
Predicate Caching: Query-Driven Secondary
Indexing for Cloud Data Warehouses

Tobias Schmidt, Andreas Kipf, Dominik Horn, Gaurav Saxena, Tim Kraska

TUM, UTN, Amazon Webservices

13.06.2024

2

Motivation

Traditional indexes are not suited for the cloud:
▶ large data volumes
▶ high update costs
▶ slow lookup times

Cloud data warehouses rely on more lightweight caching techniques:
▶ result caching
▶ materialized views
▶ sorting

⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒ Caches are query-driven and adapt to the workload.

Tobias Schmidt 13.06.2024

3

Workload Analysis
Query Repetitiveness

Caches require repetitive workloads to be effective.

0 % 25 % 50 % 75 % 100 %
Percentile of Clusters [%]

0 %

25 %

50 %

75 %

100 %

Re
pe

tit
io

n
Ra

te
[%

]

For more than half of the clusters, 75 % of the queries repeat.

Tobias Schmidt 13.06.2024

3

Workload Analysis
Query Repetitiveness

Caches require repetitive workloads to be effective.

0 % 25 % 50 % 75 % 100 %
Percentile of Clusters [%]

0 %

25 %

50 %

75 %

100 %

Re
pe

tit
io

n
Ra

te
[%

]

For more than half of the clusters, 75 % of the queries repeat.

Tobias Schmidt 13.06.2024

4

Workload Analysis
Result Cache Hit Rate

0 % 25 % 50 % 75 % 100 %
Percentile of Clusters [%]

0 %

25 %

50 %

75 %

100 %

Re
pe

tit
io

n
Ra

te
[%

]

Figure: Query Repetitiveness

0 % 25 % 50 % 75 % 100 %
Percentile of Clusters [%]

0 %

25 %

50 %

75 %

100 %

H
it

Ra
te

[%
]

Figure: Result Cache Hit Rate

However, the result cache hit rate is relatively low.

Tobias Schmidt 13.06.2024

5

Workload Analysis
Types of SQL Statements

Type Percentage

select 42.3%

insert 17.8%
copy 6.9%

delete 6.3%
update 3.6%

other 23.3% 0 % 25 % 50 % 75 % 100 %
Percentile of Clusters [%]

0 %

50 %

100 %

150 %

200 %

U
pd

at
es

/S
el

ec
ts

[%
] read-heavy

write-heavy

60% of the clusters execute more SELECT statements than updates.

Tobias Schmidt 13.06.2024

6

Workload Analysis
Scan Repetitiveness

0 % 25 % 50 % 75 % 100 %
Percentile of Clusters [%]

0 %

25 %

50 %

75 %

100 %

Re
pe

tit
io

n
Ra

te
[%

]

Scans and Queries are similarly repetitive.

Tobias Schmidt 13.06.2024

7

Predicate Caching
High-Level Idea

Cache qualifying row ranges and inject them into subsequent scans.

select * from lineitem where l_discount = 0.1 and l_quantity >= 40

lineitem

min-max scan

vectorized scan

decompress

1

2

3

discount quantity

bl
oc

k
10.15

0.20
0.10
0.05

45
10
30
40

bl
oc

k
20.10

0.05
0.10
0.15

40
20
50
40

bl
oc

k
30.05

0.15
0.00
0.05

10
35
20
15

Tobias Schmidt 13.06.2024

7

Predicate Caching
High-Level Idea

Cache qualifying row ranges and inject them into subsequent scans.

select * from lineitem where l_discount = 0.1 and l_quantity >= 40

lineitem

min-max scan

vectorized scan

decompress

1

2

3

discount quantity

bl
oc

k
10.15

0.20
0.10
0.05

45
10
30
40

bl
oc

k
20.10

0.05
0.10
0.15

40
20
50
40

bl
oc

k
30.05

0.15
0.00
0.05

10
35
20
15

Tobias Schmidt 13.06.2024

7

Predicate Caching
High-Level Idea

Cache qualifying row ranges and inject them into subsequent scans.

select * from lineitem where l_discount = 0.1 and l_quantity >= 40

lineitem

min-max scan

vectorized scan

decompress

1

2

3

discount quantity

bl
oc

k
10.15

0.20
0.10
0.05

45
10
30
40

bl
oc

k
20.10

0.05
0.10
0.15

40
20
50
40

bl
oc

k
30.05

0.15
0.00
0.05

10
35
20
15

Tobias Schmidt 13.06.2024

7

Predicate Caching
High-Level Idea

Cache qualifying row ranges and inject them into subsequent scans.

select * from lineitem where l_discount = 0.1 and l_quantity >= 40

lineitem

min-max scan

vectorized scan

decompress

predicate cache
key value

[l_discount = 0.1
, l_quantity > 39]

row ranges

...

1 lookup2

3

4 insert

5 extract

6

discount quantity

bl
oc

k
10.15

0.20
0.10
0.05

45
10
30
40

bl
oc

k
20.10

0.05
0.10
0.15

40
20
50
40

bl
oc

k
30.05

0.15
0.00
0.05

10
35
20
15

Tobias Schmidt 13.06.2024

7

Predicate Caching
High-Level Idea

Cache qualifying row ranges and inject them into subsequent scans.

select * from lineitem where l_discount = 0.1 and l_quantity >= 40

lineitem

min-max scan

vectorized scan

decompress

predicate cache
key value

[l_discount = 0.1
, l_quantity > 39]

row ranges

...

1 lookup2

3

4 insert

5 extract

6

discount quantity

bl
oc

k
10.15

0.20
0.10
0.05

45
10
30
40

bl
oc

k
20.10

0.05
0.10
0.15

40
20
50
40

bl
oc

k
30.05

0.15
0.00
0.05

10
35
20
15

Tobias Schmidt 13.06.2024

7

Predicate Caching
High-Level Idea

Cache qualifying row ranges and inject them into subsequent scans.

select * from lineitem where l_discount = 0.1 and l_quantity >= 40

lineitem

min-max scan

vectorized scan

decompress

predicate cache
key value

[l_discount = 0.1
, l_quantity > 39]

row ranges

...

1 lookup2

3

4 insert

5 extract

6

discount quantity

bl
oc

k
10.15

0.20
0.10
0.05

45
10
30
40

bl
oc

k
20.10

0.05
0.10
0.15

40
20
50
40

bl
oc

k
30.05

0.15
0.00
0.05

10
35
20
15

Tobias Schmidt 13.06.2024

8

Predicate Caching
Data Manipulation Operations

Inserts: New tuples are appended to the end of the table; the new rows are
scanned the next time.

Delete: Rows are marked as deleted; the cached row ranges remain valid.

Update: Combination of insert and delete.

Tobias Schmidt 13.06.2024

9

Predicate Caching
Properties

On-the-Fly: The cache is populated as a by-product of query processing without
additional build tasks.

Lightweight: Minimize resource usage, synchronization overhead, and impact on
other operations

Online: Update, insert, or delete statements do not invalidate the caches’
entries.

⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒ Predicate Caching has almost no overhead and exploits
repetitive queries in cloud data warehouses.

Tobias Schmidt 13.06.2024

9

Predicate Caching
Properties

On-the-Fly: The cache is populated as a by-product of query processing without
additional build tasks.

Lightweight: Minimize resource usage, synchronization overhead, and impact on
other operations

Online: Update, insert, or delete statements do not invalidate the caches’
entries.

⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒ Predicate Caching has almost no overhead and exploits
repetitive queries in cloud data warehouses.

Tobias Schmidt 13.06.2024

10

Results
Hit Rate

0 10 T 20 T 30 T 40 T
Queries

0 %

25 %

50 %

75 %

100 %
H

it
Ra

te
[%

]

⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒ High hit rate on representative workloads.

Tobias Schmidt 13.06.2024

11

Results
Query Performance

TPC-H (SF 1000)

TPC-H Skewed (SF 1000)

TPC-DS (SF 3000)
SSB (SF 3000)

-1000 %
-100 %
-10 %

-1 %
0 %

+1 %

+10 %
+100 %

+1000 %

Sp
ee

du
p

[%
]

Up to 10% overall performance improvement and 10× speedup on
selected queries.

Tobias Schmidt 13.06.2024

12

Conclusion

Predicate Caching offers a lightweight, fast, and online query-driven
index for Cloud Data Warehouses.

▶ no build overhead, and space efficient.

▶ online, does not affect inserts, deletes, and updates

▶ significant performance improvements, in particular, on skewed data or
selective queries

Tobias Schmidt 13.06.2024

12

Conclusion

Predicate Caching offers a lightweight, fast, and online query-driven
index for Cloud Data Warehouses.

▶ no build overhead, and space efficient.

▶ online, does not affect inserts, deletes, and updates

▶ significant performance improvements, in particular, on skewed data or
selective queries

Tobias Schmidt 13.06.2024

13

Conclusion

Predicate Caching offers a lightweight, fast, and online query-driven
index for Cloud Data Warehouses.

Check out the full paper for more details!

https://www.amazon.science/publications/
predicate-caching-query-driven-secondary-indexing-for-cloud-data-warehouses

Tobias Schmidt 13.06.2024

https://www.amazon.science/publications/predicate-caching-query-driven-secondary-indexing-for-cloud-data-warehouses
https://www.amazon.science/publications/predicate-caching-query-driven-secondary-indexing-for-cloud-data-warehouses

	Introduction

