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Motivation aws TUT

Traditional indexes are not suited for the cloud:
» large data volumes
» high update costs
» slow lookup times

Cloud data warehouses rely on more lightweight caching techniques:
» result caching
» materialized views

» sorting

= Caches are query-driven and adapt to the workload.
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Workload Analysis aws TUM

Query Repetitiveness

Caches require repetitive workloads to be effective.
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Query Repetitiveness

Caches require repetitive workloads to be effective.
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For more than half of the clusters, 75 % of the queries repeat.
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Workload Analysis aws TUM

Result Cache Hit Rate
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Figure: Query Repetitiveness Figure: Result Cache Hit Rate

However, the result cache hit rate is relatively low.
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Workload Analysis aws TUM
Types of SQL Statements
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60 % of the clusters execute more SELECT statements than updates.
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Workload Analysis aws TUM

Scan Repetitiveness
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Scans and Queries are similarly repetitive.
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Predicate Caching aws Tum
High-Level Idea

Cache qualifying row ranges and inject them into subsequent scans.

select * from lineitem Where[l_discount = 0.1 and 1_quantity >= 40]
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Predicate Caching aws TUM

Data Manipulation Operations

Inserts: New tuples are appended to the end of the table; the new rows are
scanned the next time.

Delete: Rows are marked as deleted; the cached row ranges remain valid.

Update: Combination of insert and delete.
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Predicate Caching aws Tum

Properties

On-the-Fly: The cache is populated as a by-product of query processing without
additional build tasks.

Lightweight: Minimize resource usage, synchronization overhead, and impact on
other operations

Online: Update, insert, or delete statements do not invalidate the caches’
entries.
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Properties

On-the-Fly: The cache is populated as a by-product of query processing without
additional build tasks.

Lightweight: Minimize resource usage, synchronization overhead, and impact on
other operations

Online: Update, insert, or delete statements do not invalidate the caches’
entries.

=> Predicate Caching has almost no overhead and exploits
repetitive queries in cloud data warehouses.
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Results
Hit Rate
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= High hit rate on representative workloads.
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Results aws TUM
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Up to 10 % overall performance improvement and 10x speedup on
selected queries.
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Conclusion aws Tum

Predicate Caching offers a lightweight, fast, and online query-driven
index for Cloud Data Warehouses.
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Conclusion aws Tum

Predicate Caching offers a lightweight, fast, and online query-driven
index for Cloud Data Warehouses.

» no build overhead, and space efficient.
» online, does not affect inserts, deletes, and updates

» significant performance improvements, in particular, on skewed data or
selective queries
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Conclusion aws Tum

Predicate Caching offers a lightweight, fast, and online query-driven
index for Cloud Data Warehouses.

Check out the full paper for more details!

https://www.amazon.science/publications/
predicate-caching-query-driven-secondary-indexing-for-cloud-data-warehouses
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