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I. INTRODUCTION

Non-volatile memory (NVM), also known as Storage Class
Memory (SCM), Persistent Memory (PMEM), and NVRAM, is
a radically new and highly promising storage device. Technolo-
gies like PCM, STT-RAM, and ReRAM have slightly different
features [1], but generally combine the byte addressability of
DRAM with the persistence of storage technologies like SSD
(flash). Because commercial products are not yet available, the
precise characteristics, price, and capacity features of NVM
have not been publicly disclosed (we resort to simulation
for experiments). What is known, however, is that for the
foreseeable future, NVM will be slower (and larger) than
DRAM and, at the same time, much faster (but smaller) than
SSD [2]. Furthermore, NVM has an asymmetric read/write
latency—making writes much more expensive than reads. Given
these characteristics, we consider it unlikely that NVM can
replace DRAM or SSD outright.

The novel properties of NVM make it particularly relevant for
database systems, but also present new architectural challenges.
Neither the traditional disk-based architecture nor modern main-
memory systems can fully utilize NVM without major changes
to their designs. The two components most affected by NVM
are logging/recovery and storage. Much of the recent research
on NVM has optimized logging and recovery [3], [4], [5],
[6], [7]. In this work, we instead focus on the storage/caching
aspect, i.e., on dynamically deciding where data should reside
(DRAM, NVM, or SSD).

Two main approaches for integrating NVM into the storage
layer of a database system have been proposed. The first,
suggested by Arulraj et al. [8], is to use NVM as the primary
storage for relations as well as index structures and perform
updates directly on NVM. This way, the byte addressability
of NVM can be fully leveraged. A disadvantage is that this
design can be slower than main-memory database systems,
which store relations and indexes in main memory and thereby
benefit from the lower latency of DRAM. Another downside
of working directly on NVM is that there is no way to prevent
eviction and any modification is potentially persisted. Therefore,
any in-place write to NVM must leave the data structure in
a correct state (similar to lock-free data structures, which are
notoriously difficult) [9].

To avoid these issues, Kimura [10] proposed using a database-
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Fig. 1: TPC-C – Performance in TPC-C for an increasing
number of warehouses. The capacity of DRAM, NVM, and
SSD is set to 2GB, 10GB, and 50GB, respectively.

managed DRAM cache in front of NVM. Similar to a disk-
based buffer pool, accesses are always performed on in-memory
copies of fixed-size pages. However, accessing an uncached
page becomes more expensive than directly accessing NVM,
as an entire page must be loaded even if only a single tuple is
accessed. Furthermore, neither of the two approaches supports
very large data sets, as the capacity of NVM is limited compared
to SSDs.

We take a less disruptive approach and implement NVM
as an additional caching layer. We thus follow Michael
Stonebraker, who argued that NVM-DIMMs are . . .

“. . . not fast enough to replace main memory and they are not
cheap enough to replace disks, and they are not cheap enough
to replace flash.” [11]

Figure 1 shows the performance characteristics and capacity
restrictions of different system designs (Buffer Manager is
abbreviated as BM). Besides the two NVM approaches (“Basic
NVM BM”, “NVM Direct”), we also show main-memory sys-
tems (“Main Memory”), and traditional SSD buffer managers
(“SSD BM”). Each of these designs offers a different tradeoff
in terms of performance and/or storage capacity.

In this talk, which is based on work published at SIGMOD



2018 [12], we present a novel storage engine that simultane-
ously supports DRAM, NVM, and flash while utilizing the
byte addressability of NVM. As the “3 Tier BM” line indicates,
our approach avoids performance cliffs and performs better
than or close to that of specialized systems. NVM is used as an
additional layer in the storage hierarchy supplementing DRAM
and SSD [13], [2]. Furthermore, by supporting SSDs, it can
manage very large data sets and is more economical [14] than
the other approaches.

II. NVM-OPTIMIZED DATABASE STORAGE

Our goal is a system that performs almost as well as a
main-memory database system on smaller data sets but scales
across the NVM and SSD storage hierarchy while gracefully
degrading in performance. For this purpose, we design a novel
DRAM-resident buffer manager that swaps cache-line-grained
data objects between DRAM and NVM—thereby optimizing
the bandwidth utilization by exploiting the byte addressability
of NVM. Scaling beyond DRAM to SSD sizes led us to rely
on traditional page-grained swapping between NVM and SSD.
Between DRAM and NVM, we adaptively differentiate between
full page memory allocation and mini page allocation to further
optimize the DRAM utilization. This way, individual “hot” data
objects that are resident on mostly “cold” pages are extracted
via the cache-line-grained swapping into smaller memory
frames. Only if the mini page overflows, is it transparently
promoted to a full page—but it is still populated one cache-
line at a time. We also devise a pointer swizzling scheme
that optimizes the necessary page table indirection in order to
achieve nearly the same performance as pure main-memory
systems. This obviates any indirection but incur the memory
wall problem once the database size exceeds DRAM capacity.

These techniques are illustrated in Figure 2. To leverage
the byte-addressability of NVM, we cache NVM accesses in
DRAM at cache-line granularity, which allows for the selective
loading of individual hot cache lines instead of entire pages
(which might contain mostly cold data). To more efficiently
use the limited DRAM cache, our buffer pool transparently
and adaptively uses small page sizes. At the same time, our
design also uses large page sizes for staging data to SSD—
thus enabling very large data sets. We use lightweight buffer
management techniques to reduce the overhead of in-memory
accesses. Updates are performed in main memory rather than
directly on NVM, which increases endurance and hides write
latency.

Our experimental evaluation is based on standard database
workloads like YCSB and TPC-C. We evaluated three ap-
proaches for integrating NVM into the storage layer of a
database system: One that works directly on NVM, a FOEDUS-
style buffer manager based on fixed-size pages, and our novel
cache-line optimized storage engine. We found that by taking
the byte addressability into account, it becomes possible to
outperform the other two approaches while supporting large
data sets on SSD as well.
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Fig. 2: Illustration of the core techniques. On SSD and NVM,
data is stored on fixed-size pages (16 KB). When accessing data
from NVM, cache lines may be loaded individually exploiting
the byte-addressability of NVM. To save main memory, we
also support “mini pages” (1 KB instead of 16 KB).
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