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Abstract—Change Management, a core process of the Infor-
mation Technology Infrastructure Library (ITIL), is concerned
with the management of changes to IT infrastructure and services
to satisfy business goals and to minimize costly disruptions on
the business. As part of this process, IT changes are planned
for, authorized, tested, scheduled, and executed. Unpredictable
incidents, e.g., resource failures or unexpected changes in between
planning and execution can render plans infeasible. The execution
of unsound plans ultimately leads to service disruptions which
threaten the continuity of the business. In order to tackle
this problem, we propose a logically sound approach to adapt
infeasible IT change plans to a changed management domain in
order to render them feasible again. We apply our approach
to a case study comprising Virtual Area Network (VLAN)
configuration and the deployment of a 2-tier service. For the
case study we show that the proposed solution can render IT
change plans feasible within minimal time differences regarding
unpredictable resource conflicts in 95% of all cases if resource
utilization remains below 85%.

I. INTRODUCTION

The Information Technology Infrastructure Library (ITIL)

[1] is a set of best practices that are widely accepted to manage

IT services. They comprise the Strategy, Design, Transition,

Operation, and Improvement of IT services. In particular

Service Transition [2] ensures that meeting costs, efficiency,

and business needs is achieved with the highest degree of

confidence and optimization. Change Management, a core

ITIL process part of Service Transition, ensures that changes

are conducted in a way that risks to the business of a company

are minimized. To ensure this, a Change Management pro-

cess comprising the evaluation, authorization, planning, test,

scheduling, implementation, documentation, and review of IT

changes is proposed [2].

After IT changes were planned, they are scheduled to be exe-

cuted in in a change window (a timespan), usually 2-4 weeks

after planning. While time passes until plan execution, plans

are rendered infeasible due to several reasons: (1) Resources

might fail in between planning and execution, i.e., they are

unavailable at execution time. However, in previous works

[3], [4] we argue that resources need to be already addressed

at planning stage because otherwise no logical execution

guarantees can be given about the feasibility of the plan. (2)

Current state of the art planners for IT changes [3], [4], [5],

[6], [7] do not take into account the effects changes being

currently planned for have on the feasibility of scheduled,

but not yet executed IT changes. Thus, current planners can

render previously generated plans infeasible because they

do not have any knowledge about them. (3) Some changes

might still be conducted manually by operators threatening to

invalidate automatically computed change plans. (4) Changes

might, although not advised, still be conducted outside of a

streamlined Change Management process rendering existing

plans infeasible. The adaption of IT change plans to changed

management domains is unavoidable because the reliability

and business continuity of an organization is at stake by

infeasible IT change plans. Such plans can, at best, only be

executed partially, leading to inconsistent states and unsatisfied

business objectives. Furthermore, according to ITIL [2], a low

change success rate is among the top five indicators of poor

Change Management. In addition to that, manual change plan

adaption is time consuming and subtle logical errors can be

introduced that are difficult to detect manually.

To the best of our knowledge, the IT change plan adaption

problem has not yet been addressed in previous works on IT

Change Management. To tackle the aforementioned problems,

we propose an automated, logically sound approach to adapt

IT change plans to changed management domains to render

infeasible change plans executable. We show the feasibility

of our approach by applying it to a network configuration

and deployment case study of a 2-tier architecture using

virtual appliances [8], [9]. Using our case study we show that

our randomized approach scales nicely regarding performance

penalties for different types of unpredictable changes, even for

large, heavily (85%) loaded data centers in 95% of all cases.

The advantages of our approach lie within the tight integration

of object oriented (OO) Configuration Management Databases

(CMDBs), frequently used by commercial CMDB systems

[10] and suggested by the Common Information Model (CIM)

[11] to model software and hardware of a data center. Fur-



thermore, the solution can be applied to automatically and

manually generated IT change plans.

The remainder of this work is organized as follows: In Section

II we discuss related work and its shortcomings with respect to

unpredictable IT management domains. Section III introduces

the basic building blocks of our solution, followed by our

Algorithm in Section IV. We evaluate our solution in Section

V. Finally, Section VI concludes the work.

II. RELATED WORK

Different aspects of IT Change Management have been ad-

dressed in the last recent years. However, despite the negative

influence of unpredictable changes on the feasibility of IT

change plans - to the best of our knowledge - nobody has yet

proposed an approach to adapt plans to changed management

domains. Works on IT change plan generation can be roughly

divided into two classes: The first class [12], [13], [14] com-

prises approaches that do not apply logically sound reasoning

to IT changes. CHAMPS [12], the seminal work in this

class, formalizes planning and scheduling as an optimization

problem and achieves a high degree of parallelism. However,

Keller et al. [12] do not reason about preconditions and effects

of changes. Thus, the generated plans are not guaranteed to be

executable from a logical point of view. Similar guarantees are

provided by Cordeiro et al. [13], [14] who propose an approach

focusing on the reuse of knowledge in IT change design. The

authors propose an algorithm to refine abstract IT changes.

Compared to CHAMPS, Cordeiro et al. address the reuse of

knowledge in IT change design, but still no logical execution

guarantees are provided. The second class [3], [4], [5], [6],

[7], including our own research [3], [4], comprises algorithms

that reason about the preconditions and effects of IT changes.

All approaches of this class guarantee the feasibility of the

change plan only as long as the management domain remains

unchanged. Maghraoui et al. [5] proposed the seminal work

in this class. The authors use a Partial Order Planning

algorithm over a knowledgebase based on predicate logic. The

inconvenient transformation of descriptions between object

oriented models and predicate logic is the main drawback of

this work. Cordeiro et al. [6] propose an algorithm for the

refinement of IT changes taking the effects of IT changes

on subsequent changes into account as well. Different to [5],

their work focuses on the refinement of IT changes. In [3] we

proposed an approach to reason about the refinement and the

behavior of domain objects interchangeably. Compared to [6],

our work made the behavior of domain objects explicit leading

to knowledgebases that are easier to adapt and to perceive.

Trastour et al. [7] propose a pure refinement based approach.

Compared to our work [3], refinement rules are mixed with

behavior descriptions making it more difficult to distinguish

best practices from behavior. In a subsequent work [4], we

propose an approach to reason about state-related changes to

Infrastructure- and Software as a Service instances in large

data centers preserving its runtime characteristics even for

large OO CMDBs and heavily loaded data centers. Compared

to our previous work [3], this work focuses on state-related

changes and performance issues. Regarding the execution of

IT change plans, Machado et al. [15] propose a rollback

solution to deal with failures during change implementation

in a reactive way by undoing partially executed change plans.

Compared to this work, our approach proactively adapts IT

change plans before execution to avoid failures brought about

by changed management domains which then would have to be

rolled back. Wickboldt et al. [16] propose a solution for the au-

tomated risk assessment of IT change plans to proactively treat

risks during deployment. Similar to this work, our approach

proactively avoids failed change plans as well. However, we

avoid failed change plans by logically sound plan adaption

whereas Wickbold et al. [16] apply risk analysis. Recently,

Lunardi et al. [17], [18] proposed different strategies for the

alignment of IT change plans to business objectives. Our work

complements that work because our solution guarantees the

feasibility of IT changes on a logical level for unpredictable

domains, a prerequisite to successfully align IT changes with

business objectives.

Note, that all works assume predictable management domains

and are broken by unpredictable changes. To tackle this

problem, Section III introduces the basic building blocks of

our solution.

III. IT CHANGE PLAN ADAPTION

A. IT Change Plans for Unpredictable Management Domains

Three different solutions are conceivable to adapt infeasible

IT change plans to a changed management domain: Replan-

ning, plan adaption, and parameter adaption. Replanning

generates a new plan from scratch. If plans are generated

manually, an operator has to construct a new plan. This is

time consuming and errors are likely to occur. If plans are

generated automatically [3], [4], the whole planning process

has to be started again. Depending on the planning problem

and current state of the CMDB this involves significant effort

to create a new plan, i.e., to decide on the IT changes, their

parameters, and their precedence constraints. This can involve

heavy and costly backtracking through the search space of

plans. Compared to replanning, plan adaption does not create

the plan from scratch, but adapts parts of the plan. It cannot be

used together with manually generated change plans because it

has to be closely integrated with the algorithm previously used

to create the plan. Parameter adaption keeps the structure of

the original plan, i.e, its changes and precedence constraints,

intact and only adapts the plan’s parameters, i.e., assigns new

values to parameters, to render it executable again. Note, that

parameter adaption is less powerful than replanning and plan

adaption because it can only render plans feasible again if

their structure does not need to be altered. However, parameter

adaption has two significant advantages over replanning: (1)

Parameter adaption is independent of the planning technique

(manual/automated generation of plans) (2) Parameter adap-

tion does not need to go through the process of generating a

new plan from scratch. As a first start, this work focuses on

a solution using parameter adaption. We plan to investigate



replanning, plan adaption, and their trade-offs in respect to

parameter adaption in a subsequent work.

B. Importance of Object Oriented Models

Our solution is build upon object oriented modeling tech-

niques. A CMDB is an object relational model describing the

current state of the data center, i.e., all its physical and virtual

resources together with its hosted software. The CMDB is

implemented as in main memory objects of Groovy [19] a

dynamic object oriented language based on Java. We chose

the object oriented representation because according to Keller

et al. [10] today’s CMDBs follow an object oriented approach,

sometimes derived from the Common Information Model

(CIM) [11]. However, we use our own customized models

to keep matters simple. Note, that the approach proposed

in this work is independent of the concrete object oriented

model used for the CMDB. The CMDB used throughout this

work, comprises classes for physical machines (PMs), virtual

machines (VMs), operating system (OS) images, web applica-

tion server (WAS) images, database (DB) images, switches,

network interfaces (NIC), and ports. Relationships among

them are modeled using references. Effects of IT changes

transform a Configuration Item (CI), i.e., an object, of the

OO CMDB by writes to its properties to reason about chains

of preconditions and effects of subsequent changes in a plan.

C. Parameter Enhanced IT Change Plans

This subsection introduces the concepts our solution

is built on. A change request (CR) cr is a tuple

cr = (Parcr,in, Parcr,out, P recr, ecr) where Parcr,in =
{ipcr,1, ..., ipcr,n}, n ∈ N, is a set of input parameters and

Parcr,out = {opcr,1, ..., opcr,n}, n ∈ N0, is a set of optional

output parameters of cr. Note, that two CRs cr and cr′,
cr 6= cr′, can exist, such that a parameter p exists with

p ∈ Parcr,in ∧ p ∈ Parcr′,in, i.e., the same parameter can

be input to different CRs. Furthermore, input and output pa-

rameters are related such that for every p ∈ Parcr,out at least

one change request cr′, cr 6= cr′, exists with p ∈ Parcr′,in,

i.e., output parameters are input parameters to at least another

change request. A parameter parcr,d ∈ Parcr,in/out is a 3-

tuple (d, v, V ) where d is the description of parcr,d, v the

current value of parcr,d, and V alternative values for v. We

denote by ipcr,x/opcr,x the input/output parameter x of change

request cr. Precr = {precr,1, ..., precr,n}, n ∈ N, is a set of

preconditions of cr that need to account in order to apply cr. A

precondition precr,i ∈ Precr accesses a subset of parameters

in Parcr,in. For example, Listing 1 describes change request

create VM depicted as cr1 in Figure 1 using a Groovy [19]

Domain Specific Language. The precondition in Line 7 checks

whether enough memory is available on the physical machine

to create a new VM. It accesses the value of input parameter

ipcr1,pm and ipcr1,vmem which is described as dynamically

executable Groovy code over object oriented models. For a

change request cr, ecr describes the effects of cr when it is

applied. For example, Lines 11-13 in Listing 1 describe the

effects of CR create VM. A new virtual machine instance is

created using the values of the input parameters and is assigned

to the value of output parameter opcr1,vm.

Based on the notion of change requests we define our notion

of an IT change plan as follows: Let CR be the set of all

change requests. A plan pl is a tuple pl = (CRpl, <pl) with

CRpl ⊆ CR and <pl⊆ CRpl × CRpl a partial precedence

relation describing Finish-to-Start constraints among the CRs

of plan pl. Note, that (cr1, cr2) ∈<pl iff cr1 has effects on

cr2 that render cr2 feasible. <pl is the precedence relation that

is given to the scheduler in a subsequent step to schedule the

CRs in CRpl. Note, that unordered, i.e., parallel, CRs can exist

because the partial order <pl does not need to be total. For a

plan pl, top orders(pl) is the set of all topological orders of

CRpl in respect of the precedence constraints <pl.

To assign new values to parameters of an infeasible IT change

plan reasoning regarding the dependencies among parameters

becomes necessary. For example, the value of some parameters

might be determined or influenced by the value of another

parameter. To capture these dependencies four different types

of parameters are distinguished:

Non-changeable input parameter (NCIP): A Non-

changeable input parameter ip ∈ Parcr,in is a parameter with

a fixed value, i.e., V = ∅. NCIPs are depicted in black, e.g.,

ipcr1,vmem or ipcr1,vcpu in Figure 1. If a precondition of a

CR fails due to the value of a NCIP, no alternative value can

be assigned to it because this contradicts the intention of the

plan. For example, cr1 in Figure 1 needs to create a VM having

exactly the memory described by the value of ipcr1,vmem, not

more or less.

Changeable input parameter (CIP): A changeable input

parameter ip ∈ Parcr,in can change its value, i.e., V 6= ∅,

without contradicting the intention of the plan. CIPs, e.g.,

ipcr1,pm in Figure 1, are depicted in white. If cr1 fails because

a precondition involving parameter ipcr1,pm is not fulfilled,

another value v′ ∈ V , i.e., a new physical machine, can be

chosen for the value of parameter ipcr1,pm to create the VM

on another physical machine.

Dependent input parameter (DIP): A dependent input

parameter ip ∈ Parcr,in changes its value with the value

of the parameter it depends on. DIPs are depicted in gray.

For example, the value of parameter ipcr3,pmnic depends on

the value of parameter ipcr1,pm because cr3 configures the

network interface of the physical machine used to create the

VM in cr1. If cr3 cannot be executed, we cannot choose any

arbitrary value for ipcr3,pmnic but only the network interface

of the parameter (physical machine) it depends on. DIPs are

symbolized by an arrow with white arrowhead starting at the

parameter they depend on. Associated with the arrow is a

rectangle with round shapes describing how the DIP is derived

by traversing the OO CMDB from the value of the parameter

it depends on.

Output parameter (OP): To change the value of an output

parameter, e.g., opcr1,vm in Figure 1, at least the value of one

input parameter of the same CR needs to be changed. For

example, changing the value of ipcr1,pm leads to a different

VM held by opcr1,vm. Note, that this is the only changeable



Listing 1. DSL for change request create VM.
1 ChangeReques t ( ” c r e a t e VM” , {
2 NCIP ( ”vmem” , 1 0 2 4 )

3 NCIP ( ” vcpu ” , 2 )

4 CIP ( ”pm” , l i s t o f p m s )

5 OP ( ”vm” )

6

7 p r e ( ” enough mem” , {g ipv ( ”pm ” ) . mem free >= gipv ( ”vmem” )} )

8 p r e ( ” enough cpu ” , {g ipv ( ”pm ” ) . c p u f r e e >= gipv ( ” vcpu ” )} )

9 p r e ( ”pm r u n n i n g ” , {g ipv ( ”pm ” ) . s t a t e == ” r u n n i n g ”} )

10

11 e f f e c t s {
12 sop ( ”vm” , new VM( gipv ( ”pm ” ) , g ipv ( ”vmem ” ) , g ipv ( ” vcpu ” ) ) )

13 }
14 })

vm

pm

vmem

vcpu 1 create vm 2
remove

    vm

vm

3
conf. pm

    nic

pmnic
pm.pm_nic

pm

Fig. 1. IT change plan enhanced with parameter relationships.

input parameter of cr1 because ipcr1,vmem and ipcr1,vcpu are

both non-changeable input parameters.

The type of a parameter is either defined by an IT practitioner

creating a change plan, or automatically by an IT change

planner [3] based on the refinement rules applied during

planning. A change request can have several parameters of

different types depending on the semantics the IT practitioner

/ planner wants to achieve for the plan. Compared to previous

notions of IT change plans [3], [14] our solution makes

parameters of IT changes and their relationships explicit. This

enables us to find new consistent assignments for parameters

to render plans feasible again.

IV. THE ALGORITHM

Algorithm 1 depicts the algorithm to adapt an infeasible IT

change plan. The algorithm is called with plan pl, the plan

to be adapted. First, all topological orders of the CRs of pl
(CRpl) are generated and an iterator over them is instantiated

in Line 2. For the plan depicted in Figure 1, 2! ∗ 1 = 2
topological orders, {< cr1, cr2, cr3 >,< cr2, cr1, cr3 >}, do

exist. A while loop (Lines 3-23) iterates over each topological

order (top order) of the plan. A list of executed CRs

is initialized with the empty list in Line 5. For the chosen

topological order of the plan, the for loop (Lines 6-21) iterates

over each CR in the topological order. If the precondition of

the current CR is satisfied (Line 7), its effects are applied to

the OO CMDB in Line 8 and it is added to the list of executed

CRs (Line 9). For example, consider cr1, the first CR in the

topological order < cr1, cr2, cr3 > of the plan in Figure 1.

The preconditions of cr1 check whether the physical machine

is running (see Line 9, Listing 1) and whether sufficient

memory and cpus are available (Lines 7-8, Listing 1). For this

purpose, the properties state, mem free, and cpu free are read

from the physical machine object in the OO CMDB which

Algorithm 1 Parameter adaption algorithm

1: procedure ADAPT INFEASIBLE PLAN(Plan pl)

2: top orders it = new Iterator(top orders(pl))

3: while top orders it.hasNext() do

4: top order = top order it.getNext()

5: executed = []

6: for cr ∈ top order do

7: if cr.eval precondition() then

8: cr.apply effects()

9: executed.add(cr)

10: else

11: params fail = cr.get failed params()

12: to change = get changeable

13: input ancestors(params fail)

14: if set new asgnmnt(to change) then

15: top orders it.reset()

16: break

17: else

18: return false

19: end if

20: end if

21: end for

22: undo crs(executed)

23: end while

24: end procedure

is currently the value of CIP ipcr1,pm. If the precondition

of the CR is false (Line 10, Algorithm 1), the cr is queried

for failed parameters. For example, assume that precondition

enough mem (Listing 1, Line 7) of create VM is not satisfied.

The precondition accesses parameters pm and vmem (see the

calls to the method gipv to retrieve the values of the input

parameters in Line 7, Listing 1). If this precondition fails,

{ipcr1,vmem, ipcr1,pm} is returned by the call in Line 11,

Algorithm 1. Generally, this call returns all parameters of a

cr that are responsible for its infeasibility. Based on this set,

the changeable input ancestors, i.e., CIPs that are ancestors

respective the dependency relation on parameters, are derived

in Lines 12-13. Parameter ipcr1,vmem is a NCIP, thus it is

not returned. Parameter ipcr1,pm is a CIP and depends on

no other parameters. Thus, only CIP ipcr1,pm is returned. In

general, all CIPs of any CR in the plan that have an effect on

parameters that lead to a failed precondition of cr are returned

in Line 12. Line 14 chooses an alternative assignment for

exactly one parameter in the set to change that has not yet

been chosen before. In our example, only parameter ipcr1,pm
can be assigned a new value. Note, that plan optimization

can be performed at this step. For example, a new physical

machine could be chosen for ipcr1,pm that minimizes the

waste of resources when executing cr1. If a new value can

be assigned (Line 14), all previously checked topological

orders need to be checked again because a changed parameter

can invalidate the feasibility of previously executed CRs in

any topological order. Thus, Line 15 resets the iterator over



the topological orders and Line 16 breaks the loop. If the

processing of the current topological order is aborted or if it

ends regularly, all effects of executed CRs need to be undone

in Line 22 because the next topological order to check needs

to see the OO CMDB as if the current topological order

had not been (partially) executed. In a previous work [4]

we showed that the fastest way to restore object oriented

CMDBs is to restore the previously backed up properties

of objects. Please refer to [4] for a performance analysis

regarding different strategies for storing and restoring OO

CMDBs. If no new assignment for the parameter is available,

false is returned in Line 18.

Note, that it is necessary to check all topological orders of

a plan. Assume cr1 in Figure 1 cannot be executed because

ipcr1,pm lacks enough memory. Because ipcr1,pm is the only

changeable input parameter, the algorithm chooses a new

physical machine for ipcr1,pm. By coincidence this machine

might match ipcr2,pm and cr2 might just free enough memory

for cr1 to succeed. In this case, the order cr2, cr1 succeeds

and the reverse order fails. Note, that the original plan was

sound because the preconditions and effects to remove and

create VMs on different hosts did not conflict.

For a failure F , we denote by |F | the number of CRs that

need to be checked until the iterator over the topological orders

of the plan is reset for the last time in Line 15. For a plan pl,
the runtime complexity of Algorithm 1 is:

O( |F |
︸︷︷︸

adapt time

+ |top orders(pl)| ∗ |CRpl|
︸ ︷︷ ︸

verify time

) (1)

The total runtime of Algorithm 1 is determined by two times,

the adapt time and verify time. For a failure F , the adapt time

is a measurement as to how fast a new satisfying parameter

assignment can be found. It depends on two factors: (1) The

amount of invalid choices available for the value of a param-

eter which causes a CR to fail and (2) whether the failed CR

can be detected early or late, i.e., of the position of the CR in

the topological order. The verify time comprises the rest of the

algorithm’s runtime. It consists of |top orders(pl)| ∗ |CRpl|
executions of the inner for-loop. It is failure independent and

depends on the length and the amount of topological orders

of the plan.

V. EVALUATION

Subsection V-A introduces the case study combining service

and network management used to evaluate the algorithm. Sub-

section V-B examines the influence of the type of failure and

the resource utilization on the adapt time. Finally, Subsection

V-C describes the influence of the plan’s partial order on the

verify time.

A. Plan- and Failure Case study

Figure 2 depicts the plan for a two-tier deployment case

study comprising a database and a web application server. The

plan consists of 12 CRs. The precedence constraints of the

plan are indirectly described by framed gray boxes, groups of

parallel executable changes. If all CRs of the previous parallel

group have been finished, the CRs of the subsequent group

can be executed. The plan is summarized as follows: First, cr1
and cr1′ create VMs for the database and the web application

server in parallel. Note, that both CRs define input parameters

pm such that ipcr1,pm 6= ipcr
1′
,pm. However, this does not

mean that they cannot hold the same physical machine. After

that, OS images are bound in the second parallel group (cr2
and cr2′ ) as well as a DB image (cr3), and a WAS image

(cr3′ ). The third parallel group starts the VMs (cr4 and cr4′ ).
Finally, the last group configures a Virtual Local Area Network

(VLAN) such that DB and WAS communicate using the same

VLAN. cr5 configures the port of the switch to which the

physical machine the VM is running on is connected such

that it only accepts VLAN chunks with VLAN ID ipcr5,vid.

This is done by modeling ipcr5,port as a dependable input

parameter (DIP) of ipcr4,pm. cr5′ is analogous to cr5. cr6 and

cr6′ configure the virtual network device of the created VMs

such that they tag Ethernet frames with VLAN ID ipcr
6/6′ ,vid.

For this purpose ipcr
6/6′ ,vmnic is modeled as DIP of the

formerly created vm, i.e., opcr
1/1′ ,vm. Seven different types of

failures due to unpredictable events occurring after planning

are examined:

• F-MEM: cr1 or cr1′ fails because not enough mem-

ory (ipcr
1/1′ ,vmem) or CPU resources (ipcr

1/1′ ,vcpu) are

available on the physical machine ipcr
1/1′ ,pm. To correct

F-MEM, a new physical machine has to be chosen for

ipcr
1/1′ ,pm because all other parameters are NCIPs.

• F-OS/F-DB/F-WAS: cr2/2′ / cr3 / cr3′ fails be-

cause the OS / DB / WAS image defined by

ipcr
2/2′ ,OSim / ipcr3,DBim / ipcr

3′
,WASim has already

been bound to another VM.

• F-VLAN: cr5 or cr5′ fails because the VLAN

ID ipcr
5/5′ ,vid has already been configured for port

ipcr
5/5′ ,port. Thus, another value for ipcr

5/5′ ,vid needs to

be chosen to avoid conflicts with applications of other

users already using this VLAN ID. Note, that the VLAN

ID is input to cr5, cr5′ , cr6, and cr6′ .

• F-PORT: cr5 or cr5′ fails because the port ipcr
5/5′ ,port

of the switch to which the physical machine ipcr
1/1′ ,pm

is connected to is deactivated. Thus, a new value for

ipcr1,pm needs to be determined.

• F-PMNIC: cr6 or cr6′ fails because the virtual adapter

ipcr
6/6′ ,vmnic of ipcr

6/6′ ,vm cannot be configured because

the network interface ipcr
6/6′ ,pmnic of the physical ma-

chine is deactivated.

B. Influence of Failure and Resource Utilization on Adapt

Time

The adapt time depends on the position of the CR causing

the failure in the plan and the amount of retries necessary to

find a new assignment for invalid parameters. However, for

a fixed failure, the amount of retries varies per run because

new values for parameters are chosen randomly leading to few

retries in case of luck or to much more in case of misfortune.
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Fig. 2. IT change plan describing the deployment of a 2-tier service and the configuration of a VLAN connection using a switch.

We model the likelihood to choose a value for a parameter

that causes a CR to fail as follows: Let cr be an infeasible

CR of plan pl due to input parameter ip (not necessarily ip ∈
Parcr,ip). Let N be the total amount of values to choose from

for ip, i.e., N = |V |, out of which k < N values do not satisfy

the failed precondition (blanks). The discrete random variable

X denotes the attempt in which a value is chosen for ip that

validates the precondition of cr. The probability mass function

(PMF) Pk,N and cumulative distribution function (CDF) Fk,N

of X are described by Equations 2 and 3:

For i ∈ {1, ..., k + 1}, k < N , N total amount of values to

choose from, k number of non-qualifying values / blanks:

Pk,N (X = i) =

(
k

i−1

)
(i − 1)!

(
N−k
1

)

(
N
i

)
i!

(2)

Fk,N (X = i) = Pk,N (X ≤ i) =
∑

j=1,...,i

Pk,N (X = j) (3)

For a probability p and CDF Fk,N , the quantile function

Qk,N (Fk,N ) in Equation 4 returns the smallest upper bound

under which random draws fall in p ∗ 100% of observations.

(Qk,N (Fk,N ))(p) = F−1

k,N (p) =

= inf{x ∈ {1, ..., k + 1} : Fk,N (x) ≥ p}
(4)

For example, Q150,200(0.95) = x means that in 95% of all

cases no more than x tries are necessary if there are 200 values

for a parameter out of which 150 do not satisfy the previously

failed precondition. Note, that for several failures in the case

study the number of non qualifying values k matches to the

resource utilization of the data center. For example, for F-

MEM k denotes the amount of PMs heavily loaded, i.e., PMs

with not enough RAM or CPU left. For F-OS, F-DB, and F-

WAS k denotes the amount of already bound images, and for

F-VLAN k describes the amount of already used VLAN IDs.

To study the quantile function, and with it the adapt time,

depending on the resource utilization of the data center, we

define resource utilization as:

ru =
k

N
(5)
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Fig. 3. 95% quantile of the amount of retries necessary to find a new
assignement for a parameter depending on the resource utilization and the
total amount of CIs qualifying for a parameter.

Figure 3 depicts a contour plot of the 95%-quantile depend-

ing on the resource utilization (65%-100%) and the amount

of resources, i.e., N (0-250). Q(0.95) is only defined for

values above the 0-contour line (CL) due to high resource

utilization and low amount of total resources below the 0-CL.

The following conclusions can be drawn from Figure 3: (1) For

70/80/85% resource utilization no more than 10/15/20 retries

are to be expected in 95% of all cases for up to 250 resources

in total. (2) The higher the resource utilization, the more

retries are necessary. However, the increase is smaller the less

resources there are. For example, for 85% resource utilization

and 19 resources Q(0.95) holds 12, but for 250 resources it

holds 19 (compare different plateus in Figure 3). Thus, (3) for

a fixed resource utilization we expect less retries for resources

with lesser total amount. However, this increase is not as strong

as for increasing resource utilization at constant number of

resources. Not shown in Figure 3 are values for lager resource

pools of up to 5000 CIs. For such large resource pools the

increase is very modest, if at all noticeable, for resource

utilizations below 90%. E.g., for 85% resource utilization
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Q(0.95) holds 19 for 5000 objects, the same value as for

250 objects. Thus, for the presented case study our approach

scales well with high amounts of resources under resource

utilizations of up to 85% regarding the maximal number of

retries (in 95% of all cases). To connect the amount of retries

to a runtime, Figure 4 shows the adapt time measured for the

different failures in milliseconds depending on the amount of

retries. Note, that F-VLAN and F-PORT were consolidated

because they are both caused by the same CRs showing

similar runtime. All measurements were taken on a Core2 Duo

2.8Ghz, 6MB of Cache, and 4GB of RAM. The underlying

OO CMDB comprises 1000 PMs, 3000 OS images, and each

1500 DB and WAS images. From Figure 4 we observe: (1) The

adapt time increases proportional to the number of retries for

every failure. (2) Failures happening late in the plan are more

expansive than early failures (e.g. F-PMNIC vs. F-MEM) at

the same number of retries. This is because they can only

be detected at a later time when executing the CRs of a

topological order. (3) The more retries there are, the larger the

gap between early and late failures. This is due to (2) and the

increased number of retries which emphasizes the effect from

(2). Thus, we conclude that late failures with a high resource

utilization regarding the values to choose from are the most

expensive ones. However, for a resource utilization below 85%

no more than 20 retries occur in 95% of all cases (see quantile

plot in Figure 3). From Figure 4 we can conclude that this can

involve a worst case performance penalty of around 100ms

between early and late failures. For 70% resource utilization

(≤ 10 retries) a maximum difference of 65ms can be observed

between early and late failures in 95% of all cases. Compared

to the verify time explored in Subsection V-C this difference

is very small. Higher resource utilizations are very unlikely to

occur because this means that a data center operates very close

to its capacity limit making it inflexible to cope with varying

resource demands. Note, that in the worst case more retries

are necessary than the 95% quantile. All in all, for the given

case study and for resource utilizations of up to 85% we can
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consider the plan adaption time to be roughly independent of

the failure in 95% of all cases, especially if the length of the

verify time examined in Subsection V-C is taken into account.

C. Influence of Plan on Verify Time

The verify time depends on the length of the plan (|CRpl|)
and |top orders(pl)|, the number of its topological orders.

The plan depicted in Figure 2 has 2! ∗ 4! ∗ 2! ∗ 4! = 2304
topological orders. Thus, the precondition and effects of

12 ∗ 2304 = 27648 CRs need to be checked / executed after

the plan was adapted to make sure that the adaption is sound

(Lines 6-21). Note, that all possible topological orders need to

be executed because otherwise it cannot be guaranteed that the

adaption is sound for non-ordered, i.e., parallel, CRs. Verifying

our case study plan takes roughly 5.37s.

However, if additional knowledge about the semantics of the

preconditions and effects of CRs is available, |top orders(pl)|
can be reduced. For example, consider changes cr4 and cr4′

which start the previously created virtual machines. It is not

necessary to take the execution order among cr4 and cr4′ into

account, because whenever one execution sequence of the two

CRs in a topological order of the plan succeeds, the other one

will as well. This is due to the preconditions and effects of

cr4/4′ . They have the following preconditions: (1) The two

(distinct) virtual machines ipcr
4/4′ ,vm are not yet running (2)

Both OS images (ipcr
4/4′ ,OSIm) are connected to their VM

(ipcr
4/4′ ,vm) (3) The physical machines ipcr

4/4′ ,pm are on. cr4
and cr4′ have only one effect on the CMDB, they change the

state of the VM they start (ipcr
4/4′ ,vm) to running. Looking

sharply at preconditions and effects, it can be observed that

whenever one execution sequence of the two changes succeeds

the other one will as well because their preconditions and

effects do not overlap and they do not influence a property of

a common CI. Otherwise, their execution order might matter.

Thus, it suffices to either check order cr4, cr4′ or cr4′ , cr4
but not both. This reduces |top orders(pl)| by the factor

of two. Other conflict free pairs are for example (cr2,cr2′ ),



(cr3,cr3′ ), and (cr6,cr6′). It suffices to verify the original plan

(Figure 2) with any combination of these constraints because

CRs addressed by the temporal constraints do not overlap in

preconditions and effects. Figure 5 depicts the influence of the

additional constraints on the verify time (left vertical axis)

and the number of topological orders checked (right vertical

axis). Each constraint added to the plan reduces the space of

topological orders by the factor of two. This approximately

halves the verify time for every constraint added. While the

original plan takes 5.37s and 2304 topological orders to verify,

the plan with the aforementioned 4 constraints has only 144

topological orders and takes about 0.31s. Note, that for a

given plan the verify time is constant (except for variances

in measurements) leading to the fact that the adapt time (see

Section V-B) determines the total runtime dependent on the

type of resource conflicts. To efficiently apply our approach

to larger and highly parallel plans, finer grained reasoning

techniques about preconditions and effects of IT changes

become necessary because in the worst case (no precedence

constraints among CRs of a plan) the amount of topological

orders of a plan can grow factorially with the amount of CRs

it contains. However, in the best case it remains constant

if the plan is a sequence of IT changes. In the context of

this work, we rely on an operator to describe conflict free

CRs that are unaffected by parameter changes to successfully

reduce the amount of topological orders to be checked. We are

currently developing finer grained reasoning techniques over

object oriented models as part of an algorithm to automatically

detect conflicting IT change plans.

VI. CONCLUSIONS AND FUTURE WORK

Change plan generation is a crucial step of the IT Change

Management process part of ITIL. In between the generation

and execution of IT change plans unpredictable changes can

render IT change plans infeasible. This increases the quantity

of failed IT change plans, an indicator of poor Change

Management [2]. Existing automated solutions do not take

into account this gap that can alter change plans infeasible.

To tackle this problem, we proposed an automated, logically

sound approach to adapt IT change plans to changed man-

agement domains using parameter adaption. We examined the

times to correct several different types of resource conflicts

in a deployment and network configuration case study. For

our case study we found that our approach is able to find a

solution within minimal time differences for different types of

unpredictable resource conflicts/failures in 95% of all cases,

as long as resource utilization remains below 85%.

For future work, we envision an automated approach to auto-

matically detect and correct conflicting IT change plans over

OO CMDBs. As part of this vision we develop techniques to

reason about preconditions and effects of IT changes over OO

models. Furthermore, replanning and plan adaption techniques,

including trade-offs, remain to be investigated.
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