
Instant Service Choreographies for Reconfigurable
Manufacturing Systems - a Demonstrator

Thomas Kothmayr, Alfons Kemper
Chair for Database Systems,

Technical University of Munich, Germany
{kothmayr, kemper}@in.tum.de

Andreas Scholz, Jörg Heuer
Corporate Technology

Siemens AG
{andreas.as.scholz, joerg.heuer}@siemens.com

Abstract—The modularization and reuse of source code con-
trolling traditional manufacturing systems is hindered by a tight
coupling of these systems with their environment. Increasing
uncertainty about production volume and demand fluctuations
mandate new approaches, such as reconfigurable manufactur-
ing systems, to address these issues. One key component for
adaptable manufacturing systems is software reconfiguration.
This paper shows how service oriented principles, along with
schedule based service choreographies, can be applied in practice
to achieve a flexible and reconfigurable software architecture that
provides deterministic real-time guarantees which are required in
many areas of automation. In addition to an abstract description
of this approach, we implemented a real-world demonstrator and
show how it can be reconfigured nearly instantly with a graphical
user interface that triggers a heuristics based choreography and
planning process.

I. INTRODUCTION

The need for cost effective manufacturing of large volumes

of a product with low variability is increasingly giving way

to more fluctuations in product volume and variants. This

means that new manufacturing paradigms are emerging to

complement or replace the existing dedicated manufacturing

systems [1]. These centralized, monolithic and scan-based

control systems are optimized for a given physical and network

configuration. The modularization and reuse of source code

running on these systems is hindered by a tight coupling

with their environment. Furthermore, installation and setup

comprise up to one third of their life-cycle costs [2]. Increasing

uncertainty about the production volume of a product is ac-

companied by demand fluctuations over the product’s life cycle

[3]. To address these issues, the paradigm of the reconfigurable

manufacturing system (RMS) has been postulated in research

[1], [3], [4]. Koren is giving the following definition [1]:

“A reconfigurable manufacturing system [. . .] is designed

for rapid adjustment of production capacity and functionality

[. . .] by rearrangement or change of its components (hardware

and software).”

A RMS is modular and designed to evolve both in terms of

capacity and capability over its lifetime. Apart from reconfig-

urable hardware, software reconfiguration has been identified

as a key technology for RMS [4]. This need for reconfigura-

bility and flexibility of the control software has led to research

endeavors which aim at fulfilling these requirements through

implementation of service oriented architectures (SOA) [5]

[6] [7], which encapsulate hardware behavior and software

capabilities in services which can be combined in a modular

way. These services are loosely coupled and can be reconfig-

ured to perform different automation tasks by reconfiguring

the data flow between them, thus addressing the need for

reconfigurability on the software side in RMS.

Extensive research efforts have been undertaken to push

the performance envelope of SOA (or more specifically, web-

service) technology on constrained embedded devices [8].

These endeavors have seen SOA solutions developed for lower

and lower layers of the automation pyramid [7]. It is, however,

difficult to verify the emergent properties of distributed event-

based systems. Implementations with centralized control are

therefore likely to be favored in the near future [9]. Centralized

control is realized through a service orchestration which is

executed by an orchestration engine that invokes each of

the individual services composed in a workflow [10]. While

such an orchestration represents an improvement over the

traditional monolithic approach to control software, the full

impact of the SOA paradigm could be realized through service

choreographies providing global cooperation without central

coordination [11].

t1
t 2

t6

Machine A

t3

Machine B

t
4

t
5

Machine C

A B C A B C A B C

Network Timeline

Fig. 1: Devices cooperating in a distributed service choreog-

raphy follow local cyclic schedules and communicate over a

real-time TDMA network. Hatched areas indicate resources

used by an example workflow, arrows represent data flow.

Our proposal for a real-time service oriented architecture

(rtSOA) reconciles the SOA paradigm with predictable exe-

cution semantics while enabling decentralized coordination of

devices. The architecture of a system developed following the

rtSOA approach is depicted in Figure 1.978-1-5090-1314-2/16/$31.00 c©2016 IEEE

rtSOA ensures global coordination of field devices through

deterministic communication and computation schedules with

verifiable real-time properties. Similar to orchestration in the

SOA paradigm, the schedules are derived from a model-

based representation of the control loop. During design and

development, the control loop is modeled as a directed acyclic

graph (DAG) of dependent tasks, similar to an automation

workflow incorporating individual services in a SOA approach.

We therefore also refer to the task-DAG as workflow. The

workflow carries global timing information, such as its global

deadline and period. Timing restrictions on a per-job level

are derived from global constraints when binding a set of

workflows to devices connected through a real-time network.

This binding is performed by a skilled engineer who is

supported by the rtSOA planning tool shown in this paper.

rtSOA generates a static, cyclic, non-preemptive schedule for

each device that includes all relevant tasks from a real-time

workflow. The network communication is implicitly included

in the generated schedules as each task is scheduled to finish

before a certain communication deadline and the receiving

tasks on different devices are only scheduled to start after the

delivery of the relevant data from their predecessors.

This approach allows for a separation of concerns: When

specifying workflows, an engineer is freed from timing con-

straints imposed by the hardware and network. New devices

can quickly be integrated into the existing infrastructure by

deploying those sub-tasks of a workflow that are specific to the

device and subsequently generating new schedules that include

the device. While we focus on applications in the context of

manufacturing, rtSOA could also be applied in other areas, for

example the automotive or avionic industries.

In the following, we first give a short overview of the rtSOA

system and its approach to generating service choreographies

in Section II. Section III covers the design and setup of

our hardware demonstrator, which we use to show software

reconfigurability enabled through rtSOA. In Section IV we

compare our approach to other systems and related work. The

paper ends with our concluding remarks in Section V.

II. RTSOA PLANNER

The goal of the rtSOA planner is to provide a distributed ser-

vice choreography: each device fulfills its part to cooperatively

realize the control loop. The target platforms for rtSOA span

from large control systems to very small embedded devices,

such as smart sensors or actuators. These devices often consist

of a sensor or actuator attached to a system on a chip with sev-

eral kilobytes of memory, a CPU clock rate of a few Megahertz

and integrated networking capability. We do not assume that

any advanced real-time operating system (RTOS) is available.

Our demonstrator (Section III) uses devices with 64kB RAM

and a clock speed of 72MHz without any operating system.

The output of the rtSOA planning stage is a static, non-

preemptive, cyclic schedule for each device. The job timing

in each schedule is adjusted in such a way that the devices

cooperate in a distributed service choreography without a

centralized point of control. Advanced RTOS features are thus

not required but can be leveraged to provide additional quality

of service (QoS) levels beneath the critical real-time task.

Because we need to provide real-time guarantees for the

control loop in a distributed system, the network also needs to

offer these guarantees. We therefore assume all devices in the

control loop are connected by a real-time capable network with

bounded message delays. The predominant message exchange

mode in industrial control applications is cyclic [6] thus, we

also assume a cyclic communication model. In this model,

each network cycle is divided into a number of time slots

that are assigned to a device, i.e., TDMA. We do not assume

a master-slave relationship on the system or network level.

Each device can potentially send data to any other device in

the network.

Figure 2 depicts an overview of the planning steps necessary

in our architecture. We chose an adaptive cruise control system

as an example. In this example, a 3D-vision system is used to-

gether with a radar system to measure the distance to vehicles

in front of the object vehicle and regulate vehicle acceleration

and deceleration accordingly. The resulting workflow is shown

in Figure 2a. The global deadline and period of the workflow

are derived from physical requirements and / or control theory.

Once the automation task has been modeled according to the

modular decomposition (Figure 2a), these global deadlines are

attached to the workflow (Figure 2b). Because the functional

modules themselves make use of sensors and actuators, the

assignment of jobs to machines can be viewed as a design-

time decision performed by a skilled engineer. For a given

assignment, the worst case execution time (WCET) of each

task in the workflow can be measured or estimated. This

estimation leads to the situation shown in Figure 2c where

the global deadline and period of the workflow are known

and the machine placement and WCET of each workflow task

have been determined. Afterwards, the heuristics take over:

A deadline assignment algorithm can be used to generate

local constraints (Figure 2d), which are then used to generate

a matching task ordering. In the final step, the schedule

is verified through discrete event simulation. The output of

this simulation step for our example is shown in Figure 2e.

The fundamental difference between the planning and the

execution phase of the control loop is important: Whereas

planning and scheduling are performed in a centralized, offline

fashion, the execution of the workflow is distributed without

a central point of control.

In communicating systems with tight timing requirements,

the network configuration plays an essential role in finding

valid schedules. We cannot simply place an upper limit on the

communication delay and add it to the WCET of each task as

this action would prevent us from finding a feasible schedule

in Figure 2e and many other situations. Instead, timing infor-

mation about each individual TDMA slot has to be considered

during the schedule synthesis. As shown in our example,

the slots may be distributed irregularly. For example, when

an application is sharing the same communication medium

with a legacy application and was granted only the previously

unused time slots. Another example would be communication

Left

camera

Right

camera

Image

processing
Radar

Reported

distance

Desired

speed

Speed

sensor

Desired

distance

Actuate

brakes

Actuate

throttle

Distance

control

(a) Task in the embedded applica-
tion

A1 A2

B1A3

A4

A5

F1 F2

E1

D1

C1

D
e

a
d

li
n

e
 =

 2
.5

 m
s

,
P

e
r

io
d

 =
 3

 m
s

(b) Workflow layout and global
timing constraints

Main ECU

Sensors B

Sensors A

A1

250µs

A2

250µs

B1

500µs

A3

150µs
A4

100µsA5

100µs

F1

200µs

F2

200µs

E1

250µs

D1

500µs

C1

150µs

Deadline = 2.5 ms, Period = 3 ms

(c) Task assignment and task
WCET on assigned machines

Main ECU

Sensors B

Sensors A

A1

<900µs

A2

<900µs

B1

<1400µs

A3

<1400µs
A4

<1550µsA5

<2050µs

F1

<2500µs

F2

<2500µs

E1

<2300µs

D1

<2050µs

C1

<1550µs

Deadline = 2.5 ms, Period = 3 ms

(d) Local timing constraints as
input for scheduling algorithm

TDMA

Main ECU

Sensors B

Sensors A

0µs: TDMA Start 1000µs: TDMA Start 2000µs: TDMA Start

Main SensA SensB Main SensA SensB Main SensA

A2

A1

A3 A4 A5

B1 runningB1 idle C1 D1 E1

F2

running
F2 idle

F1

running
F1 idle

0µs 200µs 400µs 600µs 800µs 1000µs 1200µs 1400µs 1600µs 1800µs 2000µs 2200µs 2400µs

(e) Simulation of a three machine schedule for the workflow in Figures (a) - (d), generated by heuristics. Grey blocks denote task execution,
white blocks show time spent waiting for messages from preceding tasks. Hatched blocks show the TDMA-slots.

Fig. 2: A complex workflow in an adaptive cruise control scenario

protocols, such as Flexray, which set aside a portion of each

cycle for lower priority traffic [12]. We therefore consider the

available TDMA slots as an input to our schedule synthesis

instead of searching for a suitable slot assignment for a given

schedule. Once a candidate service choreography has been

generated it should be verified in terms of its functional and

temporal correctness.

The rtSOA planner uses heuristics to generate a feasible

global service choreography. Since this scheduling problem is

inherently NP-hard, heuristics are limited in their state search

space and may not always find a solution even though a valid

task ordering may exist. However, in previous work [13] we

determined that a combination of different heuristics yields

feasible schedules in the overwhelming majority (>99%) of

the surveyed cases.

III. DEMONSTRATOR

The physical setup of our demonstrator consists of a Festo

Modular Production System (MPS)1 distribution station and

processing station as shown in Figure 3. The distribution

station features a stacking magazine and swivel arm for work

piece distribution to the processing station. Both the magazine

and arm are pneumatic actuators. The processing station has

four electric actuators: A rotary table, a testing module and a

drilling module. It also features an electric sorting gate that is

used to remove work pieces from the rotary table. We control

all sensors and actuators in this setup through five Olimex

STM32-P107 development boards2 connected to IO-boards3.

This connection is established via the I2C (Inter-Integrated

1http://www.festo-didactic.com/int-en/learning-systems/mps-the-modular-
production-system

2https://www.olimex.com/Products/ARM/ST/STM32-P107/
3https://www.olimex.com/Products/Modules/IO/MOD-IO/

Circuit) bus running in standard mode (100 kbit/s). The CPU

is a STM32F107 32-bit ARM-based micro controller running

at 72 MHz, featuring 256 kB of flash memory and 64 kB

RAM. The actuators and sensors are grouped together with

a controller in functional units, e.g. one node controlling the

magazine, one for the rotary table and sorting gate and another

one for the drill. The development boards, which we also refer

to as nodes in this paper, are connected via 100 Mbit full-

duplex switched Ethernet.

This section is subdivided into a description of the soft-

ware runtime on the nodes (Section III-A) followed by an

explanation of how services are discovered (Section III-B)

and, in Section III-C, how this manufacturing system can be

reconfigured with rtSOA.

Stacking

Magazine

Vacuum

Arm

Rotary

Table

Testing

 Module

Drilling

 Module

Control Units

& IO-Boards

Fig. 3: The demonstrator consists of a Festo MPS distribution

station and processing station, controlled by five Olimex

STM32-P107 development boards

A. Software runtime

The software on the nodes is implemented directly in C

without a real-time operating system (RTOS). The software

architecture is a simple control loop, shown in Figure 4. It

first updates the sensor / actuator values by communicating

with the IO-board over the I2C bus. After this first step, the

software performs message routing between service instances

on the node. Services do not communicate directly with each

other but via links created between their input- and output

ports, as shown between Service 1 and Service 2 in

the example in Figure 4. A message producing service writes

its output to the message queue of the node local message

routing layer which delivers the message to the consuming

services during the processMessages() call. The routing

layer also performs message distribution over the network, if

the user has configured a link to a service instance on a remote

node. This process is transparent for the sending and receiving

services. Messages sent over the network are encapsulated

with the Erbium CoAP implementation [14], adapted for use

without the Contiki OS.

Service 1

1..n

Timer
Port Inputs

0..n

Outputs

0..n

Property

0..n

Entry 1

Offset: 100

WCET: 250

Service 2 Property

Property

Entry 2

Offset: 350

WCET: 150

…

System Clock: 1500

updateTimetable()

Start: 1337

Cycle: 1000

Next

Active

updateIO()

processMessages()

processTimers()

updateNetwork()

Main_loop ()

Fig. 4: Illustration of the main loop on the nodes controlling

the demonstrator. The updateTimetable() method is the

central control point in this time triggered system as it triggers

the execution of all scheduled service instances on the node.

Since our implementation does not support context switch-

ing, long running services are encouraged to yield control of

the CPU whenever possible. An example would be a service

controlling the vacuum arm in our demonstrator. The arm

needs several seconds to reach its end position after being

instructed to move in a given direction. The service would

yield control after triggering the movement and set an internal

timer which will reactivate the service after a given duration.

The service then queries the sensors for whether or not the

arm has reached its resting position so that the service may

signal completion to its successors. The processTimers()

method will check for expired timers and activate the associ-

ated service instances.

Initially, service instances are triggered by the

updateTimetable() method. The timetable contains

the schedule computed by the rtSOA planning heuristics,

an example of which is shown in Figure 2e. The schedule

on the node consists of pointers to all scheduled service

instances with a given time offset from the cycle start and a

value for the expected WCET of the service instance. After

configuring schedules on all nodes in the network the user

may choose any node as the master node, which will then

trigger the synchronized execution of all schedules in the

network by issuing a start command via network broadcast.

It also periodically resends the start signal to re-sync the

cycle start times of all participating nodes. Finally, the

updateNetwork() method sends and receives messages

over the Ethernet connection.

B. Service description and discovery

Semantic description of services and their discoverability

when composing workflows is a complex topic and subject

to ongoing research [15] and standardization efforts [16].

Although these are important building blocks in a full

fledged service oriented architecture for manufacturing

systems, they are out of scope for our current demonstrator.

We therefore only implemented a minimal set of features

to enable discoverability. Service discovery is performed

in two steps: The planner first sends a ping command

to the IPv6 address ff02::fd, which corresponds to

all link local CoAP nodes. Afterwards, rtSOA downloads

all available service descriptions, from the nodes that

responded to the ping, by issuing a GET-request to the URI

coap://[<IP>]:5683/timetable/.installed.

The node responds to this GET-request with a JavaScript

Object Notation (JSON) object that contains a description

of each service available on the machine. An example for

this description is shown in Figure 5. The service description

contains information about the service’s WCET, its input and

output ports as well as configurable attributes of the service.

In the shown example, the drill service has two input ports

(for triggering the service execution via the timer or via the

network), two output ports (one that signals completion and

another one for status information) and three parameters, for

example a configurable duration for how long the drill-bit

should be run.

{name: „TTDDrill“,
 wcet: 2200,

 inports: {

 num: 2,

 attr: [{

 size: 1,

 type: 1,

 name „In_Drill_Timer“
 },{

 size: 1,

 type: 0,

 name: „IN_Drill_Trigger“
 }]

 }, outports: {

 num: 2,

 attr: [{

 size: 1,

 type: 0,

 name: „Out_Drill_Done“
 },{…}]
 },

 confAttributes: {

 num: 3,

 attr: [{

 name: „Attr_DrillDuration“,
 min: 0,

 max: 65535,

 default: 0

 }, {…},{…}]
 }

}

... continued 

Fig. 5: Nodes advertise their installed services via a simple

JSON description, when queried. A video demonstrating the

process of manually configuring a workflow with rtSOA is

available at https://youtu.be/Wa5KdHEivOo

C. Software reconfiguration of the system

The rtSOA approach to software reconfiguration of manu-

facturing systems follows the steps outlined in Figure 2. Given

a workflow layout with global timing constraints (Figure 2b)

and a manual selection of the nodes which should execute

the services (Figure 2c) the rtSOA planner will generate a

schedule for each node, as shown in (Figure 2e), constituting

the distributed service choreography. This schedule is then in-

stantiated on each node, so that the time table implementation

(Figure 4) may trigger the service execution at the predeter-

mined time. To instantiate the choreography, a matching cycle

time must be set on all participating nodes before naming

the services that should be instantiated with a predetermined

offset from the cycle start. Following that, links between the

input and output ports of services with data dependencies must

be created on the node that contains the data producing ser-

vice, following a publish-subscribe model. The node-internal

message routing is performed by the processMessages()

method as described in Section III-A, communication between

nodes is encapsulated in CoAP messages. Lastly, configuration

parameters are set on the service instances as necessary. For

example, our demonstrator features a service for moving the

vacuum arm where a configuration parameter must be set

must, indicating the direction (left or right) in which the

arm should be moved upon service invocation. This naturally

means that our implementation supports multiple instances

of the same service with different parameters on the same

machine. An example video demonstrating the process of

manually configuring a service orchestration with our demon-

strator can be found at https://youtu.be/Wa5KdHEivOo. This

video only serves demonstration purposes, because manually

orchestrating more complex workflows in this manner would

be too error prone and time consuming. When using the

rtSOA planning tool, these configuration steps are performed

automatically during deployment.

IsPresent Rotary1 Verify

Rotary2

Drill Rotary3 Eject

(a) Workflow for the processing station of the Festo MPS

IsNotPresent Magazine

ArmLeft PickUp

ArmRight

Place

Rotary1

Verify

Rotary2

DrillRotary3Eject

(b) Extended workflow which added the distribution station to the
processing station

IsPresent

Rotary1 Verify

Rotary2

Drill Rotary3

Eject

!A||B Dispense

ArmLeft PickUp

ArmRight

A&&B Place

IsEmpty

(c) Advanced version of the previous workflow that runs the distri-
bution and processing stations in parallel

Fig. 6: Evolution of the service composition controlling the

Festo modular production system: From a simple processing

station, via an intermediate step that extended the system by a

second station, to an optimized workflow that runs both station

in parallel.

To demonstrate the evolution of a basic workflow we

consider the example workflows shown in Figure 6. At the

first stage, the systems only consists of a single module, the

Festo MPS processing station featuring an electric turn table

with a testing and drilling module (c.f. Figure 3). A real world

example for this system would be an half-automated assembly

system with a turntable in which a human operator would place

base parts on the turn table and transfer finished parts from the

table to storage [3]. A workflow for such a system is shown

in Figure 6a. Vertices in the displayed graph represent named

service invocations, edges represent a successor relationship.

While thicker edges represent actual data flow, thin edges only

represent a logical precedence relation without actual data

flow. After sensing the presence of a work piece with the

service named IsPresent, the system transfers the work

piece to the testing module which performs the tests offered

by the Verify service. Based on the output of this service,

the work piece may be further processed by the Drill service

or only transported past that module by the Rotary service.

Figure 6b represents an evolution of the system by extending

the system with the Festo MPS distribution station providing

automated supply of parts. All of the services present in the

first workflow (Figure 6a) have been reused, but some feature

different configuration parameters. For example, where the

service instance named IsPresent in Figure 6a triggers the

further execution of the workflow once the worker has placed

a work piece in the starting position. In contrast, the service

instance named IsNotPresent in Figure 6b triggers the

transport of a work piece to the starting position if no work

piece was detected there.

Fig. 7: Screenshot of the graphical user interface for the rtSOA demonstrator. After generating and deploying a service

choreography by pressing the buttons marked 1-3, the user has started the execution of the workflow with the button marked

by the number 4. The system is currently executing the workflow and the GUI is displaying a live visualization of the system

state. A video showing the process described here can be found at https://youtu.be/SaXwwf0m65I

rtSOA does not perform optimization on the structure of

the workflow. For example, the workflow shown in Figure 6b

is inefficient because it is using all modules of the system

in sequence whereas the distribution station and processing

station can also be run in parallel. This parallel workflow is

shown in Figure 6c. It still reuses all of the previous services

but requires additional logic services. For example, the service

instance named !A||B triggers the dispensing of a work piece

from the magazine when either no work piece is present on the

starting position, or if a work piece was present but has already

been moved to the next position by the Rotary service. The

first code path is used when executing the workflow initially,

whereas the second path is executed when the cycle wraps

around and is executed repeatedly.

Reconfiguring the system can be performed without reboot-

ing or reprogramming the nodes. Our demonstrator offers a

graphical user interface (GUI) for the task of reconfiguration

which is shown in Figure 7. After loading a workflow, in this

case the parallel workflow shown in Figure 6c, the user can

either trigger the discovery of nodes and services, as described

in Section III-B, by selecting the button labeled Discover or

load prerecorded service descriptions with the Load button, if

they wish to perform a dry-run of the planning heuristics. If the

environment offers all services required by the workflow, the

user can create a service choreography by clicking the button

labeled rtSOA Planner which will generate schedules for

all devices in the network. This process follows the heuristics

described in our previous work [13] and typically completes

within a few milliseconds. After deploying the service chore-

ography to the participating nodes with the Deploy button the

user can then trigger the workflow execution with the Start

Workflow button. Figure 7 shows a running workflow in

which most service instances have already completed their

tasks, as indicated by a checkmark. This visualization is

generated live, meaning in a timely manner, from debug infor-

mation sent from the nodes to the PC running the visualization

interface. The ArmRight service is executed in parallel with

the Eject service, as indicated by the cogwheel icon, on two

different nodes. The remaining service instances are awaiting

activation. A video demonstrating reconfiguration with this

GUI can be viewed at https://youtu.be/SaXwwf0m65I. The

video shows the initial choreography of the workflow depicted

in Figure 6b and subsequent reprogramming with the parallel

workflow depicted in Figure 6c and Figure 7 followed by the

execution of this new workflow.

IV. DISCUSSION AND RELATED SYSTEMS

In this section, we discuss the benefits and drawbacks of

the rtSOA system, as it is implemented in the demonstrator

presented in the previous section. After a general consideration

of rtSOA, we compare our approach to the industrial state

of the art (Section IV-A) and recent advances in SOA-based

industrial automation (Section IV-B). Table I shows a high-

level overview of rtSOA and its related systems.

Our approach is strongly related to principles of dataflow

programming, in which a program is seen as a directed

graph with instructions on its nodes and data flowing on

its edges [18]. The activation of task nodes follows a data-

driven approach where nodes are activated when all input is

ready. The rtSOA execution model additionally requires that

TABLE I: Feature comparison between rtSOA and related systems

real-time cycle times control location execution model deterministic reusability reconfiguration time

rtSOA hard 10s of ms decentralized cyclic yes high seconds
PLCs hard 10s of µs centralized cyclic yes low days
SOCRADES [5] soft 100s of ms centralized event-based no high hours
IMC-AESOP [6] soft / hard 10s of ms centralized event-based no high hours
MGSyn [17] hard 10s of ms decentralized event-based yes medium minutes

nodes may only be activated at a specified offset to a global

reference time, i.e. the start of the current timetable cycle.

If a successor task is located on a different machine, the

output from the preceding task is sent via the network in pre-

reserved time slots. If both predecessor and successor task are

located on the same machine, output is immediately available

upon completion of the predecessor task. If a task cannot be

activated at the specified time, because its input requirements

are not fulfilled, it is skipped without producing an output

token and existing input tokens are consumed. Should another

input token arrive while there is already an input token present,

the new token supersedes the old one.

These activation semantics allow for static scheduling of all

tasks in a workflow graph with deterministic timing behavior

on the CPU and network. This schedule based approach to ser-

vice choreography offers a fully distributed, peer-to-peer inter-

action between services with minimal overhead and verifiable

real-time properties. The question whether distributed real-

time systems should be based around time-triggered (cyclic)

or event-triggered designs has been debated since the 90’s

[19]. Event-based systems offer benefits in term of resource

utilization, because they do not follow a static schedule that

is provisioned to meet the worst case requirements. In high-

load situations the additional overhead introduced by task-

switching and decision making in event-triggered systems may

make time-triggered systems more competitive as they have

a lower run time overhead. Another argument against time-

triggered systems is that adding additional tasks often requires

a total replanning of the whole schedule while event-triggered

systems appear to be easier to extend since all scheduling

decisions are taken locally. However, adding another task to

a machine in an event-triggered system may also change the

temporal dynamic of the system [19], which is compounded

by the fact that event-triggered systems are hard to verify and

predict. The quick replanning offered by rtSOA mitigates this

classic drawback of time-triggered systems, allowing engineers

to extend the system with confidence that the change will not

introduce unpredictable temporal behavior.

Although the demonstrator described in this paper is not

a hard real-time system we still consider it well suited

to demonstrate the principles of reuse and reconfiguration

enabled through the service choreographies generated by

rtSOA. Because the demonstrator does not feature a real-time

operating system or real-time communication, performance

measurements of the implemented software runtime would

have little significance. The WCET of physical elements in the

demonstrator is often in the range of several seconds, meaning

sub-millisecond accuracy is not required. The focus of this

paper is thus a general proof of concept.

A. Commercial state of the art

Today’s manufacturing plants are usually designed follow-

ing the hierarchical architecture described in the IEC 62264

standard [6]. Therein, sensors and actuators on level 1 are

controlled by a control system on level 2. Communication

between field devices and controllers is strictly hierarchical

and follows a polling model or a cyclic publish-subscribe

relation. Communication between controllers on level 2, or

higher levels, may be peer-to-peer. Levels 3 and 4 are the

domains of operations control and enterprise planning systems,

respectively. Sensors and actuators are usually controlled by

programmable logic controllers (PLCs), also following a cyclic

model. At the beginning of each scan cycle an input scan is

performed which obtains readings from all connected sensors.

Based on these updated values, the PLC performs its logic

computations, updates all outgoing communication values and

sends commands to the connected actuators. IEC 61131-3 is

the prevalent standard for PLC programming. IEC 61131-3

specifies the function block diagram (FBD) and structured text

(ST) languages which are higher level and, from a software

engineering perspective, should have higher productivity than

the ladder diagram (LD) and instruction list (IL) languages

included in the same standard. Although recent industry efforts

target increased reusability of code blocks, the control software

is often rewritten from scratch when integrating new devices

[15]. The tightest timing requirement determines the available

run time for the whole scan cycle, which is tightly coupled

with the network cycle. The resulting hierarchical commu-

nication with tight cycle times can quickly exhaust existing

network resources and lead to difficulties during network

scheduling.

Compared to traditional, hierarchical control paradigms

based on PLCs, rtSOA offers easier reconfiguration and more

efficient network communication. Reconfiguration is enabled

by an encapsulation of device capabilities in reusable services,

and the separation of functionality from the timing and net-

work scheduling aspects which are intermingled when writing

PLC programs. The true peer-to-peer relationship of rtSOA

devices and services reduces network communication overhead

when compared with traditional, polling based approaches.

The rtSOA planner explicitly generates a network schedule,

so only required TDMA-slots are used. The assignment of

TDMA-slots to devices is seen as an input to the planner,

which means a rtSOA workflow can coexist with other work-

flows or legacy applications on the same network. The cyclic

execution model of rtSOA has little communication jitter,

thus allowing easy composition of rtSOA-controlled cells with

other modular systems in a hierarchic manner.

B. SOA-based industrial automation

Considerable research efforts have been undertaken to inves-

tigate the practicability of SOA solutions across all layers of

the automation pyramid. The EU-project SOCRADES [5] built

on previous projects to further the vertical cross-layer integra-

tion between shop floor and enterprise systems. It achieved

an initial integration of constrained devices on the lower

levels of the automation pyramid, but identified orchestration,

determinism of the SOA run-time behavior, decentralization

and effective reconfiguration as open research issues [5].

The follow-up project IMC-AESOP [6] investigated the

feasibility and limits of using a SOA-based approach inside

control loops [7]. By implementing several prototypes, the

project closely investigated the performance implications of

using Web-Services for the concurrent control of several

thousand devices, thus addressing the open issues raised by

SOCRADES. IMC-AESOP achieved cross-layer collaboration

of services and devices mainly through use of an orchestration

engine, which constitutes an event based model with central

control through an orchestrator. Other research within the

project highlighted the benefits of service choreographies

over service orchestrations for automation tasks [11]. They

implemented an event-based choreography engine for service

oriented automation and observed a higher degree of per-

formance and reactivity compared to a traditional approach

based on orchestration. rtSOA also offers decentralized service

choreographies, but additionally focuses on the temporal as-

pects and offers deterministic, predictable and verifiable real-

time properties, thus addressing the research questions raised

by SOCRADES through a more decentralized approach. The

IMC-AESOP design can be united with the rtSOA approach

to achieve both event-based flexibility and cyclic determinism

where needed: A cyclic sub-system, scheduled with rtSOA,

can periodically trigger events which are then processed by

an event-based architecture on higher layers.

An example for a non-SOA based approach to flexible and

reconfigurable manufacturing systems is MGSyn [17], which

synthesizes controller programs with principles adapted from

game theory. The game is modeled with two players, the sys-

tem and environment, which alternate taking turns. The system

wins the game if it can always reach winning conditions, which

are specified in a subset of linear temporal logic (LTL). The

environment may play any allowed move at any time and

is not required to cooperate with the system. Goals for this

synthesis are specified in a modified version of the Planning

Domain Definition Language (PDDL). The generated control

program is essentially a state-transition diagram that fulfills

the specification. The main questions raised by this approach,

when compared with a SOA-based approach, are reusability of

individual components, modularity, and approachability, since

the system behavior is specified in a formal language. Service

oriented architectures, such as rtSOA, offer high-level reuse of

individual services which can be combined in a visual manner,

as shown in our demonstrator (c.f. Figure 6).

V. CONCLUSION

We showed how service oriented principles can be used

together with schedule based choreographies to achieve rapid

reconfiguration of a modular production system. This was

demonstrated both in terms of adding new modules to an

existing production system as well as optimizing the automa-

tion workflow by enabling parallel execution. The resulting

choreographies offer deterministic, verifiable real-time prop-

erties and can be integrated with event-driven architectures

on higher levels of the automation hierarchy. Therefore, we

consider the rtSOA approach as an extension to existing

research regarding SOAs in industrial environments, which is

often either controlled in a centralized service orchestration

or has emergent, non-deterministic behavior from a temporal

perspective.

REFERENCES

[1] Y. Koren, The global manufacturing revolution. John Wiley & Sons,
2010.

[2] F. Jammes and H. Smit, “Service-oriented paradigms in industrial
automation,” IEEE Trans. Ind. Informat., vol. 1, no. 1, 2005.

[3] H.-P. Wiendahl, H. A. E. Maraghy, P. Nyhuis, M. F. Zh, H.-H. Wiendahl,
N. Duffie, and M. Brieke, “Changeable manufacturing - classifica-
tion, design and operation,” CIRP Annals - Manufacturing Technology,
vol. 56, no. 2, 2007.

[4] H. A. ElMaraghy, “Flexible and reconfigurable manufacturing systems
paradigms,” Int. J. Flex. Manuf. Syst., vol. 17, no. 4, 2006.

[5] M. Taisch, A. W. Colombo, S. Karnouskos, and A. Cannata,
“SOCRADES roadmap: The future of SOA-based factory automation,”
2009.

[6] A. Colombo, T. Bangemann, S. Karnouskos, J. Delsing, P. Stluka,
R. Harrison, F. Jammes, and J. L. Lastra, Industrial Cloud-Based Cyber-

Physical Systems. Springer, 2014.
[7] F. Jammes, B. Bony, P. Nappey, A. W. Colombo, J. Delsing, J. Eliasson,

R. Kyusakov, S. Karnouskos, P. Stluka, and M. Till, “Technologies
for SOA-based distributed large scale process monitoring and control
systems,” in IECON, 2012.

[8] C. Lerche, N. Laum, G. Moritz, E. Zeeb, F. Golatowski, and D. Tim-
mermann, “Implementing powerful web services for highly resource-
constrained devices,” in PERCOM Workshops, 2011.

[9] N. Kaur, C. S. McLeod, A. Jain, R. Harrison, B. Ahmad, A. W. Colombo,
and J. Delsing, “Design and simulation of a SOA-based system of
systems for automation in the residential sector,” in ICIT, 2013.

[10] F. Jammes, H. Smit, J. L. M. Lastra, and I. M. Delamer, “Orchestration
of service-oriented manufacturing processes,” in ETFA, 2005.

[11] G. Starke, T. Kunkel, and D. Hahn, “Flexible collaboration and control of
heterogeneous mechatronic devices and systems by means of an event-
driven, SOA-based automation concept,” in ICIT, 2013.

[12] FlexRay Consortium et al., “Flexray communications system protocol
specification version 2.1,” 2005.

[13] T. Kothmayr, A. Kemper, A. Scholz, and J. Heuer, “Schedule-based
service choreographies for real-time control loops,” in ETFA, 2015.

[14] M. Kovatsch, S. Duquennoy, and A. Dunkels, “A Low-Power CoAP for
Contiki,” in MASS, 2011.

[15] M. Loskyll, J. Schlick, S. Hodek, L. Ollinger, T. Gerber, and B. Pirvu,
“Semantic service discovery and orchestration for manufacturing pro-
cesses,” in ETFA, 2011.

[16] OPC Foundation, “OPC unified architecture (OPC UA) specifiations,”
http://www.opcfoundation.org/UA, 2008.

[17] C.-H. Cheng, M. Geisinger, and C. Buckl, “Synthesizing controllers
for automation tasks with performance guarantees,” in Model Checking

Software. Springer, 2013.
[18] W. M. Johnston, J. R. P. Hanna, and R. J. Millar, “Advances in dataflow

programming languages,” ACM Comput. Surv., vol. 36, no. 1, 2004.
[19] H. Kopetz, “Should responsive systems be event-triggered or time-

triggered?” IEICE Trans. Inf.&Syst., vol. 76, no. 11, 1993.

