%
Type Percentage = | | readheavy
select 42.3% g 130%7
L5
insert 17.8% % 100%
copy 6.9 % 8
<
delete 6.3 % g, 50% 1
0 S
update 36 A’ 0% write-heavy
o =1 T T T T T T T T
other 23.3% 0% 25% 50% 75% 100%

Percentile of Clusters [%]

60 % of the clusters execute more SELECT statements than updates.

Tobias Schmidt 13.06.2024

Workload Analysis aws TUM

Scan Repetitiveness

— 100 % -

75 %

50 % -

25% -

Repetition Rate [%

0% -

0% 25% 50% 75% 100%
Percentile of Clusters [%]

Scans and Queries are similarly repetitive.

Tobias Schmidt 13.06.2024

Predicate Caching aws Tum
High-Level Idea

Cache qualifying row ranges and inject them into subsequent scans.

select * from lineitem Where[l_discount = 0.1 and 1_quantity >= 40]

(lineitem] discount quantity
0.15 45 -~
@ 0.20 10 A
Y %)
0.10 30 S
| min-max scan | 0.05 20 3
@ 0.10 40 ~
A 0.05 20 o
| vectorized scan | g ig 28 %
®" 0.05 10 [}
0.15 35 A
| decompress | 0.00 20 P
0.05 15 =

Tobias Schmidt 13.06.2024

Predicate Caching aws Tum
High-Level Idea

Cache qualifying row ranges and inject them into subsequent scans.

select * from lineitem Where[l_discount = 0.1 and 1_quantity >= 40]

(lineitem) discount quantity
0.15 45 —
@ 0.20 10 o
Y %)
0.10 30 S
[min-max scan | 0.05 40 3
@ 0.10 40 ~N
A 0.05 20 o
| vectorized scan | g ig 28 %
®,, 0.05 10 =
(0] al5) 8b) A
| decompress | 0.00 20 S
0.05 15 S

Tobias Schmidt 13.06.2024

Predicate Caching aws Tum
High-Level Idea

Cache qualifying row ranges and inject them into subsequent scans.

select * from lineitem Where[l_discount = 0.1 and 1_quantity >= 40]

(lineitem) discount quantity
0.15 45 —
®,, 0.20 10 ﬁ
0.10 30 o
| min-max scan | 0.05 20 2
@ 0.10 40 ~N
A 0.05 20 o
I vectorized scan I 8 1(5) 28 %
®,, 0.05 10 ®
(0] al5) 8b) A
| decompress | 0.00 20 S
0.05 15 S

Tobias Schmidt 13.06.2024

Predicate Caching aws Tum
High-Level Idea

Cache qualifying row ranges and inject them into subsequent scans.

select * from lineitem Where[l_discount = 0.1 and 1_quantity >= 40]

(lineitem) discount quantity
@ v 0.15 45 —
e el @ lookup 0.20 10 x
- ¥ 0.10 30 3
| minTmax scan | predicate cache 0.05 40 2
©) _ ®extract | Koy value 0.10 0 =
Y Y [1_disco\.mt : 29]1 row ranges 0.05 20 ﬁ
| vectorized scan | L quantity 0.10 50 S
s 0.15 40 Q
@] oo e o E 505 o To
0.15 35 A
—>| decompress 0.00 20 E
0.05 15 Q

Tobias Schmidt 13.06.2024

Predicate Caching aws Tum
High-Level Idea

Cache qualifying row ranges and inject them into subsequent scans.

select * from lineitem Where[l_discount = 0.1 and 1_quantity >= 40]

(lineitem) discount quantity
® v 0.15 45 -
e bt (D lookup 0.20 10 ~
o
- ¥ 0.10 30 kS
| minTmax scan | predicate cache 0.05 40 o
©) _ ®extract | key value 0.10 0 =
Y Y [1_discount = 0.1 e e 0.05 20 o
| vectorized scan | JRiduant 1ty4d30] 0.10 50 3
0.15 40 Q
: @ insert A O 5 =
@ (0] al5) 8b) A
—>| decompress 0.00 20 g
0.05 15 S

Tobias Schmidt 13.06.2024

Predicate Caching aws Tum
High-Level Idea

Cache qualifying row ranges and inject them into subsequent scans.

select * from lineitem Where[l_discount = 0.1 and 1_quantity >= 40]

(lineitem) discount quantity
® v 0.15 45 -
2 ittty @ lookup 0.20 10 x
- ¥ 0.10 30 kS
| minTmax scan | predicate cache 0.05 40 o
©) _ ®extract | key value 0.10 20 =
Y Y r 1discount =0.10 /) 1 4no0q 0.05 20 o
| vectorized scan | Loquantity > 39] 0.10 50 3
0.15 40 Q
@] oo e o E 0.5 TR
0.15 35 K
—>| decompress 0.00 20 .§
0.05 15 Q

Tobias Schmidt 13.06.2024

Predicate Caching aws TUM

Data Manipulation Operations

Inserts: New tuples are appended to the end of the table; the new rows are
scanned the next time.

Delete: Rows are marked as deleted; the cached row ranges remain valid.

Update: Combination of insert and delete.

Tobias Schmidt 13.06.2024

Predicate Caching aws Tum

Properties

On-the-Fly: The cache is populated as a by-product of query processing without
additional build tasks.

Lightweight: Minimize resource usage, synchronization overhead, and impact on
other operations

Online: Update, insert, or delete statements do not invalidate the caches’
entries.

Tobias Schmidt 13.06.2024

Predicate Caching aws Tum

Properties

On-the-Fly: The cache is populated as a by-product of query processing without
additional build tasks.

Lightweight: Minimize resource usage, synchronization overhead, and impact on
other operations

Online: Update, insert, or delete statements do not invalidate the caches’
entries.

=> Predicate Caching has almost no overhead and exploits
repetitive queries in cloud data warehouses.

Tobias Schmidt 13.06.2024

Results
Hit Rate

Hit Rate [%]

100 %
75 %
50 %
25%

0%

10T

T
20

T

Queries

= High hit rate on representative workloads.

Tobias Schmidt

13.06.202

4

Results aws TUM
N

Query Performance

+1000 % - Y S
+100 % —
+10 %

¥
+1% -
0% -
-1% o n
‘
‘ *
T

-10%
-100 % —
-1000 %

Speedup [%]

Up to 10 % overall performance improvement and 10x speedup on
selected queries.

Tobias Schmidt 13.06.2024

y.

Conclusion aws Tum

Predicate Caching offers a lightweight, fast, and online query-driven
index for Cloud Data Warehouses.

Tobias Schmidt 13.06.2024

Conclusion aws Tum

Predicate Caching offers a lightweight, fast, and online query-driven
index for Cloud Data Warehouses.

» no build overhead, and space efficient.
» online, does not affect inserts, deletes, and updates

» significant performance improvements, in particular, on skewed data or
selective queries

Tobias Schmidt 13.06.2024

Conclusion aws Tum

Predicate Caching offers a lightweight, fast, and online query-driven
index for Cloud Data Warehouses.

Check out the full paper for more details!

https://www.amazon.science/publications/
predicate-caching-query-driven-secondary-indexing-for-cloud-data-warehouses

Tobias Schmidt 13.06.2024

https://www.amazon.science/publications/predicate-caching-query-driven-secondary-indexing-for-cloud-data-warehouses
https://www.amazon.science/publications/predicate-caching-query-driven-secondary-indexing-for-cloud-data-warehouses

	Introduction

