
Comparing Heuristics and Linear Programming
Formulations for Scheduling of In-Tree Tasksets

Thomas Kothmayr, Jakob Hirscheider, Alfons Kemper
Chair for Database Systems,

Technische Universität München, Germany
{kothmayr, hirschei, kemper}@in.tum.de

Andreas Scholz, Jörg Heuer
Corporate Technology, Siemens AG

{andreas.as.scholz, joerg.heuer}@siemens.com

Abstract—Cheap but resource constrained platforms are
poised to assume duties in next generation automation systems -
the Internet of Things (IoT) is entering the real-time scene. For
highly distributed systems like these, service oriented architec-
tures (SOAs) are being increasingly adapted to raise the overall
level of flexibility and adaptability. Our approach encompasses a
SOA for hard real-time tasks in industrial automation, aimed at
IoT class devices. The feasibility of task assignments to machines
is verified through computation of a local schedule for the tasks
assigned to each device. This reintroduces the need for efficient
non-preemptive single machine scheduling. In this paper, we
evaluate the efficiency of five heuristics and two linear program
formulations for scheduling task sets with release times, deadlines
and in-tree precedence constraints.

I. INTRODUCTION

Our vision takes the SOA approach to automation [1] and
aims to make resource constrained IoT class devices full
members of a hard real-time SOA. We chose a top-down
approach to this problem, focusing on the planing and data-
flow aspects instead of ontologies and network protocols. In
our system, automation tasks are defined as cyclic workflows
of distinct subtasks with precedence constraints and end-to-
end deadlines. Individual tasks are assigned to machines in
a real-time network by an engineer or an automatic planning
component. Local constraints (task release times and dead-
lines) are derived from the underlying network configuration,
dependencies of the tasks and the global end-to-end deadline.
The feasibility of the assignment is verified by scheduling the
tasks on each machine according to their new local constraints.
At this early stage, our current work focused on efficient local
scheduling as a means to verify a manual task assignment.

II. FORMAL PROBLEM DESCRIPTION

The scheduling problem analyzed in this paper is as follows:
Find a feasible schedule for a set of jobs J = {j1, j2, . . . , jn}
with a fixed integer processing time wceti on a single, non-
preemptive machine. Additional constraints are: Each job ji
has either exactly one successor jk, written as ji ≺ jk, or no
successor. A job may be annotated with a deadline di and a
release time time ri. Since the generated schedule is expected
to be executed cyclically, a maximum schedule length D is
defined. It is enforced by the root element Ω with wcetΩ =
0, dΩ = D and rΩ = D. If ∅ ≺ j set Ω ≺ j, thus transforming
the structure of J ∩Ω into a single in-tree. If no values for ri or
di are given, 0 and D are assigned by default. The objective
is minimizing the number of tardy jobs ΣUj . We are only

interested in finding a schedule that has no tardy jobs at all.
In the traditional notation of scheduling theory we can express
our problem as 1|rj , in− tree|ΣUj .

III. RELATED WORK

Chretienne [2] minimizes the makespan of in-tree task
sets with stochastic processing times in a distributed memory
environment under the assumption that the processing times
are greater than or equal to the data communication times
between the jobs. Liu [3] applies heuristics in a branch-and-
bound approach to minimize maximum lateness under general
precedence constraints and release dates. We use his BLOCK
heuristic on our problem set. For minimizing the maximum
tardiness, research based on Schrage’s Heuristic has proven
to be very efficient. Hall and Shmoys [4] improved on Pott’s
original work which employed Schrage’s Heuristic.

IV. LINEAR PROGRAMMING SOLUTIONS

This paper is using the mixed integer programming (MIP)
formulations given by Keha et al. [5]. They compare four
different approaches: Start time and completion time variables
(F1), time index variables (F2), linear ordering variables (F3),
and positional and assignment variables (F4). Because we
are looking for feasible instead of optimal solutions we only
adapted F1 and F4. These generate the highest amount of
feasible solutions in a given amount of time [5]. Due to space
constraints, we refer the reader to the original paper for the
MIP formulations.

V. HEURISTIC APPROACHES

Heuristics pose an attractive alternative for finding feasible
solutions. We compare earliest release time time first (ERF),
earliest deadline first (EDF), the BLOCK heuristic [3] and
Potts’ algorithm [4].

Earliest release time time first: The ERF heuristic simply
sorts all jobs in J ∪ Ω by ascending order of their release
time time. If two jobs have the same release time, then their
deadlines are used as a tiebreaker. Precedence constraints
should be mapped to modified release times by applying:
∀ji, jkεJ ∪ Ω : ji ≺ jk =⇒ r′k = max{rk, ri + wceti}

Earliest deadline first: In contrast to the ERF heuristic
we cannot simply sort jobs by their deadline because that
could lead to violation of precedence constraints. EDF instead
chooses the leaf of the tree with the earliest deadline jd and
the leaf with the earliest release time jr. If jr can be scheduled

before jd without conflict, i.e. rr + wcetr ≤ rd, schedule jr
first, otherwise jd. The scheduled leaf is then removed from
the tree and if all predecessors of a job have been scheduled
that job is then added to the set of available leaves. Effective
deadlines for each job should be computed beforehand as:
∀ji, jkεJ ∪ Ω : ji ≺ jk =⇒ d′i = min{di, dk − wcetk}

BLOCK heuristic: The BLOCK heuristic [3] first sets up
a schedule by ERF and divides it into blocks of jobs which
are executed with no time delay between them. If the schedule
is invalid, the heuristic adjusts the block by scheduling jobs
with higher deadline towards the end of the block.

Potts’ algorithm: Potts’ algorithm [4] is setup by sorting
tasks by their deadlines in topological order. If the schedule is
invalid, it analyzes the critical sequences of the schedule, i.e.
blocks of jobs where at least one job has an invalid deadline
(= critical job jcrit). An interference job jint is a job within a
critical sequence that is scheduled before jcrit but has a higher
deadline than dcrit. rint < rcrit must hold, since jint would
otherwise not have been scheduled this early. Interference jobs
are thus scheduled after their corresponding critical jobs to
reduce the amount of tardy jobs.

VI. EVALUATION

The evaluation was performed on over 40 000 randomly
generated scheduling problems with 16 to 128 jobs. The
amount of deadline and release time constraints per workflow
is uniformly distributed between one and |J |. Similarly,
the tightness factor (Σwceti/D) was uniformly distributed
between one (maximum tightness) and zero. Since the goal
of the evaluation is to evaluate the efficiency of a scheduling
algorithm, i.e. for how many of the feasible workflows it
can find a valid schedule within a given CPU time budget,
infeasible workflows have to be discarded first. As no optimal
algorithm for the non-preemptive case exists we employ the
preemptive least laxity first algorithm (LLF) to filter out
definitely unschedulable workflows. LLF has been shown to
be optimal for the preemptive single machine case [6]. Any
workflow that is not schedulable in the preemptive case will
remain so in the non-preemptive case. LLF discarded about
half of the generated workflows as unsolvable, the remaining
20 503 jobs where then scheduled with each of the methods
described in Sections IV and V and with simulated annealing
(SA). For only two of these jobs no solution could be found
with any of the employed methods, meaning that we have
20 501 jobs which comprise our set of feasible test cases.

We use Gurobi1 in version 5.5 for solving the LP formu-
lations for feasibility, not optimality. The simulated annealing
portion is based on the Opt4J2 framework using a simple linear
temperature function and ran for 250 000 iterations. The test
machines are equipped with an Intel Q6700 CPU at 2.66GHz
and 8 gigabytes of RAM.

The time budget for each algorithm in Figure 1 was
10 seconds. The MIP approach is outperformed by all the
heuristics, ruling them out for productive use. In the case

1http://www.gurobi.com/
2http://opt4j.sourceforge.net/

16 jobs 48 jobs 88 jobs 128 jobs
70%

80%

90%

100%

32 jobs 64 jobs

EDF BLOCK Potts’ ERF
SA LP F1 LP F4

Fig. 1: Percent of test cases solvable by each method

of LP F4 the efficiency sinks to 10% for 128 jobs. ERF
naturally also struggles to achieve a high efficiency because
it does not take deadlines into account. However, it is more
stable in the number of jobs. Simulated annealing performs
well for small problem instances but looses efficiency for
larger workflows because the state space it has to explore
is growing exponentially. EDF, BLOCK and Potts’ algorithm
all perform well with over 95% efficiency on average. Potts’
algorithm consistently performs at near 100% efficiency, there
were only 18 out of 20 501 test cases where it did not find
a solution, which equals an overall efficiency of over 99.9%.
The combination of Potts’ Algorithm, BLOCK and EDF finds
a solution for all but 8 test cases. It is worth noting that ERF,
EDF, BLOCK and Potts’ algorithm all run in polynomial time
and, on average, need less than one millisecond to generate a
solution.

VII. CONCLUSION AND FUTURE WORK

This paper shows that heuristics, especially Potts’ algorithm,
are able to solve our scheduling problem within a CPU time
budget of 10s in nearly 100% of our test cases. This makes
them a good fit for the scheduling component in our real-
time SOA. MIP formulations are not suited to finding feasible
solutions fast, but could be used to find optimal solutions in
a later, separate step. Future work will implement the other
building blocks, such as deriving local constraints from end-
to-end deadlines and evaluate the concept in simulation as well
as in real world testbeds.

REFERENCES

[1] L. De Souza, P. Spiess, D. Guinard, M. Köhler, S. Karnouskos, and
D. Savio, “SOCRADES: A Web Service Based Shop Floor Integration
Infrastructure,” in The Internet of Things, ser. LNCS. Springer Berlin
Heidelberg, 2008, vol. 4952.

[2] P. Chretienne, “A polynomial algorithm to optimally schedule tasks
on a virtual distributed system under tree-like precedence constraints,”
European Journal of Operational Research, vol. 43, 1989.

[3] Z. Liu, “Single machine scheduling to minimize maximum lateness sub-
ject to release dates and precedence constraints,” Computers & Operations
Research, vol. 37, no. 9, 2010.

[4] L. A. Hall and D. B. Shmoys, “Jackson’s rule for single-machine
scheduling: making a good heuristic better,” Mathematics of Operations
Research, vol. 17, no. 1, 1992.

[5] J. W. F. Ahmet B. Keha, Ketan Khowala, “Mixed integer programming
formulations for single machine scheduling problems,” Computers &
Industrial Engineering, vol. 56, 2009.

[6] A. K. Mok and M. L. Dertouzos, “Multiprocessor scheduling in a hard
real-time environment,” in Seventh Texas Conf. Comput. Syst., 1978.

