Community Training: Partitioning Schemes in Good Shape for Federated Data Grids

Tobias Scholl, Richard Kuntschke, Angelika Reiser, Alfons Kemper

3rd IEEE International Conference on e-Science and Grid Computing
Bangalore, India
December 10th – 13th 2007
The AstroGrid-D Project

- German Astronomy Community Grid
 http://www.gac-grid.org/
- funded by the German Ministry of Education and Research
- part of the D-Grid
The Multiwavelength Milky Way

http://adc.gsfc.nasa.gov/mw/
Data-intensive e-Science Applications

- Many e-science application areas
 - astrophysics
 - geosciences
 - climatology
- Combination of various, globally distributed data sources
- Increasing popularity (within community and public domain): more users
- Scalability issues with current approaches
Up-coming Data-intensive Applications

- Data rates
 - Terabytes a day/night
 - Petabytes a year
- LOFAR
- LSST
- Pan-STARRS
- LHC
Current Sharing in Data Grids

- Data autonomy
- Policies allow partners to access data
- Each institution ensures
 - Availability (replication)
 - Scalability
- Various organizational structures:
 - Centralized
 - Hierarchical
 - Federated
 - Hybrid

Community-Driven Data Distribution
The Training Phase

- Extract data from the archives
- Compute partitioning schemes
- Compare different partitioning schemes
 - Standard Quadtrees
 - Median-based Quadtrees
 - Zones
Quadtrees

- Well-known index structure
- Recursive decomposition
- Adaptive to data resolution
Quadtree-based Schemes: Splitting Variants

Center splitting
- Always bisects each dimension
- Congruent subareas
- Splitting points stored or computed

Median heuristics
- Compute median for each dimension independently
- O(n) median algorithm
- Splitting points stored
The Zones Index
(J. Gray, M. Nieto-Santisteban, A. Szalay)

- Index structure for databases
- Specific spatial clustering in zones
- Optimized for
 - points-in-region queries
 - self-match, cross-match queries
- Equi-distant partitioning
 - Declination coordinate
 - Zone(ra, dec) = floor((dec + 90.0) / h)
- Implemented directly in SQL
Evaluation Setup

- 2 data sets: skewed and uniform
- Size of data sample: 0.01%, 0.1%, 1%, 10%
- Number of partitions: 4, 16, 64, 256, 1024, 4096, 8192, 16384, 32768, 65536, 131072 ($2^4 - 2^{17}$)
Skewed Training Data (D_{skew})
Comparing Partitioning Schemes

- Duration
- Average data population
- Variance in partition population
- Empty partitions
- Size of the training set
- Baseline comparison
Average Data Population

\[
\text{avg(# objects in partitions)} \quad \frac{\# \text{ objects in biggest partition}}{100}\%
\]

10% training sample, \(D_{skew}\)
Evolution of the Partitioning Scheme

- 4096 partitions
- 8192 partitions
- 16384 partitions
Empty Leaves

10% training sample, D_{skew}
Size of the Training Set

objects in training set

partitions to be created

0.1% training sample, D_{skew}
Standard Quadtree vs. Median Heuristics
Evaluation – Summary

- Quadtrees: good adaption to data distribution
- Quadtrees: Trade-off between data load balancing and uniformly shaped regions
- Median-based heuristics: best data load balancing even for skewed data sets
- Zone Index: good for uniform data sets
- Training set needs to be sufficiently large in order not to artificially create empty partitions
HiSbase

- Peer-to-Peer layer assigns data partitions to peers
- Higher flexibility
- New peers are integrated seamlessly
Query Submission (at Peer d)

- Determine relevant regions: \([1,3]\)
- Select coordinator: Region 1
- Send CoordinateQuery-message to id1: \([1,3], SQL\)
- Message gets routed to Peer a.
Query Coordination (at Peer a)

- Peer a is coordinator
- Contact relevant regions
- Collect intermediate results
- Send complete result to client
Prototype Implementation

- Java-based prototype
- FreePastry library (Pastry implementation)
 - Rice University
 - MPI-SWS
- Presentations at
 - BTW 2007, Aachen, Germany
 - VLDB 2007, Vienna, Austria
- Deployed in various settings
 - LAN
 - WAN (AstroGrid-D, PlanetLab)
Summary

- Training phase
- Community-driven Data Grids
 - Domain-specific partitioning scheme
 - Partitioning scheme supports
 - Data skew
 - Region-based queries
- Framework for comparing partitioning schemes
- Various measures with regard to data load balancing
Ongoing Work

- Database-driven comparison
 - 0.1% of a Petabyte still is 1 Terabyte
 - Feasibility of median-based techniques
- Workload-aware data partitioning
- Heterogeneous data nodes
Get in Touch

- Database systems group, TU München
 - Web site: http://www-db.in.tum.de
 - E-mail: scholl@in.tum.de

- HiSbase
 - http://www-db.in.tum.de/research/projects/hisbase/

- Data stream management
 - “Grid-based Data Stream Processing in e-Science” (e-Science '06)
AstroGrid-D Research Demo

- Finding Galaxy Clusters using Grid Computing Technology
- Room: Banquet
- Wednesday 3:30 pm to 6:00 pm