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Motivation

Traditional indexes are not suited for the cloud:
▶ large data volumes
▶ high update costs
▶ slow lookup times

Cloud data warehouses rely on more lightweight caching techniques:
▶ result caching
▶ materialized views
▶ sorting

⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒ Caches are query-driven and adapt to the workload.
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Workload Analysis
Query Repetitiveness

Caches require repetitive workloads to be effective.
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For more than half of the clusters, 75 % of the queries repeat.
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Workload Analysis
Result Cache Hit Rate
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Figure: Query Repetitiveness
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Figure: Result Cache Hit Rate

However, the result cache hit rate is relatively low.
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Workload Analysis
Types of SQL Statements

Type Percentage

select 42.3%

insert 17.8%
copy 6.9%

delete 6.3%
update 3.6%
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60% of the clusters execute more SELECT statements than updates.
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Workload Analysis
Scan Repetitiveness
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Scans and Queries are similarly repetitive.
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Predicate Caching
High-Level Idea

Cache qualifying row ranges and inject them into subsequent scans.

select * from lineitem where l_discount = 0.1 and l_quantity >= 40
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Predicate Caching
Data Manipulation Operations

Inserts: New tuples are appended to the end of the table; the new rows are
scanned the next time.

Delete: Rows are marked as deleted; the cached row ranges remain valid.

Update: Combination of insert and delete.
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Predicate Caching
Properties

On-the-Fly: The cache is populated as a by-product of query processing without
additional build tasks.

Lightweight: Minimize resource usage, synchronization overhead, and impact on
other operations

Online: Update, insert, or delete statements do not invalidate the caches’
entries.

⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒ Predicate Caching has almost no overhead and exploits
repetitive queries in cloud data warehouses.
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Results
Hit Rate
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⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒ High hit rate on representative workloads.
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Results
Query Performance
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Up to 10% overall performance improvement and 10× speedup on
selected queries.
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Conclusion

Predicate Caching offers a lightweight, fast, and online query-driven
index for Cloud Data Warehouses.

▶ no build overhead, and space efficient.

▶ online, does not affect inserts, deletes, and updates

▶ significant performance improvements, in particular, on skewed data or
selective queries
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Conclusion

Predicate Caching offers a lightweight, fast, and online query-driven
index for Cloud Data Warehouses.

Check out the full paper for more details!

https://www.amazon.science/publications/
predicate-caching-query-driven-secondary-indexing-for-cloud-data-warehouses
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