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Abstract

In this work access support relations are mntroduced as a
means for optimizing query processing 1n object-oriented
database systems The general 1dea 1s to maintain re-
dundant separate structures (disassociated from the ob-
Ject representation) to store object references that are
frequently traversed in database queries The proposed
access support relation technique 1s no longer restricted
to relate an object (tuple) to an atomc value (attribute
value) as 1n conventional indexing Rather, access sup-
port relations relate objects with each other and can span
over reference chains which may contain collection-valued
components 1 order to support queries mnvolving path
expressions We present several alternative extensions
of access support relations for a given path expression,
the best of which has to be determined according to the
apphcation-specific database usage profile An analytical
cost model for access support relations and their apphica-
tion 1s developed This analytical cost model 1s, in partic-
ular, used to determine the best access support relation
extension and decomposition with respect to the specific
database configuration and apphcation profile

1 Introduction

Object-oriented database systems constitute a promising
approach towards supporting technical apphcation do-
mains Several object-oriented data models have been
developed over the last couple of years However, these
systems are still not adequately optimized for applica-
tions which mnvolve a lot of associative search for objects
on secondary memory they still have problems to keep up
with the performance achieved by, e g , relational DBMSs
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Yet 1t 15 essential that the object-oriented systems will
yield at least the same performance that relational sys-
tems achieve otherwise their acceptance in the engineer-
ing field 18 jeopardized even though they provide higher
functionality than conventional DBMSs by, e g , incorpo-
ration of type extensibility and object-specific behavior
within the model Engineers are generally not willing to
trade performance for extra functionality and expressive
power Therefore, we conjecture that the next couple of
years will show an 1ncreased interest 1n optimization 1s-
sues 1n the context of object-orniented DBMSs The con-
tribution of this paper can be seen as one important piece
i the mosaic of performance enhancement methods for
object-oriented database applications the support of ob-
Ject access along reference chains

In relational database systems one of the most per-
formance-critical operations 1s the join of two or more
relations A lot of research effort has been spent on expe-
diting the join, e g , access structures to support the join,
the sort-merge join, and the hash-join algorithm were de-
veloped Recently, the binary join index structure [11]
was designed as another optimization method for this op-
eration

In object-oriented database systems with object refer-
ences the join based on matching attribute values plays
a less predomnant role More 1mportant are object ac-
cesses along reference chains leading from one object 1n-
stance to another Some authors, e g, [2], call this kind
of object traversal functional jomn This work presents an
indexing technique, called access support relatrons, which
18 designed to support the functional join along arbitrary
long attribute chains where the chain may even contam
collection-valued attributes

The access support relations described in this paper
constitute a generalization of the binary join indices orig-
mally proposed for the relational model [11], and later
extended for object models [3,12] Rather than relating
only two relations (or object types) our technique allows
to support access paths of arbitrary length Our indexing
techmque subsumes and extends several other previously
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proposed strategies for optimizing access along attribute
chains 1n object bases The index paths in GemStone [7]
are restricted to chains that contain only single-valued at-
tributes and their representation 1s mited to binary par-
titions of the access path Simularly, the object-oriented
access techniques described for the Orion model [6,1] are
extended 1n several dimensions 1n our framework

Our technique differs in three major aspects from the
two aforementioned approaches

e access support relations allow collection-valued at-
tributes within the attribute chain

e access support relations may be maintained n four
different extensions The extension determines the
amount of (reference) information that 1s kept in the
index structure

e access support relations may be decomposed mto ar-
bitrary partitions This allows the database designer
to choose the best extension and partition according
to the application characteristics

Also the (separate) replication of object values as pro-
posed for the Extra object model [9] and for the PostGres
model [10,8] are subsumed by our technque

The remainder of this paper 1s organized as follows
Section 2 introduces our Generic Object Model (GOM),
which serves as the research vehicle for this work, and
some sumplified application example to highlight the re-
quirements on object-oriented access support Then, in
section 3 the access support relations are formally de-
fined In section 4 we start the development of an analyt-
1cal cost model for our indexing technique by estimating
the cardinalities of various representations of access sup-
port relations Section 5 describes the utihzation of ac-
cess support relations 1 query evaluation and estimates
the performance enhancement on the basis of secondary
page accesses Section 6 1s dedicated to presenting some
sample results of operation mix costs for a few selected
apphcation characteristics Section 7 concludes this pa-
per

2 The Object Model GOM

This research 1s based on an object-oriented model that
unites the most salient features of many recently proposed
models 1n one coherent framework the Generic Object
Model GOM The interesting aspects of GOM concerning
the access support relations are

object identity each object instance has an 1dentity
that remains 1nvariant throughout its hfetime The
object 1dentifier (OID) 1s invisible for the database
user, 1t 1s used by the system to reference objects

This allows for shared subobjects because the same
object may thus be associated with many database
components Here, OIDs are denoted #10, #11,

type constructors the most basic type constructor 1s
the tuple constructor which aggregates differently
typed attributes to one object In addition, GOM
has the two built-in collection type constructors set,
denoted as {}, and list!, denoted as <> GOM
also provides for subtyping of tuple-structured types,
however this 1s irrelevant for the present discussion

strong typing GOM 1sstrongly typed, meaning that all
database components, e g, attributes, set elements,
etc, are constramned to a particular type This, n
particular means that all path expressions are typed
However, the constramned type constitutes only an
upper bound, the actually referenced instance may
be a subtype-instance thereof

object references assignment of an object to an at-
tribute, a variable or insertion of an object into a set
corresponds to maintaming a reference to the respec-
tive object Thus, object references are stored umdi-
rectional, conforming to almost all pubhished object
models

2.1 Type Definitions

A hnear path 1s an attribute chain that contains only at-
tributes referring to a single object Single-object-valued
attributes are only useful to model 1 1, or N 1 rela
tionships In order to represent 1 M, or general N M
relations one needs to mcorporate collection-valued at-
tributes, 1 e , attributes referring to a set or hist instance
To illustrate this let us define a vastly ssmplhified database
schema for modeling a Company composed of a set of Di-
vistons Each Division Manufactures a set of Products,
which themselves are composed of BaseParis
The schema 1s outlined below

type Company is {Division},
type Division is [Name STRING,
Manufactures ProdSET],
type ProdSET is {Product},
type Product is [Name STRING,
Composition BasePartSET],
type BasePartSET is {BasePart},
type BasePart is [Name STRING,
Price DETCIMAL],

Additionally we assume the existence of a reference to a
given company

var Mercedes Company,

1Lists are not further considered in this paper, though
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Company #loL {#u,#0,#1, } ]

Division 4| e ves 10 | Momactures i | #] Momfactmns. NULL
ProdSET #aa {#6, ) | #il e, He )|
Product  #1  Compostion #r | # Compostin NUZZ | #| Compostron us
BasePartSET #17 #110 #u

BasePart F#1s g:l I;e 1“213(5)(?; #114[ I;:r;e 0“f2e pper”

Figure 1 Database Extension With Non-Linear Paths

A sample extension of this schema 1s presented in Fig-
ure 1 Note that an object 1s represented as a triple
(#1,,v,t) where #1, 15 the object 1dentifier, v the ob-
Ject representation, and ¢ the object’s type References,
e g, #1, Manufactures, are mantamed unidirectionally
by storing the associated object’s 1dentifier, #14, within
the domain object (#1)

Now let us illustrate some typical queries in an SQL-
like syntax which access objects along references (possibly
leading through sets)

Query 1. Which Dwsion uses a BasePart named

“Door” ?

select d Name
from d in Mercedes,

b in d Manufactures Composition
where b Name = “Door”

“d Manufactures Composition” 1s a set-valued path ex-
pression with the following semantics

d Manufactures Composition U m Composttion

mé€d Manufactures

Query 2 Retrieve the Name of all the BaseParts used
by the Division named “Auto”

select d Manufactures Composition Name
from din Mercedes
where d Name = “Auto”
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3 Access Support Relations

As mentioned earlier access paths are used to support
query evaluation More precisely, access paths allow the
fast selection of those members of an object collection
which fulfill a given selection criteria based on object ref-
erences along an attribute chain or path expression A
path expression or attribute chain 1s defined as follows

Definition 3 1 Let to, ,t, be (not necessarly dis-
tinct) types A path erpression on to s an erpression
to Ay Ap off for each 1 <1 < n one of the follounng
conditrons holds

e Typet,_y 1s defined as type t,_11s [ A4, t,, ],
1 e, a tuple type contarning at least the atirbute A,
of type t,

o Typet,_y 1s defined as type t,_yis [ A4, t, ]
and the type t! s defined as type t! is {t,} In this
case we speak of a set occurrence at A, n the path
to Ay Ap

The type t,_y 18 called the domain of A,, and t, 1s called
the range of A,

The second part of the definition 1s useful to support
access paths through sets? If 1t does not apply to a given
path the path 1s called linear

For stmplicity we require each path expression to orig-
inate 1n some type tp, alternatively we could have chosen
a particular collection C of elements of type ¢y as the an-
chor of a path (leading to more difficult defimtions and
cost functions, though)

2Note, however, that we do not permit powersets



Since an access path can be seen as a relation we will
use relation extensions to represent access paths The
next definition maps a given path expression to the un-
derlying access support relation declaration

Definition 3.2 Let tg, ,t, be types, to A; A, be
a path ezpression, and k the number of set occurren-
ces wn ty Ay An  Then the access support relation
Eioa, a, 1sofarmtyn+k+1 and has the follourng
form

An [SO: :Sﬂ+k]

The domamn of the attribute Sp ts the set of identifiers
(OIDs) of objects of typety For (1 < 1 < n) let k(z) be the
number of set occurrences before A,, 1 ¢, set occurrences
at A, for 3 <1 Then the domain of the attribute S, yx(,)
ts the set of OIDs that identify objects of type

Eio Ay

o t,, if A, 1s a single-valued atiribute

o t!, if A, 15 a set-valued attribute In this case the
domain of S, k()41 1s the set of OIDs of type t,

Ift, 1s an atomic type then the domawn of Spqx tstn, t e,
values are directly stored in the access support relation
If the underlying path expression s clear from context we
will write E wnstead of Eyy a, 4,

Let further m be defined as m =n+k

We distinguish several possibilities for the extension
of such relations To define them for a given path ex-
pression iy A; A, we need n temporary relations
EO’ 3 Eﬂ—l

Definition 3 3 For each A, (1 <y < n) we construct
the temporary relation E,_, Depending on the domain
of A, the relation E,_y 15

1 binary, of A, 1s a single-valued attribute In
this case the relation E,_; contains the tuples
(1d(0)-1),2d(0,)) for every object 0,_1 of type t;_
and o, of type t, such that 0,1 A, = o, Ift, 1s
an atomic type then 1d(o,) corresponds to the value
0-1 4

2 ternary, if the atirbute A, 1s a set-valued at-
tribute  Then the relation E,_; contains the tu-
ples (2d(0,_1),2d(0}),2d(0;)) for every object 0, of
type t,_1, 0, of typet;, and o, of type i, such that
0,-1 A, = 0} and the set o) contains o, In the spe-

cral case that o) s an empty set the relation E,_,
contans the tuple (2d(0,_1),2d(0}), NULL)

Example: Recall the Company database extension of
Figure 1  For the underlying schema we could de-
clare the access support relation on the path expression
Dunision Manufactures Composition Name This results
1n 3 temporary relations Ey, E;, and Es

Ey OIDDw:ston
#12

#u

OIDProduct
#o
#1e

OIDpyogspT
#is
#1q

E, OIDProduct
#111

#1g

OIDBasePart
#114
#1s

OIDBasePartSET
#us
#ur

E, VALU Engme
“Pepper”

“Door”

OI-DBasePart
e
#s

Let us now mtroduce different possible extensions of a
given access support relation £ For a given path expres-
sion ty A Ayn we distinguish four extensions

1 the canontcal extension, denoted E,, contains only
information about complete paths, 1e, paths orig-
mating m ¢y and leading to ¢, Therefore, 1t can
only be used to evaluate queries that orniginate n
an object of type to and “go all the way” to ¢,

2 the left-complete extension Ej.p contains all paths
originating 1n ¢o but not necessarily leading to t,,
but possibly ending n a NULL

3 the right-complete extension Ey4:, analogously,
contains paths leading to ¢, but possibly originat-
ing 1n some object o, of type ¢, which 1s not ref-
erenced by any object of type ¢,_; via the A, at-
tribute

4 finally, the full extension Ey,;; contains all partial
paths, even if they do not originate 1n ¢y or do end
maNULL

Definition 3.4 (Extensions) Let M (2DC,2¥,bC) de-
note the natural (outer, left outer, right outer) join on
the last column of the first relation and the first column
of the second relation Then the different extensions are
obtained as follows

Ecan = EO M Lo En—l
Ef“” = Ey2>C DCE,_ 4
Eleft = ( (E():NEl))d )QEn_l)
Er:ght (EONZ( Dd:(En--Z N:En—l) )
Example: For our example application the full exten-

sion contains also the incomplete paths, 1e, those that
lead to a NULL (e g, the first tuple in the extension
shown n Figure 2) or those not originating n an object
0g of type to (the second tuple 1n Ef,;; shown in Figure 2)
Even partial paths not originating in ¢o and leading to a
NULL are to be included The extension E,, would only
contain the last tuple shown i Epyt Ergpe would not
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Epni | OIDpyssion | O1Dproaser | OIDproduct | OIDBasepartsET | OIDBasepart | VALU Engme
#19 F#s FHaig NULL NULL NULL
NULL NULL #111 #u3 114 “Pepper”
#u Fq #16 #ur #13 “Door”
Figure 2 A Sample Extension of Erup
contan the first tuple shown 1n Figure 2, whereas i E g
the second tuple would be ormtted . o o A ~
Aside from different extensions of the access support t2o= Q2 0 Tty M1 ~e
relation also several decompositions are possible, which N b P
are discussed now Since not all of them are meamngful tits
we define a decomposition as follows (Remember m =
n+k) If ty Ay A, and sq By B are path expressions

Definition 3 5 (Decomposition) Lei E be an (m+1)-
ary access support relation with attributes Sp, ,Sm
Then the relations

E0n [So, aSh] for0<y; <m

Ennre [Sih, Si.l foruy<iz<m

Eteom [Siy 5 Sm] foriu <m

called a decomposition of E The individual relations
E’J' a+1 called partitions, are materahzed by projecting
the cormspondmg attributes of E If every partition 15 @

-‘.J \/U\f’y
binary relation the decomposition s called binary The

tron 15 denoted by (0,135,322, ,%,m)

(]
G

Note that m and n are equal only 1n the case that there
1s no set occurrence along the path If there 1s any then
m > n Under the assumption that there 1s no set sharing,
the set 1dentifiers may be dropped from the access support
relation This results in m = n  To simplhfy the analysis
we will do so for the examples considered n the next
section Note, however, that the analytical cost model
captures the general case if one reads n as m

The last question discussed 1n this section concerns the
usefulness of the above defined decompositions

mi e 0 N | TR S .‘A____J-- AL e o m s an omiasaan ank
lneorem o 0 LUETY aecomposiiion U_[ an access Support
relation 15 lossless

The proof of this theorem 1s obvious since we decom-
pose along multi-valued dependencies

Consider the following two path expressions

tity
~

™~

t,

to Ay An

P A, Az+1 Ai+_1 At+]+1

both leading to objects of type ¢, then part of the access
support predicates may be shared

Thus, 1n general, 1s only possible when a full extension
of at least one of the access support relations 1s maimn-
tamed Let Ep,y be the full extension for the path Py,
and Eyy; the full extension of the access support relation
for path P, Then the decomposition (0, 1,1+ 3, n) of Egun

and (0,1,1+ 3,7)3 of Ef,y share a common partition, 1 e,
oty - plits

“ruii Hfull
Thus we obtain the following five partitions

full [OIDto: ) OID‘;] ?11 [OIDSov ’ OIDt.]
EyY = Bt [oID,, ,0ID,,,)]
EX1" (01D, oIp,) E¥}" [0ID,,,,, ,OID,]

“fuli +27

The five partitions may then, individually, be further de-
composed

In general, this sharing 1s only possible for full exten-
sions Exceptions are

l

1,
1€

0

e
I10r

e 1if both paths P; and P2 orlglnate n to, 1e,1
and {9 = s¢ Then the sharing s also poss
left-complete extensions

'L
1D

o 1If both paths lead to t,, 1 e, their nght-most part
15 1dentical, then the corresponding partition of the
right-complete extensions may be shared

This should mdicate that there may exist a higher level
of orgamization, 1 e , an access support relations manager
which controls (and constrains) the possible extensions
and decompositions

3the length of path P isr =143+ ¢
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4 Analytical Cost Model: Cardi-
nality of Access Relations

In this section we develop the basis of our analytical cost
model a model of the apphcation profile and formulas
for the cardinalities of access support relations under dif-
ferent extensions and decompositions Later on, the cost
model 1s used to derive the best physical database de-
sign, 1 ¢, to find the best extension and decomposition of
a given path expression according to the predetermined
operation mix

4.1 Preliminaries

Before giving the sizes of the relations we introduce some
parameters that model the characteristics of an applica-
tion These are listed in Figure 3

application-specific parameters

parameter I semantics (and denvation/default)

n length of access path

G total number of objects of type ¢,

d, the number of objects of type t, for which the
attrnibute A,41 1s not NULL

fan, the number of references emanating on the
average from the attnibute A,41 of an object
o, of type t,

shar, the average number of objects of type t, that
reference the same object in ¢,41 If no value
for shar, 1s determined by the user, 1t 1s de-
nved as shar, = min(1, (d, * fan,)/c.41)

size, average size of objects of type t,
system-specific parameters

PageSize net size of pages, which 1s set to 4056

OIDssze size of object 1dentifiers, default 1s 8

PPsize si1ze of page pointer, default 1s 4

Bf"; n fan out of the B* tree, which 1s denived as
| PageSsze /( PPsize + OIDs:ze)|

Figure 3 System and Apphcation Parameters

4.1.1 Some Derived Quantities

The number of objects n ¢, which are referenced by at
least one object 1n ¢,_; 1s denoted as e,

[d,_l *fan,__f’
e, = |—=———=L
shar,_,

The probability P, that an object o, of type ¢, has a

defined A, attribute value 1s
d

Py, =—

G

The probability Py, that a particular object o, of type
t, 18 “hit” by a reference emanating from some object of
type t,_1 18
Py, = &
¢
Let us now derive the probability that, for some object
o, of type t, none of the fan, references of the attribute
0, A,4+1 hits a particular object 0,41 € t,41, which belongs
to the e, 41 referenced objects
This value 1s deduced by using the number of fan,-
element subsets of the e,41 objects of type £,41 This
number 18 given as the binormal coefficient

C:+l) - ez+1'
an, B fanz'(ei-f-l -fans)'

Then, the probability that the particular object 0,41 1s
not hit 1s given as

-1
)

(o)
The probability that 0,4 1s not hit by any of the refer-

ences emanating from a subset {o}!,02, ,0F} of objects

of type t,, all of whose A, attributes are defined, 1s

(-2)
€141
For 0 < 1 < 7 < n we now define RefBy(z,,k), which

denotes the number of objects m ¢, which lie on at least
one (partial) path emanating from a k-element subset of

t,
k
e.+1*(1-—(1—f—ml'-) 1=1+1

fan,

€141

_ ewy1 —fan,
€141

=1-

€141

E(s,3,k)
€, * (1 - (1 - fan’_l) ) else
€

where the exponent E(z, 3, k)= RefBy(2,3 — 1,k) * Pa,_,

Further the probability, denoted Pr.ssy(2,7), that a
path between anyone object in ¢, and a particular object
0, mn t, exists for 0 < 2 < 3 < n, 15 derived as

RefBy(2,3,k) =

1 1=
RefBy(s,3,d,)

G

PRchy(l)J) = else

Let Ref(s,3,k) denote the number of objects of type t,
which have a path leading to some element of a k-element
subset of objects of type ¢, for 0 <1 < 3 <n This value
can be approximated as

shar, k
1‘(1‘ ) ))
E'(1,3,k)
1- (1 - shar,) ) else
d,

d, *

1J=14+1
Ref(3,3,k) =

d, *
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where the exponent E’(z,7,k) = Ref(1+1,,k) * Py, ,,

Let Pgr.s(2,7) be the probability that a given object 1n
i, has at least one path leading to any one object n t,
Then

1 1=
Pres(2,3) = Ref(3,3,¢) else
Cs

The number of paths between the objects in ¢, and the
objects in t, can be estimated by

1-1

path(z, 3) = d, * fan, * H (Pa, * fan;)
=141

4.2 Cardinalities of Access Support Re-
lations

We can now deduce closed formulas for the number of
tuples 1n the access support relations

Let us first ntroduce two more probabihistic values Let
Pu(2,7) denote* the probability that a particular object
of type ¢, 1s not “hit” by any path emanating from some
object mt, for0<1<3<n

Plb(w):{ i—PRefo(’,J) 1<y

else

Analogously, let P,3(z,7) denote® the probabihty that
a particular object of type ¢, contains no emanating path
to some object mt, for 0< 1 <3< n

1 — Pg.(s, 1<)
Prb(’;]) ={ 1 Ref( J) else

Let #E% denote the cardinality of the access relation

partition E%’ for the general decomposition ( ,1,7, )
under the extension X, 1e, X € {can, full left right}

#Eu, = Prempy(0,1) xpath(s,7) * Pres(s, 1)
J-1 3~k
#Epn = Z Z Pp(maz(2,l —1),1) * path(l,1 + k)
k=1 I=3
* Py(l + k,min(y,1 + k + 1))
1~3
#Ey, = Z Pressy(0,1) * path(2,1 + k)
k=1
* Poy(2 + k,man(y,1 + k+ 1))
-t
#E;'z]gm = szb(max(z,.f —k—=1),3-k)
k=1

* path(y — k,3) * Pres (3, 1)

41b left-bound
5rb nght-bound

4.3 Storage Representation of Access
Support Relations

Following the proposal by Valduriez [11] for join indices
an access support relation (partition) E%’ 1s stored mn two
redundant B* trees, one being keyed (clustered) on the
first attribute, 1e, OIDs of objects of type ¢,, and the
second Bt tree bemng clustered on the last attribute, 1e,
OIDs of ¢, objects In this way we can achieve a fast look-
up of all tuples (partial paths) originating 1n some object
o, of type t, and all (partial) paths leading to some object
o, of type t, Particularly, in this way the semi-jomn of
access support relation partitions 1s efficiently performed
in both directions The right-to-left serm-join, e g ,

( x(Ex'X(E¥Y xE¥)x ) )
18 performed for evaluating a backward query, the left-to-

right semi-join to evaluate a forward query (cf section 5)

4.4 Storage Costs for Access Support
Relations

The size of a tuple i the access support relation EY’ n
bytes 18

ats'? = OIDsize * (3 — 1+ 1)

The number of tuples 1n access relation E%’ per page

PageSize
ats*J

atpp’” = l

The size of the access relation E}’ 1 bytes
asy = #EY xats'’

The approximate number of pages needed to store the
access relation E%’

ot — | BEX
Px = atpp*~

Note that this value has to be multiphed by a factor of
2 due to the redundant maintenance of access support
relations

5 Query Processing and Update
Costs

In this section we first evaluate the applicability and the
costs of the different extensions and decompositions to
query processing
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5.1 Query Costs

To compare the query evaluation costs we consider ab-
stract, representative query examples of the following two
forms

Backward Queries In this query expression the ob-
jects o € C are retrieved, where C 1s a collection of t,
instances The resulting objects are selected based on
the membership of some other object o, of type ¢, in the
path expression o A, 41 A,

Q" (bw) = select o
from o in C
where o0, in 0 4,4,

/* set of t, instances */
4

Forward Queries Forward queries retrieve objects of
type t, which can be reached via a path emanating from
some given object o of type %,

QYW (fw) = select 0 A4y
from o in C
where

AJ
/* set of t, instances */

Let us now 1nvestigate the applhicability of various
extensions of an access support relation for the path
t, A; A, The full extension can be used to sup-
port the evaluation of all path expressions of the form
0 A, A,, 1e, all sub-paths of the path expression
to Ay A, On the other hand, the canonical extension
can only be used if : = 0 and j = n The left-complete
extension can support the evaluation if ¢ = 0, the nght-
complete extension 1s only applicable if ) = n

Unfortunately, the space linmtations do not allow us to
denive the analytical formulas for estimating the costs of
queries under different access support relations, see 4] for
a more detailed treatment

Query Costs for an Example Application TFigure
4 visualizes the cost of a backward query of the form
Q%*%(bw) for the application-specific parameters shown
below (the path under consideration 1s of length 4)

number of objects | co c1 c2 c3 Cyq
100 500 1000 | 5000 | 10000
# objects with do d, d2 ds ds

defined A,41 attr | 90 400 8000 | 2000 | —
fan-out fo fi fa f3 fa
2 2 3 4 —
size of objects stzeg | sizer | swzea | sizes | sizey
500 400 300 300 100

The access support relations were either decomposed
mnto binary partitions (b2) or non-decomposed (no dec)
As expected, the query costs for non-decomposed access

relations are shightly lower than for binary decomposed re-
lations For this application profile the performance gain
1s m the order of a factor of 100, for larger databases the
performance gain 18 even more drastic (the performance
gain grows proportional to the database size)

1000
7z
100 é
g 10 é
%
1

left

no sup canonical full

right

Figure 4 Query Costs for a Backward Query

5.2 Update Costs

For the different extension and decomposition possibili-
ties we now consider the dynamic aspect of maintenance
Of course, updates 1n the object base have to be reflected
1n the access relation extensions

We consider the mnsertion and deletion of an object
into/from a set-valued attribute (single-valued attributes
are a special case) Thus, we distingmish the following
two abstract operations

ms' =

del! =

msert o into o, 4,44

delete o from o, A,41

We assume that the object o, 1s of type ¢,, and o 1s of
type t,+1 Note, that the costs for both update operations
are essentially the same The cost formulas are agamn
developed in [4] We consider only “pure” update costs,
that 1s, the costs of the queries to locate the objects o,
and o 1s not icluded 1n our update costs Therefore, some
cost functions (cf Figure 5 and 6) may actually decrease
as the update probability increases, this happens when
the pure update cost 1s lower than the query costs

6 Evaluation

In this chapter we demonstrate the cost estimates for a
few selected apphcation examples Before doing so, we
need a model of a database load profile, called an opera-
tion miz
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Figure 5 Cost of Operation Mix for two Decompositions (a) binary decomposition, (b) the decomposition (0, 3,4)

6.1 Modeling an Operation Mix

In our analytical cost model an operation mix M 1s de-
scribed as a triple

M= (Qmw; Umw,Pup)

Here, Qmiz 18 a set of weighted queres of the form

Qm:z = {(w1> ql),

where for (1 < ¢ < p) the ¢, are queries and w, are
weights, 1e, w, constitutes the probabihity that among
the hsted queries m @,z ¢ 1s performed It follows that
S w =1 has to hold

Analogously, the update mix Up,,; 1s described Fi-
nally, the value Py, determines the update probability,
1 e, the probabihity that a given database operation turns
out to be an update

» (wp,9p)}

6.2 Update Mix under Binary and Non-
Binary Decomposition
This example 1s based on the same apphcation profile as

introduced m section 51 Let us derive the costs for a
pre-determined operation profile

Qmiz={(1/2,Q%*(bw)), (1/4,Q**(bw)),(1/4,Q"* (fw))}
Uiz = {(1/2, 1ns5%), (1/2, 1ns%)}

This means that, when a query 1s performed, the first one
1s chosen with probability 0 5, and either of the remaining
1s selected with probability 0 25 The update operations
are selected with equal probability

Figure 5 a shows the (normalized) costs under binary
decomposition for different update probabilities P, rang-
ing between 00 10 It can be seen that for an update
probability less than 0 3 the left-complete extension and
the full extension incur about the same cost The break
even point between no support and full extension 1s at an
update probability of 0 998 as shown in the upper left-
hand plot®

The experiment was run agan for the (0, 3,4) decompo-
sition of the access support relations The result 1s shown
m Figure 5b In this case the left-complete extension
1s generally superior to the other extensions Comparing
Figures 5 a and 5 b we conclude that the binary decompo-
sition for full extension 1s better than the decomposition
(0,3,4) (left-complete extension) for update probabilities
exceeding 0 1

6.3 Comparison: Left-Complete vs Full
Extension

Let us now consider the following, larger database profile
with a path expression of length §

number of | co ¢ c2 c3 Cs cs
objects 1000 | 1000 | 5000 | 10° 10° 10°
#tob) with | do dy ds ds dy ds
def A1 100 1000 | 3000 | 8000 | 10° —
fan-out fo f1 f fs fa fs

2 2 3 4 10 —
size of s1zeg | s1zey | stzen | swzes | sizeq | sizes
objects 600 500 400 300 300 100

SNote, that some cost functions decrease as the update probabil-
1ty increases because the query costs that may be needed to perform
an update 1s not included in the update costs
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For this application characterization the normalzed
costs for a database operation mix consisting of the fol-
lowing queries and updates was computed

Qmiz={(1/3,Q%%(bw)), (1/3,Q%*(bw)), (1/3,Q%*(fw))}
Upmia={(1/3, mss), (1/3, ns?, (1/3, ms")}

In Figure 6 the costs for the operation mix under
left-complete and full extension of the access relations
are plotted for two different decompositions (1) binary
decomposition (0,1,2,3,4,5) and (2) the decomposition
(0,3,4,5) It turns out that up to an update probabihity

25 =

% full-binary

cost ofoperation mix
o
i

4 Tk left-binary
€ full (0,3,4,5)
- left (0,3,4,5)
5 T T T T T T T T r——
0,0 0,2 0,4 0,6 0,8 1,0

update probability

Figure 6 Operation Mix for Full and Left-Complete Ac-
cess Relations

of 0 4 the left-complete, decomposition (0,3, 4,5) 1s opti-
mal Then, for an update probabihty 0 4 < P,, < 0 6 the
left-complete, binary decomposition 1s superior Finally,
for P,, > 0 6 the full extension under binary decomposi-
tion 1s the optimal choice
6.4 Comparison: Right-Complete vs
Full Extension

In this experiment the following applhication profile 1s be-
ing used

number of | co a1 c2 ca Ca cs
objects 10> | 10° | 50000 | 10* 1000 | 1000
#Ob_] Wlth do d1 dz da d4 d5
def Augq 10° 107 30000 | 10* 100 | 100
fan-out Jo f fa fs fu fs

1 10 20 4 1 —
s1ze of 81z€p 8tz€1 8tz¢€2 8izeg 81z2€e4 8iz¢€p
objects 600 500 400 300 200 700

For this application characterization the normahzed
costs for a database operation mix consisting of the fol-

lowing queries and updates was computed
Qmiz = {(1/2,Q%(bw)), (1/4, Q15 (bw)), (1/4, Q%3 (bw)))
Umsz = {(1,1m5%))}

Figure 7 visuahzes the costs for the operation mix under
the following decompositions of the right-complete and
full extension

1 the bimnary decomposition (0,1,2,3,4,5)
2 the decomposition (0, 3,5)

It turns out that the latter decomposition 1s always su-
perior For very low update probabihties less than 0 005
the right-complete extension 1s better than the full ex-
tension under this particular decomposition This break-
even poimnt 1s shown 1 the upper plot of Figure 7
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Figure 7 Isolating Right-Complete and Full Extension

7 Conclusion and Future Work

In this work we have tackled a major problem in opti-
muzing object-oriented DBMS the evaluation of path ex-
pressions We have described the framework for a whole
class of optimization methods, which we call access sup-
port relation The primary idea 1s to materalize such
path expressions and store them separate from the object
(data) representation The access support relation con-
cept subsumes and extends several previously published
proposals for access support in object-oriented database
processing

Access support relations provide the physical database
designer with design choices in two dimensions

1 one can choose among four extensions of the access
support relation (canonical, full, left-, and right-
complete extension)
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