
Veritas: Shared Verifiable Databases and Tables in the Cloud
Lindsey Allen†, Panagiotis Antonopoulos†, Arvind Arasu†, Johannes Gehrke†, Joachim Hammer†, James Hunter†, Raghav Kaushik†, Donald

Kossmann†, Jonathan Lee†, Ravi Ramamurthy†, Srinath Setty†, Jakub Szymaszek†, Alexander van Renen‡, Ramarathnam Venkatesan†
†Microsoft Corporation ‡Technische Universität München

ABSTRACT
In this paper we introduce shared, verifiable database tables, a new
abstraction for trusted data sharing in the cloud.
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1 INTRODUCTION
Our economy depends on interactions – buyers and sellers, suppli-
ers and manufacturers, professors and students, etc. Consider the
scenario where there are two companies A and B, where B supplies
widgets to A. A and B are exchanging data about the latest price for
widgets and dates of when widgets were shipped. The price of a
widget is fluctuating, and thus A bids for a quantity of widgets. In
our (simplified) bidding process across the two companies, A asks
for a quantity of widgets, Bmakes an offer, then A rejects or accepts
the offer. Once A has accepted an offer, a contract exists, and B goes
ahead and ships the widgets.

The two companies need to share data, and they would like to
have an easy way to share asks, offers, prices, contracts, and ship-
ping information. Thus they need to have an easy capability to
share data. But with sharing and cooperation also come disputes,
and thus companies A and B would like the shared data have an
immutable audit log such that in case any disputes arise, all inter-
actions with this shared table can be made available for auditing
by a third party. This does not mean that the shared tables should
be publicly accessible, but that selected parts of the log, the inter-
actions with the table, can be made available to auditors, that the
log is tamperproof, and that an auditor can quickly and cheaply
reconstruct the shared state as of some point of time in the past
and then audit state changes going forward.

How is this achieved today? Today, companies A and B share data
by agreeing upon common APIs and data exchange formats that
they use to make web service calls to each other. This solves the
data sharing issue, however, this does not achieve immutability, nor
does it enable the capability of selective auditing. An auditor would
have to go through the databases at A and B, and trust that nobody
tampered with the local logs. The auditors need special tools to
derive an old state of the database from the logs, and the answers
to read-only queries do not appear in the log at all. The problem is
that neither reads nor updates are logged in some immutable way,
and thus they cannot be audited by a third party without trusting
that the local databases at A and B have not been tampered with.
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A recent class of new technology under the umbrella term
"blockchain" [11, 13, 22, 28, 33] promises to solve this conundrum.
For example, companies A and B could write the state of these shared
tables into a blockchain infrastructure (such as Ethereum [33]). The
blockchain then gives them transaction properties, such as atomic-
ity of updates, durability, and isolation, and the blockchain allows
a third party to go through its history and verify the transactions.
Both companies A and B would have to write their updates into
the blockchain, wait until they are committed, and also read any
state changes from the blockchain as a means of sharing data across
A and B. To implement permissioning, A and B can use a permis-
sioned blockchain variant that allows transactions only from a set
of well-defined participants; e.g., Ethereum [33].

This blockchain technology is quite a step forward, but also a
few steps backwards, since with the power of these new blockchain
technologies also come new problems. The application that han-
dles interactions between A and B has to be re-written for the new
blockchain platform, and the primitives that the new platform pro-
vides are very different than SQL, the lingua franca of existing data
platforms. In addition, the transaction throughput for blockchains is
low, and there is no query optimization or sophisticated query pro-
cessing. Today, for gaining immutability and auditability with new
blockchain platforms, we give up decades of research in data man-
agement – and hardened, enterprise-ready code that implements
these ideas.

In this paper, we propose two new infrastructure abstractions
to address the above issues. We propose the notion of a blockchain
database. A blockchain database system is a database system with
a regular SQL interface, however it provides the same guarantees
of immutability of state transitions, trust, and open-source verifia-
bility as a blockchain. Thus A and B can simply move their shared
state to a blockchain database, and they now interact with it as
with any other database using SQL. Such a blockchain database
would address many of the limitations of blockchains such as the
lack of a SQL interface. However, since the blockchain database is a
physically different database system, interactions with it still need
to happen through a middle tier; for example, Company A cannot
simply write transactions across its own database system and the
blockchain datababase; it would need to create a distributed trans-
action across its own database system and the blockchain database,
a capability that in practice is always achieved through queues with
asynchronous, idempotent writes. Thus while an interesting step
forward in terms of capabilities, a blockchain database is always at
arms-length from the database infrastructure at A.

In order to close this gap, we also propose the abstraction of a
shared database table in the cloud that is part of the databases of
both companies A and B. Assume that A and B are both customers
of BigCloud, running their database infrastructure on the BigCloud
SQL Database System. We will enable A to create a shared table, a
table that A can share with B, and that now appears in both A’s and
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B’s databases. The table can be used like any other table, and it can
be synchronously accessed by both A and B; both companies can
write application logic including ACID transactions that include
this table.

By putting together both the idea of a blockchain database and
the notion of a stared table, we arrive at the notion of a shared,
verifiable table, which is part of the database of both companies A
and B and has an immutable, accessible log with clean auditability
capabilities.

How will we build such a shared, verifiable table? We propose to
build on existing database technology; this gives us many benefits,
but it also opens up several technical challenges which we start to
address in this paper. The first challenge is to integrate blockchain
technology into a database system, thereby maintaining the trust
properties of a blockchain and the performance and productivity
properties of a database system. One idea would be to leverage the
logging capabilities of modern database systems for durability (i.e.,
the transaction log), but it turns out that the transaction log does
not have the right information to verify the database system. A
second challenge is to implement the shared table abstraction and
to leverage possible optimization opportunities that arise from the
shared table abstraction.

Note that there is another challenge that is often studied in
the context of blockchains: Confidentiality. The nature of most
blockchains (like Bitcoin [26]) is that all participants see all transac-
tions so that they can validate the correctness of these transactions
(e.g., no double-spending of the same bitcoin). Recently, confiden-
tiality has been addressed in novel blockchain proposals such as
Coco [11], Quorum [28], or Corda [13]. It turns out that confiden-
tiality (and the specific blockchain protocol used) is to a large extent
orthogonal to the issues discussed in this paper so that all these
novel blockchain proposals are relevant to our work, but discussing
confidentiality guarantees in sufficient detail is beyond the scope
of this work.

Our Contributions. Our contributions in this paper are as fol-
lows:

• We introduce the notion of a verifiable (blockchain) database
and the notion of a shared table. (Section 2).

• We discuss how to implement verifiable databases. (Section
3)

• We discuss how to implement shared, verifiable tables. (Sec-
tion 4)

• We describe experimental results from a prototype system.
(Section 5)

We discuss related work in Section 6, and we conclude in Section 7.

2 DATABASES AND TABLES THAT CAN BE
SHARED AND VERIFIED

There are many different ways in which two (or more) parties such
as Companies A and B can interact in the cloud. Figure 1 shows the
traditional approach using Web Services (REST) or RPC. Company
A carries out transactions using its local Database dbA. Transactions
that involve an external entity such as ordering widgets for a given
price from Company B are executed as follows: All updates that
can be executed locally to dbA are committed synchronously; all
requests to B are carried out asynchronously: The request is written

A B

REST Calls / RPC

Figure 1: Web Services

into a local queue synchronously as part of the transaction so that
the external requests are not lost in the event of failures. The local
queue is part of dbA and thus no distributed transaction is needed.
An asynchronous job will read the requests from the queue and
make a Web Services call to Company B. The middle tier of B then
receives the data and writes it to its own local database, Database
dbB. If the transaction at dbB fails, then Amay retry the transaction,
and in case of repeated failures, it needs to execute a compensating
transaction on dbA using Sagas or another nested transaction model
[18].

The resulting architecture, which is shown in Figure 1, has been
in use to drive electronic business for decades. It works extremely
well once a framework for data exchange and trust between Com-
panies A and B has been established. Setting it up, however, is
cumbersome, and there is no good way to audit all the interactions
between A and B. When there is a dispute, it is difficult to puzzle to-
gether what has happened, especially for more complex queries. If
prices for widgets fluctuate frequently, for instance, it is difficult for
A to prove that it placed an order at a lower price before B increased
the price. While simple instances can be solved as a one-off by digi-
tally signing API calls, the auditing of more complex queries such
as a query over accounts payable that aggregates an outstanding
balance is much more challenging. In general, the architecture of
Figure 1 works best for large enterprises which have the resources
and business volume to make it worth-while to set up, and which
have the technical infrastructure to implement this architecture
and legal scale to audit it.

2.1 Blockchain Databases
Recently, there has been a big hype around blockchain technol-
ogy [22, 26, 28, 33] which allows entities to do business in a more
agile way, without prior formal legal agreements. Figure 2 shows
how A and B can collaborate using this architecture. Both A and
B have their local databases and queues to affect reliable (exactly
once) and asynchronous calls to external entities – just as in Fig-
ure 1. The crucial difference to Figure 1 is that all communication
such as making quotes and placing orders is made through the
blockchain. The blockchain provides a total order so that an auditor
can reconstruct the exact sequence of events across A and B. Thus
the auditor can prove that A placed its order before B increased its
price. Using cryptographic methods, the blockchain is immutable
so that neither A nor B can tamper with the history of interactions,
and they cannot delete or reorder events.

The architecture of Figure 2 solves the trust and auditability
issues of Figure 1. From an information infrastructure and database
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Blockchain

Figure 2: Blockchain

perspective, however, it is not ideal. Logically, the blockchain is a
database which orders transactions and stores transactions durably.
Modern blockchains such as Ethereum are even able to implement
integrity constraints in form of smart contracts. Unfortunately,
today’s generation of blockchains cannot compete with modern
database systems in terms of performance, query processing ca-
pabilities, productivity, and tooling. The blockchain community
has realized that there is a significant gap between their existing
technology and the capability of a modern database system. There
are now a gazillion of start-ups that are adding these basic database
features to blockchains, but it will take years if not decades to catch
up.

Instead of adding database capabilities to blockchains, we pro-
pose to address the problem from the opposite approach: We add
trust and auditability to existing database management systems.
Figure 3 shows this concept. Instead of writing all transactions that
span trust zones into a blockchain, these transactions are written
into a shared verified database (which we also often call blockchain
database). A verifiable database is an extension of a traditional
DBMS (e.g., Microsoft SQL DB, MySQL, or Oracle) or a cloud data-
base system (e.g., Microsoft SQL Azure or Amazon Aurora), and it
contains all the tables with the shared data – in our example quotes
and orders that keep the information accessible to A and B and any
other parties that participate in this marketplace. The most impor-
tant feature of this blockchain database is that it is verifiable. The
provider who operates this database cannot be trusted because the
provider might collude with A or B, the database might be hacked,
or the database system source code might contain backdoors. The
requirement is that the verifiable database gives the same trust
guarantees as the blockchain in the architecture of Figure 2 – it
contains an immutable, totally ordered log, and the state transitions
can be verified by an auditor. This way, A and B can prove to an
auditor that they behaved correctly and executed their actions in
the right order.

Recently, Amazon announced QLDB [27]. QLDB was inspired
by this Blockchain Database trend. In its current version, the QLDB
service provider (i.e., Amazon) must be trusted so that QLDB pro-
vides different trust properties. In particular, the QLDB provider
can drop transactions spuriously.

2.2 Shared, Verifiable Tables
While the concept of a blockchain database sounds attractive at
first glance, it does not provide much additional value compared

A B
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Verifiable Database

Figure 3: Verifiable Database

A B

Blockchain

Figure 4: Verifiable Tables

to the architecture of Figure 2. Application developers and admin-
istrators still need to worry about distributed transactions across
two databases and need to use reliable queues to implement trans-
actions; there is asynchrony involved across different systems, and
the middle tier needs to deal with one more system.

To have a truly seamless database experience and support trusted
collaboration in the cloud, we propose the concept of a shared,
verifiable table which integrates the tables from the blockchain
database of Figure 3 directly into the databases of A and B – as if
they were to share a single, common instance of this table.

Figure 4 shows how A and B collaborate using shared, verifiable
tables. A writes all widget orders into a shared order table in its
local database dbA. A can update and query this table just like any
other table; there is no queuing delay, and A can write SQL and
transactions across the shared tables and its private tables. However,
the same instance of this table is also visible to B, which has the
same capabilities as A against the shared, verifiable table. In addition,
updates to all shared tables of a database are written to a tamper-
proof and auditable logwhich could be implemented as a blockchain.
More precisely, there is an N:1 relationship between shared tables
and tamper-proof logs. Both A, B, and any auditor who can access
the log, can see and inspect the log. An auditor can now prove
whether A placed an order and whether it happened before after
the latest price change. Likewise, B can publish all its price changes
into a shared, verifiable quotes table which is also visible to A .
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In the next section, we discuss how to implement a blockchain
database and how to implement shared, verifiable tables.

3 IMPLEMENTING VERIFIABLE DATABASES
The previous section introduced two new abstractions: verifiable
database and verifiable table. A verifiable database has all the fea-
tures of a regular database: it talks SQL, stored procedures, supports
complex query processing, indexes, integrity constraints, transac-
tions, backup and recovery, etc. Furthermore, clients connect to a
verifiable database using drivers such as ODBC, JDBC, etc. A veri-
fiable database is a platform to share data and collaborate across
clients, just like any other traditional database system. Analogously,
a shared, verifiable table has all the features of a regular table of a
relational database.

What makes verifiable databases and tables special is that they
support tamper-evident collaboration across mutually untrusted
entities. They provides verification mechanisms using which each
party can verify the actions (updates) of all other parties and provide
proof for its own actions. Further, all parties can verify that the
state of the shared database (or shared table) and its responses to
queries is consistent with prior actions of legitimate actors. These
guarantees are cryptographic. Unauthorized parties (hackers or
operators with administrative privileges) cannot tamper with the
state of the verifiable database (or verifiable table) without being
detected by the verification mechanism.

Just like blockchains, a verifiable database system that supports
verifiable databases and tables relies on cryptographic identities
to establish the legitimacy and originator of actions. The system
is permissioned and tracks the identities (public keys) of autho-
rized participants. An authorized participant signs all interactions
(queries) with the system, and the signatures are checked for authen-
ticity during verification. Queries are also associated with unique
identifiers to prevent replay attacks.

A second critical building block is that the verifiable database
system logs all client requests and the affects of these requests.
As part of this log, the system adds information (typically hashes)
which allow auditors and participants to verify whether the data-
base behaves correctly. We call all agents that audit the database in
this way verifiers. Since confidentiality is out of the scope of this
paper, we assume that all verifiers have access to the whole log
generated by the verifiable database. Frameworks like Coco [11],
Quorum [28], Spice [30] or Corda [13] address confidentiality in
Blockchains and the ideas of these frameworks are applicable to
our work because they are in principle orthogonal.

Given these three building blocks, there are many different ways
to implement a verifiable database system. Essentially, there are
three fundamental design questions:

• How do the verifiers consume the log of the verifiable data-
base and generate consensus on the state of the verifiable
database?

• How do the verifiers check whether the verifiable database
does the right thing?

• Do verifiers check transactions synchronously or asynchro-
nously?

The remainder of this subsection describes our proposals to
address these three questions in the Veritas system that we are

A B

Blockchain

Verifiable Database

Verifier Verifier Verifier

Figure 5: Verifiers and Blockchain

currently building atMSR.We address these questions in the context
of verifiable databases. We discuss the specifics of verifiable tables
in Section 4.

3.1 Verification Architecture
Figure 5 shows one possible way to add verifiers to a verifiable
database (Figure 3). The verifiers consume the log produced by the
verifiable database, check whether everything is okay (see next
subsection), and write their vote into a Blockchain.

In this architecture, the Blockchain is only used to store the votes
of verifiers. Depending on the specific Blockchain technology, the
cost and performance of Blockchain operations varies, but they are
always expensive. So, it is advantageous to minimize the number of
Blockchain operations. In the architecture of Figure 5, verifiers can
further reduce the number of times they write to the Blockchain by
batching their votes. Instead of acknowledging each log record of
the verifiable database, they record into the Blockchain the position
of the position until which they have verified all operations of the
verifiable database. If there is a dispute, all parties can reconcile
the history with the log of the verifiable database (which needs to
be archived) and the votes of the verifiers in the Blockchain. This
protocol is called “Caesar Consensus”, and it was first devised for
the Volt system [31].

Disseminiating the log of the verifiable database to the verifiers
across a wide-area network can be expensive and slow. One variant
of the architecture of Figure 5 is to leverage emerging technology to
create trusted execution environments (TEEs) and collocate the TEE
with the verifiable database. Examples of TEEs are Intel SGX [14],
ARM Trustzone [2], Windows VBS [32], or FPGAs [17]. In this
variant, the TEE consumes the log and verifies that the verifiable
database operates correctly, informs all other verifiers, and writes
its vote into the Blockchain. This variant is inspired by the Coco
framework [11]; in addition to performance enhancements, this
approach can also be used to implement confidentiality in the archi-
tecture of Figure 5. To make this approach secure, the TEE needs
to be attested by all parties (and other verifiers) in order to make
sure that it does not run malicious code and verifies correctly.

3.2 Fine-grained vs. Coarse-grained
Verification

The second design question addresses the inner workings of the
verifiers. The "Blockchainway" of building verifiers is implementing
verifiers as replicated state machines [24]. That is, the verifiable
database logs all requests of clients and the answers returned to
the clients. Each verifier implements exactly the same logic as the
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verifiable database system: It retruns the client requests and checks
whether it returns the same results. If the results match, the verifier
votes that everything is okay; otherwise, it signals a violation. To
make the log reproducible, the results of indeterministic functions
(e.g., random() or getTimeOfDay() need to be logged, too. We call
this approach coarse-grained verification.

Conceptually, coarse-grained verification is simple. However, it
is also costly because it repeats expensive database operations such
as joins and sorting. For instance, it is easier to verify the result
of a sort operator than to sort the sequence again. Furthermore,
the coarse-grained approach requires that the verifier maintains
a full copy of the whole database. As a result, the coarse-grained
approach does not compose well with the TEE variant described in
the previous subsection. State-of-the-art TEEs (e.g., Intel SGX) have
severe memory limitations and cannot carry out I/O operations
reliably, thereby making it difficult to embed a full-fledged DBMS
into a TEE. Another severe issue of the coarse-grained verification
approach is that the verifier inherits all bugs of the database system:
The verifier has a large trusted computing base (TCB), and it is
virtually impossible to verify the correctness of the software that
drives the verify.

As an alternative, a fine-grained verifier only checks the logi-
cal properties of the results and affects of all database operations.
This approach is particularly attractive for databases because the
semantics of database operations is (fairly well) standardized. A
brute-force version of a fine-grained verifier is also straight-forward
to implement: It will involve logging every record that is read and
created as intermediary or final query result. The current version
of Veritas implements such a brute-force fine-grained verification.
It works well for simple, OLTP-style database statements (point
lookups and updates). This approach also parallelizes verification
well, following the design devised in [1]. Parallelizing verification
is important so that the verifiers can keep up with the Verifiable
database system which has a high degree of concurrency. More
research, however, is needed to optimize this approach for more
complex queries. Furthermore, more research on the fine-grained
approach is needed to check whether the verifiable database system
used a correct query plan (for complex queries) and whether the
verifiable database system guaranteed the desired isolation level.

Veritas uses the fine-grained approach for three reasons: (a)
verification is potentially cheaper as the sorting example in the
previous paragraph shows, (b) footprint, and (c) security. The fine-
grained approach has a small TCB, and fine-grained verifiers can be
virtually stateless. The verifier of the Concerto key-value store [1]
which is the designwe adopted for Veritas, for instance, is composed
of two simple AES blocks implemented in an FPGA and provably
verifies the affects of a key-value store with hundred thousands of
lines of code. It is also fully streaming and only keeps a few hashes as
internal state. In contrast, a coarse-grained verifier is a full-fledged
DBMSwithmillions lines of code and involves replicating the whole
database. A small TCB and footprint is particularly important to
deploy a verifier using TEEs such as Intel SGX and FPGAs that have
memory constraints.

3.3 Online vs. Deferred Verification
The third design question has attracted a great deal of attention in
the research literature [8, 16]. Online verification means that the
transaction cannot commit in the verifiable database until it has
been verified by all (or a quorum) of verifiers. This approach is im-
portant for transactions that have external effects; e.g., dispensing
cash at an ATM. In contrast, deferred verification batches transac-
tions and periodically validates the affects of this set of transactions
in an asynchronous way.

It turns out that in the absence of external effects which cannot
be rolled back, online and deferred verification provide the same
trust guarantees. If the verification of a transaction fails in the
online model, then just rolling back that specific transaction might
not be enough. In fact, the transaction might be perfectly okay
and verification fails because of an integrity violation with the
verifiable database by, e.g., a malicious admin a long time before this
transaction. So, online verification does not guarantee immediate
detection of malicious behavior, a common misunderstanding of
online verification.

4 IMPLEMENTING SHARED, VERIFIABLE
TABLES

Essentially, all the design considerations to implement trust (i.e.,
distributed verifiers) in a verifiable database discussed in Section
3 apply in the same way to the implementation of shared, veri-
fiable tables. Conceptually, the big difference between verifiable
databases and verifiable tables is concurrency control. Concurrency
control is centralized in a verifiable database and implemented
in the same way as in any traditional database system (e.g., us-
ing Snapshot Isolation [4] or two-phase locking [20]). In contrast,
concurrency control is fundamentally distributed in a system that
supports shared, verifiable tables.

As shown in Figure 4, verifiable tables are a way to integrate
data from a shared, verifiable database into a local database. The
advantage is that applications need not worry about distributed
transactions across a local and a shared database. Distributed trans-
actions are fundamental to the shared, verifiable table concept as
each node is autonomous and carries out transactions on the shared
(and private) tables independently. So, rather than letting the ap-
plication mediate between the local database and the Blockchain
or verifiable database, the database system needs to implement
distributed coordination of transactions to support verifiable tables.

There are many ways to implement distributed transactions
[5]. Recently, there has been a series of work on implementing
distributed Snapshot Isolation [7, 15]. For Veritas, we chose to use
a scheme that is based on a centralized ordering service and that is
inspired by the Hyperledge Blockchain protocol.

Figure 6 depicts an example scenario with three parties, denoted
as Node 0, Node 1, and Node 2. Each of these nodes operates a
Veritas database on behalf of their organization which includes
private tables only visible to users of that organization and shared,
verifiable tables visible to users of all three organizations. Users and
applications of each node issue transactions to secret and shared
tables in a transparent way; that is, users and application programs
need not be aware of the existence of other nodes and organizations,
and they need not be aware of the difference between private and
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Figure 6: Shared Tables Implementation Architecture

shared tables. The database system at each node deals with all issues
concerning distributed transactions, keeping the copies of shared
tables consistent, and making all updates to shared tables verifiable.

Transactions that involve only private tables are executed locally
only. Coordination is only needed for transactions that involve reads
and updates to shared tables. For such “global” transactions, the
database system does two things, as shown in Figure 6:

• Concurrency Control: We use Timestamp-based concurrency
control in our prototype implementation of Veritas.

• Disseminate Log and Voting: We use a Kafka-based broad-
cast service to propagate all updates of a shared table to all
nodes. Each node embeds its votes (following the “Caesar
Consensus Protocol” of Section 3.1) into the log that it ships
to all other nodes.

Again, there are many ways to effect distributed concurrency
contol for a system that supports shared tables like Veritas. For
simplicity, we chose to use an optimistic protocol that is based
on Timestamp ordering with a centralized Timestamp service á
la Hyperledger in our prototype implementation of Veritas. At
the beginning of a global transaction that accesses a shared table,
Veritas calls the Timestamp service to get a global timestamp for the
global transaction. This timestamp determines the commit order of
all global transactions.

Once a global transaction has received a (global) timestamp, it is
executed locally at the Veritas node speculatively (or optimistically).
While the global transaction is executed it is not yet knownwhether
it will commit successfully. In Veritas, a transaction can be aborted
due to concurrency control conflicts or user aborts, just like in any
other database system. Furthermore, transaction on shared tables
can fail in Veritas if they are not verified by the other Veritas nodes.

To execute the transaction, each Veritas node keeps two data
structures: (1) a commit watermark, TC that indicates the highest
global timestamp for which the node knows whether all global
transactions with timestamp less thanTC committed successfully or
aborted. (2) A version history of all records of all shared tables. This
version history contains the latest version of each record commit
by a global transaction before TC and all versions of the record of
speculative transactions with timestamp higher than TC .

Node 

Committed 
State

Speculative 
Updates

Non-shared 
State

Local 
Transactions

(Redis database)

Local (unresolved) transaction log Global (resolved) transaction log 

(In-memory table)

Ship local logs

Merge remote logs

Figure 7: State of a Veritas Node

Periodically, every Veritas node ships all log records that involve
reads and writes to shared tables as well as the begin of transaction,
commit, and abort log records of all global transactions to all other
Veritas nodes using the Broadcast Service (Figure 6). When a Veritas
node receives log records from another node, it applies that log and
verifies the affects of all committed transactions. (The node buffers
log records of active transactions until it receives the commit or
abort log records for those transactions.) While applying that log,
the node checks for read/write and write/write conflicts using its
version store of records of the shared tables. If the node detects a
conflict, it marks the transaction as aborted and ignores all updates
to its copy of the shared table. If the transaction can be verified
and does not create any conflicts, the transaction is marked as
committed and the node’s copy of the shared tables are updated
accordingly.

Figure 7 depicts the state and log maintained by each Veritas
node. In addition to the private (non-shared) tables, every Veri-
tas node keeps a clean copy of all shared tables - this clean copy
contains the state of all records of shared tables as of time TC , the
commit watermark. In the current Veritas prototype, the non-shared
tables and the clean shared tables are persisted in a Redis database.
Furthermore, the Veritas node keeps all (known) versions of records
of shared tables of speculative transactions; i.e., transactions after
TC so that the node does not know the destiny of those transactions
yet. Furthermore, each Veritas node keeps a local log of all updates
to private (non-shared) tables and a global log of updates to shared
tables.

In this scheme, the (centralized) Timestamp service is a potential
vulnerability of the system because it must be trusted. Again, there
are many possible ways to implement distributed transactions, in-
cluding variants that do not rely on a centralized service. Exploring
the full space of these protocals and variants is beyond the scope
of this paper. The goal of this paper is to give a flavor of one pos-
sible way to interleave concurrency control and verification in a
distributed system that implements shared tables.

5 EXPERIMENTAL RESULTS
This section contains the results of initial performance experiments
done with the Veritas prototype described in Sections 3 and 4. The
goal of these experiments was to study the overheads of verification
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as a function of the number of nodes. Furthermore, we wanted to
study the interplay of distribution concurrency control and verifi-
cation, depending on data contention.

5.1 Benchmark Environment
We used a variant of the YCSB benchmark [12] for all performance
experiments reported in this paper. We used a database with only
a single (shared) table and varied the number of records in that
shared table. Every record of the shared table was a key/value pair;
both key and value were short strings of eight bytes.

We studied workloads with get() and put() operations only. All
operations accessed a random record of the shared table using a
uniform distribution across all records of the shared table. While
our prototype supports more general transactions, here we report
results for simple transactions with a single read or a single update
(read followed by a write). We used three different workload mixes:
(A) update-heavy (50% operations are updates), (B) read-heavy (5%
update rate), and (C) read-only (0% update rate).

In all experiments, we ran a fixed number of transactions (one
million transactions, if not stated otherwise) and measured the time
it took to execute this batch of transactions across all nodes of the
system. The same number of transactions originated at every node;
e.g., for a four-node system 250000 transactions originated at each
node. Furthermore, we measured the number of transaction aborted
due to concurrency conflicts caused by the optimistic protocol
described in Section 4. From this number, we computed the commit
rate: (total number of transactions - aborted transactions) / total
number of transactions. From these two measurements, we derived
the throughput as the number of committed transactions per second.
We varied the numnber of nodes (Experiment 1) and the number of
records in the shared table (Experiment 2).

This paper only reports on experiments done with the shared
table approach (Section 4). The throughput and commit rate of
verified databases in the Veritas implementation (Section 3) is al-
most the same as in a traditional database system as Veritas does
verification asynchronously and in batches. The only overheads
are the creation of digital signatures at clients and the shipping of
the log to the verifiers.

We ran all Veritas nodes in Azure on VMs with four virtual
cores and 16 GB of main memory (i.e., Azure D4sv3 instances).
Each node ran a Redis database to store its copy of the shared
database persistently. The Timestamp service shown in Figure 6
was implemented using Zookeeper. The Broadcast service was
implemented using Kafka. Both the Timestamp service and the
Broadcast service were deployed on separate Azure VMs (again
with four cores and 16 GB of main memory).

We implemented the Veritas prototype in C#; it currently has
about 1500 lines of code. Each node batches transactions before
shipping the log to the Broadcast service. The batch size was 10,000
transactions in all experiments reported in this paper.

5.2 Experiment 1: Vary Number of Nodes
Figure 8 shows the throughput of Veritas for a database with 100K
records and all three workload types (update-heavy, read-heavy,
and read-only). Figure 8 shows the results for Veritas configurations
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with 2, 3, and 4 nodes. As a baseline, the figure also shows a config-
uration with one Veritas node. With one node, Veritas behaves like
any conventional database system as there is no coordination with
other nodes required.

As expected, there is a tax for distributed concurrency control
and verification in Veritas. For the update-heavy workload (A), the
throughput is only slightly more than half with distributed con-
currency control and verification. With a more sophisticated dis-
tributed concurrency control protocol, we could probably improve
these results. However, the figure shows that even for read-only
workloads (C), the best case for the optimistic concurrency control
scheme currently implemented in Veritas, the overhead is substan-
tial. Nevertheless, Figure 8 also shows that the overhead is not
catastrophic; even with the simple scheme currently used in Veritas
is it possible to achieve tens of thousands transactions per second.

Figure 9 shows the commit rates for this experiment. Obviously
and expectedly, the conflict rate drops with a growing number of
nodes as the number of conflicts increases with the number of
concurrent nodes. Furthermore, as expected, the drop is most sig-
nificant for the update-heavy workload (A). Comparing the commit
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Figure 10: Throughput: 4 Nodes, vary database size (number
of records)

rates of Figure 9 with the throughput drop shown in Figure 8, it
can be infered that as a rule of thumb, about half of the throughput
drop can be explained by the impact of distributed concurrency
control and half of the drop is due to the complexity of verification.
The exact split depends on the number of nodes (the more nodes,
the higher the relative impact of distributed concurrency control),
but the 50/50 split is a nice rule of thumb for deployments with few
nodes.

5.3 Experiment 2: Vary Database Size
To investigate the impact of concurrency control and data con-
tention in more detail, we did a series of experiments with a varying
number of records in the shared table (while keeping the number
of nodes fixed at four): The fewer records, the higher the number
of conflicts, and, thus, the higher the number of aborts due to our
simple optimistic concurrency control scheme. Figures 10 and 11
show the results. As expected the throughput increases with the
size of the database and a correspondigly lower number of conflicts
and aborts. In the extreme of an update-heavy workload with a very
small database of only 100 records, the throughput is roughly 1/4 of
the throughput of a read-only workload. This result shows that (a)
Veritas does not starve, even with extremely high data contention
and (b) delivers roughly the expected throughput of 1/(number of
nodes as the coordination effort is proportional to the number of
nodes. This result is encouraging because it shows that the imple-
mentation of shared tables in Veritas does not create any additional
bottlenecks: Indeed, verification and distributed concurrency con-
trol has a price as shown in Experiment 1 - but the bottlenecks of
a database system that uses verification (and distributed trust) are
the same as the bottlenecks of a traditional database system.

6 RELATEDWORK

Blockchain Systems: Bitcoin [26] is one of the first blockchain
systems proposed for decentralized cryptocurrencies. Bitcoin is a

0

0.2

0.4

0.6

0.8

1

1.2

100 1000 10000 100000

C
o

m
m

it
 F

ra
ct

io
n

Database Size

A B C

Figure 11: CommitRate: 4Nodes, vary database size (number
of records)

public blockchain that relies on cryptographic puzzles (proof-of-
work) and incentives for decentralized trust. Ethereum [33] gen-
eralizes these ideas for more general computation. Both Bitcoin
and Ethereum are public blockchains, meaning anyone can join the
network and participate in the blockchain protocol.

For the enterprise applications we are interested in, private
blockchains are more relevant. Examples of such blockchains in-
clude Hyperledger [22] and Quorum [28]. These systems use dif-
ferent mechanisms such as PBFT [9] for consensus rather than
proof-of-work. But their verification methodology is similar to the
public blockchains and relies on mirroring the state and rerunning
transactions at every node. Recent blockchain proposals such as
Coco [11], Ekiden [10], and Intel Sawtooth Lake [29] rely on TEEs
such as Intel SGX [14] for confidentiality and performance. As
noted above, Veritas can be combined with similar ideas to achieve
confidentiality. Another interesting approach to confidentiality is
Corda [13] that does not use a single global ledger of transactions,
but a decentralized network of notaries to prevent double spending
attacks.
Database Systems: BigchainDB [6] is a recent system that over-
lays blockchain consensus ideas such as PBFT over a database
system (MongoDB [25]). While the overall goals of BigchainDB
are similar to ours, there are fundamental architectural differences.
BigchainDB, similar to traditional blockchains, relies on replicating
the state and rerunning transactions at every node. Further, the
entire MongoDB code is part of the TCB of the system. Veritas
architecture allows the database state and query processing to be
centralized, with much smaller verifier TCB. Verifiable databases
are related to the large body of work on ensuring data integrity
in outsourced settings [1, 3, 23, 34]. Most of this work deals with
verifying data integrity for analytical workloads [3, 34] with poor
update performance [23]. Concerto [1] is a recent system that ad-
dresses update performance concerns of previous systems and is
the source for many of the technical ideas underlying Veritas.
Other work: Google Fusion Tables [21] is a system for sharing and
distributed editing of tables, but it does not provide the verifiability
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guarantees required for blockchain style applications. There is also
a lot of work on data integration that is relevant [19].

7 CONCLUSIONS
We introduced two new abstractions. A verifiable database system
creates an immutable log and allows an auditor to check the validity
of query answers and updates that the database produced. A shared,
verifiable table creates the same abstraction at the scale of a table
which can be shared and thus part of many different database
instances in the cloud — which operate on the table as it is were a
single table.

Experimental results with our prototype system Veritas show
that our abstractions scale with the verification overhead and with
the distributed concurrency control schema.
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