Scalable Scientific Data Processing

B. Gufler J. Müller T. Scholl A. Reiser A. Kemper

Technische Universität München
Department of Computer Science
Garching, Germany
Scalable Scientific Data Processing

Data Analysis
- exploits massive parallelism
- supports handling of structured data
- based on Cloud technology
Scalable Scientific Data Processing

Data Analysis
- exploits massive parallelism
- supports handling of structured data
- based on Cloud technology

Data Management
- scalable, decentralised approach
- supports community-specific access patterns
- based on DHT systems
Data Management: HiSbase

Goal: Scalable storage and retrieval for scientific data sets

- combines globally distributed data sources
- data load balancing by partitioning
- support for community specific data access patterns
 - e.g., preserve spatial locality for observational catalogues
- query load balancing through replication
- uses P2P techniques (DHT, key-based routing)
Data Analysis

Goal: Fast and easy analysis of scientific data sets

- scientific data sets
 - large scale (TBs per catalogue/simulation)
 - possibly structured data (e.g. Millennium merger trees)
- fast analysis
 - massive parallelism
 - scalable infrastructure
- easy analysis
 - high level scripting language
 - hide technical details
Data Analysis: Based on MapReduce

- proposed by Google for processing very large data sets
- one data set
- two processing steps
- file based data exchange via full mesh
- transparent handling of infrastructure failures
Data Analysis: Pipelined MapReduce

- permits more than two processing steps
- pipelined data exchange via full mesh, broadcast, or 1:1
- allows to process multiple data sets

⇒ more flexibility for sophisticated workflows
Data Analysis: Based on PigLatin

- scripting language for MapReduce jobs
- offers data processing primitives
 - projection
 - selection
 - grouping
 - aggregation
 - (equi)join
- automatically compiled to a sequence of MapReduce tasks
Data Analysis: TreeLatin

- extends PigLatin to handle hierarchical data sets
- translates to workflows for Pipelined MapReduce
- uses database optimisation techniques
 - pushing selections and projections
 - early aggregation
 - different join algorithms
Get In Touch

- Database systems group, TU München
 - web: http://www-db.in.tum.de/
 - eMail: gufler@in.tum.de
- Cloud data analysis project
 - http://www-db.in.tum.de/research/projects/cdm
- HiSbase project
 - http://www-db.in.tum.de/research/projects/hisbase
- GAVO
 - http://www.g-vo.org

Thank You for Your Attention