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Abstract. We propose a novel hybrid planning approach for the auto-
mated generation of IT change plans. The algorithm addresses an ab-
straction mismatch between refinement of tasks and reasoning about
the lifecycle and state-constraints of domain objects. To the best of our
knowledge, it is the first approach to address this abstraction mismatch
for IT Change Management and to be based on Artificial Intelligence
planning techniques. This has several advantages over previously exist-
ing research including increased readability, expressiveness, and main-
tainability of the descriptions. We developed the foundations of the ap-
proach and successfully validated it by applying it to change request
planning for TikiWiki, a Content Management System.
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1 Introduction

Due to the proliferation of the Software as a Service and the Cloud Computing
paradigm, data centers are rapidly growing in size. The complexity of hosted
applications increases as well because it has become feasible to host massively
distributed applications. This puts additional burden on data center operators
and their customers because Change Management becomes more difficult. The
generation of change plans is an important step of Change Management as de-
fined by ITIL [7]. Automating the generation of change plans is the key to reduce
staff costs, to cope with the complexity of data centers and applications, to com-
ply with company wide policies, and to reduce operator failures. We know of no
commercial Data Center Automation product or published research addressing
the automated generation of change plans based on workflow descriptions, hier-
archical refinement strategies, lifecycle behavior and state-constraints of domain
objects. Our work addresses an abstraction mismatch inherent to these descrip-
tions. Planning for change requests (CRs) involves the usage of two contrary
abstractions:
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First, reasoning about the state, lifecycle behavior, and state constraints respec-
tively dependencies among domain objects is necessary. For example, a database
can be in states like running or stopped. Dependencies refer to the state of other
domain objects. For instance, a database can only be installed if the virtual
machine is in state on. When reasoning about the behavior of domain objects,
the notions of state, lifecycle behavior, and state-constraints of domain objects
cannot be avoided.
Second, IT change request planning involves the specification of best practice
workflows and the refinement of abstract high-level CRs into finer grained CRs
until non-decomposable CRs are reached. This is necessary when planning for
abstract high-level CRs. For example, the task to test an application may be
decomposed into a set of subtests. This cannot be expressed by lifecycle states
of domain objects and constraints among them - an abstraction mismatch.
While this abstraction mismatch has been noted before in the area of Policy
Based Management [12], [13], [14], and [11], it has not yet been addressed for IT
Change Management. We propose an approach to address this problem for IT
change planning. The hybrid approach supports hierarchical task refinement and
reasoning about the lifecycle and dependencies of domain objects interchange-
ably. Its KBs clearly separate hierarchical problem solving strategies, description
of domain object behavior, and state-constraints from each other. Thus, domain
descriptions produced by an IT practitioner become more readable, extendable,
and maintainable because the abstractions are clearly separated and made ex-
plicit. The separation also paves the way for a simple methodology to write KBs.
The remainder of this paper is organized as follows: Section 2 introduces the ba-
sic terms underlying the hybrid approach. The contributions are highlighted in
Sect. 3. Section 4 introduces the algorithm based on a TikiWiki planning exam-
ple. The performance of our prototype is evaluated in Sect. 5. Related Work
concerning IT change planning and Policy Based Management is discussed in
Sect. 6. Finally, Sect. 7 concludes the paper.

2 Conceptual Model and TikiWiki Planning Domain

This section describes the three levels comprising the conceptual model of our
approach. The Domain Entity level in Subsect. 2.1 provides an object oriented
model to reason over. The Behavioral level describes the behavior of domain
objects. It is introduced in Subsect. 2.2. Finally, we explain the Refinement level
which describes workflows and task decomposition rules.

2.1 Domain Entity Level

The Domain Entity level defines two models, the Domain Object Model (DOM)
and the Domain CR Model. The Domain Object Model provides an object ori-
ented model representing the infrastructure and hosted software components.
An instance of the DOM is used during planning to evaluate preconditions and
to make effects of planned operations persistent. The DOM can be based on
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modeling techniques like CIM or EMF. We are using Groovy [6] because it is
Java compatible, supports configuration templates to instantiate OO models,
and Domain Specific Languages (DSL) can be easily written. In the DOM used
throughout this work, a TikiWiki cloud service consists of a database, several
Apache servers, and one load balancer. It is shown in Fig. 2.

Groovy methods implemented in the DOM can be called by the planner
to implement the effects of actions. The DSL describing the planning domain
becomes more readable when complex change behavior can be hidden behind
method calls. This feature is not supported by traditional Artificial Intelligence
(AI) planners based on predicate KBs, e. g., SHOP2 [9]. This also makes it easier
to use our approach with legacy models. We assume that the state of a domain
object is automatically kept updated by the DOM’s methods. Note that the
DOM can be easily extended to take physical infrastructure into account.

Fig. 1: eSTS for domain objects Fig. 2: DOM of TikiWiki domain
The Domain CR Model is a model for the different kind of CRs. A change

request cr is a 6-tuple cr = (ncr, ocr, paramscr, HBcr, parentcr, tcr), where ncr is
the name of cr, ocr the target of the CR, i. e., an instance of class DomainObject
in the DOM, affected by cr, paramscr a map of parameters customizing cr,
and HBcr a set of CRs happening before cr. Throughout this work HBcr is
considered to be non-transitive. The HB sets of all CRs can be used to compute
the transitive closure of all CRs happening before a particular CR. parentcr is
the parent of cr. tcr ∈ {na, at, sc} denotes the type of a CR with the following
characteristics: A non-atomic (na) CR is subject to further refinement into child
CRs by a method defined in the Refinement level. An atomic (at) change request
cannot be further refined. It has effects on the DOM described by operators in
the Refinement level. A state-changing (sc) CR is subject to further refinement;
All of it descendants contribute to the state change in domain object ocr, e. g.,
to resolve dependencies or to actually perform its state-change.

2.2 Behavioral Level

The Behavioral level describes the lifecycle-behavior of domain objects by means
of extended restricted state-transition systems (eSTSs), an extended version of
restricted STSs [4]. To keep matters simple in our modeled domain, we assume
that databases, Apache instances, and load balancers have the same eSTS. A
simplified graphical representation of it is given in Fig. 1. More formally, eSTS
σ is a 3-tuple σ = (pσ, Sσ, Tσ) such that pσ is a precondition evaluated over
a domain object o to decide whether σ describes the behavior of o. See the
boolean expression in Line 1, List. 1 which associates the eSTS to every instance
of class DomainObject. Sσ is the set of states (see Line 2 in List. 1) and Tσ the



4 Hagen, S., Edwards, N., Wilcock, L., Kirschnick, J., and Rolia, J.

set of transitions of σ (see Lines 3–13). A transition t ∈ Tσ is a 5-tuple t =
(st, gt, crt, Dt pre, Dt post) such that st ∈ Sσ is the source and gt ∈ Sσ the sink of
transition t. Line 4 in Listing 1 defines the stop transition from the Started to the
Installed state. crt is the CR that needs to be achieved to change the state from
st to gt. For example, Line 5 in List. 1 links a CR called stop, i. e., ncr == stop,
to transition stop. Dt pre and Dt post are dependencies that need to be fulfilled
before or after crt is planned for, i. e., before or after the transition is taken in
the eSTS. Dt pre = (pt pre, CRSt pre) where pt pre is a precondition evaluated
over a domain object to determine whether the dependency CRs described in
CRSt pre need to be planned for before crt. For instance, the precondition of
the dependency given in Lines 7–12 in List. 1 says that it is only valid for an
instance of Database. The dependency CRs (CRSt pre) of the dependency are
defined in Lines 11–12. They describe state-changing CRs to stop all Apache
servers, i. e., to change their state to Installed. Thus, the dependency CRs are
only planned for if the stop transition in a database is taken. If the stop transition
in an Apache server is taken, then the depedency does not apply because the
precondition evaluates to false. All in all, the DSL given in Listing 1 describes
the eSTS linked to all domain objects, its three states, the stop transition, the
stop CR linked to the transition, and a dependency to stop all Apache instances
before the stop transition is executed in a database. The other transitions and
dependencies were omitted due to space constraints.

Listing 1: DSL for eSTS
1 eSTS( i t . i n s t anc eo f DomainObject ) {
2 s t a t e s { [ ”Removed ” ,” I n s t a l l e d ” ,” Started ” ]}
3 t r a n s i t i o n s {
4 t r a n s i t i o n (” stop ” , from : ” Started ” , to : ” I n s t a l l e d ”){
5 subtask { stop ta rge t : i t . t a r ge t }
6 dependenc ie s {
7 dependency{
8 pre c ond i t i on{ i t . t a r ge t i n s t an c eo f Database}
9 type{ time : ” be f o r e ” , decomp : ” p a r a l l e l ”}

10 subtasks{
11 i t . t a r ge t . Apache instances . each{
12 set−s t a t e t a rge t : i t , g o a l s t a t e : ” I n s t a l l e d ”
13 } } } . . . } } . . . }
14 }

Note that the dependency in List. 1 only applies for a database (Line 8) while
a database has the same states and transitions as every other domain object.
The DSL decouples the dependency specification from the lifecycle specification
to specify domain objects with the same lifecycle but with different dependency
behavior within one eSTS. This increases the usability and reuseability of the
Knowledge Base. The code in Line 11 in List. 1 directly navigates the DOM in-
stance to create the dependency CRs (CRSt pre) of transition stop. it refers to
the state-changing CR which the planner plans for using the eSTS the depen-
dency is specified within. By following the target reference the database domain
object (ocr) of the DOM instance is reached holding a list of all Apache instances
(see Apache instances reference in Fig. 2). We only need to specify dependencies
that directly affect other domain objects when executing a transition. For ex-
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ample, the eSTS holds a before-dependency to stop the Apache servers before
the database is stopped (Lines 7–13). The eSTS describing Apache, in this case
the same eSTS, holds a before-dependency for Apache instances to stop the load
balancer before transition stop is taken. This is how we can exploit transitivity
over dependencies when stopping a database. Note that the latter dependency
is only valid if the Apache to stop is the last one running in the system. Such
constraints can be defined in the precondition (pt pre or pt post) of a dependency.

2.3 Refinement level

The Refinement level describes rules for CR decomposition, workflows, and best
practice problem solving strategies not expressible by eSTSs and dependencies.
A (Hierarchical Task Network (HTN)) method m [3], [4] describes a sequential
or parallel decomposition of a non-atomic CR into child CRs. More formally let
m = (nm, pm, CRSm) be a 3-tuple where nm is the name of m, pm is a precon-
dition to determine whether m is applicable, CRSm is a set of child CRs to be
achieved in order to achieve the CR m is applied to. The children can either be
in no temporal relationship, i. e., ∀cr ∈ CRSm : HBcr = ∅, or they can be in
a sequential relationship such that HBcrn+1

= {crn}. Let cr be a non-atomic
CR, i. e., cr = (ncr, ocr, paramscr, HBcr, parentcr, na), then m can be applied to
decompose cr iff ncr == nm and pm is satisfied by ocr, i. e., their names match
and the precondition evaluates to true over the target of cr.
More practically, patching a domain object is defined by the following workflow:
(CR1)The domain object to patch is stopped. (CR2)The update is applied.
(CR3)The domain object is tested. (CR4)The previous state of the patched do-
main object is restored. The decomposition of patch incorporates state-changing
CRs (1 and 4) and non-atomic/atomic CRs (2 and 3). It is tasks like patching and
testing where the hybrid approach can play out its advantages because planning
works interchangeably between refinement and state-transition systems. The KB
engineer can rely on the previously defined behavior and dependencies in the Be-
havioral level when writing methods.

Listing 2: DSL for patch method
1 method (name : ”patch ” , pre : i t . t a r ge t i n s t anc eo f DomainObject ) {
2 subtasks {
3 s e que n t i a l {
4 St r i ng s t a t e o l d = i t . t a rge t . s t a t e
5 set−s t a t e t a rge t : i t . targe t , g o a l s t a t e : ” I n s t a l l e d ”
6 update ta rge t : i t . t a r ge t
7 t e s t t a rge t : i t . t a r ge t
8 set−s t a t e t a rge t : i t . targe t , g o a l s t a t e : s t a t e o l d }}}

Listing 2 shows the DSL for the patch method. Line 1 describes the name nm

(patch) and the precondition pm (target of CR, i. e., ocr, is instance of class
DomainObject). Lines 2–8 describe CRSm as the sequential decomposition of the
patch CR into CRs 1-4 as Groovy code. Line 4 saves the current state of ocr in the
local variable state old. Lines 5 and8 describe state-changing CRs to stop (CR1)
and to restore (CR4) the previous state of the target of the patch CR (ocr). The
previously locally defined variable state old is used as the goal state parameter
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of the last state-changing CR to restore the domain object’s old state in Line 8.
Intermediate CRs with names update and test need to be planned for. update is
an atomic CR, i. e., a non-decomposable CR with effects on the DOM. Atomic
CRs are implemented by (HTN) operators [3], [4] also specified in the Refinement
level. More formally, an operator o is a 3-tuple o = (no, po, eo). no is the name
of o. See Line 1, Listing 3 for an operator named update. po is a precondition
to determine whether o can be applied and eo describes the effects of o. Let
cr = (ncr, ocr, paramscr, HBcr, parentcr, at) be an atomic CR. o is applicable to
cr if ncr == no and po is satisfied by ocr. In case of update the precondition po

is specified in Lines 1–2 in Listing 3. It demands that ocr is an instance of class
DomainObject and currently in state Installed. The effects eo are defined by the
programmatic Groovy code in Lines 4–5. The code is executed by the planner,
increasing the version attribute of ocr (Line 4) and returning true to signal the
successful execution to the planner. Note that exceptions from the DOM instance
can be caught to return false to the planner to trigger backtracking. A method
to refine test into subtests is not given because with patch an exemplary method
has already been provided.

Listing 3: DSL for update operator
1 operator (name : ”update ” , pre : i t . t a r ge t i n s t anc eo f DomainObject
2 && i t . t a rge t . s t a t e == ” I n s t a l l e d ”) {
3 e f f e c t s {
4 i t . t a r ge t . v e r s i on++
5 re turn true
6 }}

Having defined the Behavioral level previously, there is no need to worry about
dependencies and the behavior of domain objects. Behavior described in eSTSs
(see List. 1) is strictly separated from refinement strategies described by methods
(see List. 2) and operators in List. 3. Both abstractions can be written by differ-
ent KB engineers. One an expert in the lifecycle-management of applications and
the the other one an expert in best practices in Change Management workflows.
Linking Behavioral and Refinement level together overcomes the abstraction mis-
match enabling IT practitioners to more naturally express the planning domain.
The clear separation between Refinement and Behavioral level makes it easier to
write and change domain descriptions. For example, to extend the behavior of
a domain object states and transitions can be added. The refinement strategies
stay unchanged. Vice versa, the same applies when changing workflows.

3 Contributions of The Hybrid Approach

Task refinement and state-based reasoning with constraints are important for
IT change request planning. The hybrid approach brings both abstractions to-
gether. Previous work regarding IT change request planning has been focused
on either of the two abstractions. Only supporting Refinement as done by HTN
Planners [3], [9] is powerful enough to plan for CRs, but has several drawbacks.
Without a Behavioral level, eSTSs have to be described by methods in the Re-
finement level. For instance, the eSTS shown in Fig. 1 can be in 3 states and any
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state-changing CR regarding this eSTS can have two goal states different from
the current state. Thus, 3 ∗ 2 = 6 methods need to be written as a replacement
for state-changing CRs. In general, n ∗ (n− 1) methods have to be written for a
domain object with n states. These ’state-changing’ methods will be mixed with
higher-level workflow methods like the patch method. Furthermore, additional
HTN methods are needed to describe different dependency behavior for domain
objects with the same lifecycle. All in all, the KB becomes more difficult to read
and to maintain because concepts are mixed. Other refinement approaches [1],
[2] restrict refinement to be based on dependencies. Workflows not driven by
dependencies, e. g., restarting an application, are difficult to describe in such an
approach.
Only providing a Behavioral level [5] and no refinement capabilities reduces ex-
pressiveness. For instance, the patch and test CRs cannot be planned for only
based on state-constraints. There is no convenient way to express that subtests
need to be done by using eSTSs and state-constraints. It is more natural to
express this as a refinement rule. Even if refinement could be described using
eSTSs, dependencies, or state-constraints, the drawback that refinement is mixed
with eSTSs or constraints still exists. The hybrid approach offers native support
for both abstractions, clearly distinguishes between them, and keeps them sep-
arated in the Knowledge Base. However, reasoning about refinement and states
can naturally refer to each other. This offers two advantages when comparing it
to previous work in IT change planning. First, to the best of our knowledge it
is the first approach to natively support workflow-, task-refinement-, and state-
based-planning based on constraints at the same time. Second, KBs of the hybrid
approach are easier to maintain and to read because the abstractions are de-
scribed in their most natural way and are separated from each other. To the
best of our knowledge, it is also the first work to apply findings from AI plan-
ning to IT change planning. HTN planning [3], [4] and our extensions to plan
for state-changing CRs reason about the effect a CR has on the DOM. Plans are
sound from a computational point of view if the algorithm, methods, operators,
and eSTSs are sound. We leave this proof to future work. We also show that
planning can be done with reasonable overhead over an OO model. This bridges
the gap between AI planning and IT Change Management because models like
CIM have been traditionally used to represent the IT system to manage.

4 The Algorithm

The algorithm takes a 4-tuple (M, O,
∑

, Q) as input where M is a set of meth-
ods, O a set of operators,

∑
a set of eSTSs, and Q a queue of CRs to plan

for. To plan for the patch CR, Q holds the ordered set {cr1} where cr1 =
(patch, db, [:], ∅, null, na) at the initial call to the algorithm. See Fig. 3 for the
decomposition tree with root node cr1 and all of its descendants created during
planning. Note that ocr1

== db, i. e., the database is to be patched. The under-
lying DOM instance consists of one database (db), one Apache server (ap), and
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one load balancer (lb). All of them are in state Started.

4.1 Decomposing non-atomic CRs

Algorithm1 describes the decomposition of non-atomic CRs, e. g., cr1. A set
of applicable methods to decompose cr1 is determined (Line 2) as described in
Subsect. 2.3. Only one method m, the method previously provided in List. 2, is
applicable. It is chosen in Line 3. CRSm, the list of child CRs described by m,
is {cr2, cr8, cr9, cr10}. Note that each cr of these has the preceding sibling in its
HBcr set to formalize the sequential relationship among the children. See the
patch method in List. 2 and the tree in Fig. 3 for temporal constraints. For each
descendant the parent is set to cr1 in Line 5. Finally, cr1 is removed from the
queue Q and CRSm are added at the front, leading to Q = {cr2, cr8, cr9, cr10}.

4.2 Decomposing state-changing CRs

cr2 is extracted from Q and passed to Algorithm3. Line 2 determines a matching
eSTS for db, the target (ocr2

) of cr2. See Subsect. 2.2 for the matching process.
We assume that there always exists exactly one eSTS σ mapped to a domain
object o. The goal state (Installed) to be achieved in σ is extracted from the
parameters of cr2 and c is initialized with the current state of db (Started) in
Line 3. T ′ holds the path from c to g (Line 4). We assume that the path between
every state-pair is unambiguous. The path only consists of transition stop, thus
T ′ = {t} where t = (Started, Installed, stop, Dt pre, Dt post). Some helper vari-
ables are initialized in Line 5. After that, Lines 6–22 iterate over the transitions
in path T ′. pt pre evaluates to true over db in Line 7. pt pre is defined in Line 8 in
List. 1. The precondition for the dependency applies because t is taken within a
database. Thus, CRSt pre == {cr3} stays untouched. If pt pre did not apply, the
dependency tasks in CRSt pre are erased because they do not become children
(Line 9). The same is done regarding post-dependencies of t. There is no post-
dependency, thus pt post is false. Line 9 builds the children comprising transition
t. In our case children = [] ◦ [cr3] ◦ [cr7] ◦ [] = [cr3, cr7]. The HB sets of the
children need to be adapted. All pre-dependency CRs, i. e., the CRs in CRSt pre,
need to happen before crt (cr7) (Line 10). In our case HBcr7

= ∅∪{cr3} = {cr3}.
Line 11 adapts the HB relation in every post-dependency CR because crt hap-
pens before them. Nothing is done because CRSt post == ∅. The if statement
in Lines 12–20 checks whether t is at least the second transition taken in T ′. As
T ′ only consists of t the body is not executed. For two consecutive transitions
t1 ∈ T ′ and t2 ∈ T ′, the body of the if statement is executed to adapt the HB

sets of CRs in crt1 , CRSt1 post, CRSt2 pre, and crt2 to reflect that CRs of t2
need to happen after CRs of t1.
Four cases, depending on the values of CRSpost old, the post-dependencies of the
previous transition, and CRSt pre, the pre-dependencies of the current transition,
are distinguished using pattern matching in the switch statement in Lines 13–
19. (1) Both sets are empty. This means crt1 and crt2 directly follow each other.
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Fig. 3: Decomposition tree for patch CR

if cr == (ncr, ocr, paramscr, HBcr, parentcr, na) then1

Be M ′ = {(nm, pm, CRSm) ∈ M |pm is satisfied over ocr ∧ nm == ncr}2

Choose non-deterministically m ∈ M ′
3

foreach cr′ ∈ CRSm do4

parentcr′ = cr5

end6

Q = CRSm ◦ rest(Q)7

end8

Algorithm 1: Planning for non-atomic CRs

if cr == (ncr, ocr, paramscr, HBcr, parentcr, at) then1

Be O′ = {(no, po, eo) ∈ O|po is satisfied over ocr ∧ no == ncr}2

Choose non-deterministically o ∈ O′
3

if effects eo are succesfully applied to ocr then Q = rest(Q) else backtrack()4

end5

Algorithm 2: Planning for atomic CRs

if cr == (ncr, ocr, paramscr, HBcr, parentcr, sc) then1

Be σ = (pσ, Sσ, Tσ) ∈
∑

a eSTS such that pσ is satisfied over ocr2

Let g = paramscr[goal state]; Let c be the current state of ocr3

Let T ′ ⊆ Tσ be an ordered set of transitions leading from c to g in σ4

crt old = null; CRSpost old = null; children = []5

foreach t == (st, gt, crt, (pt pre, CRSt pre), (pt post, CRSt post)) ∈ T ′ do6

if pt pre evaluates to false over ocr then CRSt pre = ∅7

if pt post evaluates to false over ocr then CRSt post = ∅8

children = children ◦ CRSt pre ◦ [crt] ◦ CRSt post9

HBcrt
= HBcrt

∪ CRSt pre10

∀cr′ ∈ CRSt post : HBcr′ = HBcr′ ∪ [crt]11

if crt old 6= null ∧ CRSpost old 6= null then12

switch (CRSpost old, CRSt pre) do13

case (∅, ∅) : HBcrt
= HBcrt

∪ [crt old]14

case (∅, 6= ∅) : ∀cr′ ∈ CRSt pre : HBcr′ = HBcr′ ∪ [crt old]15

case ( 6= ∅, ∅) : HBcrt
= HBcrt

∪ CRSpost old16

case ( 6= ∅, 6= ∅) :17

∀cr′ ∈ CRSt pre : HBcr′ = HBcr′ ∪ CRSpost old18

end19

end20

crt old = crt; CRSpost old = CRSt post21

end22

∀cr′ ∈ children : parentcr′ = cr; Q = children ◦ rest(Q)23

end24

Algorithm 3: Planning for state-changing CRs
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Thus, crt old, storing the task linked to the previous transition, is added to HBcrt

(Line 14). (2) The previous transition did not have post-dependencies and there
are pre-dependencies for the current transition. In this case, the task linked to
the previous transition (crt old) needs to happen before each cr ∈ CRSt pre.
(3) CRSpost old 6= ∅ and CRSt pre == ∅, i. e., crt directly follows the CRs
in CRSpost old. Every CR in CRSpost old needs to happen before crt. Thus,
CRSpost old is added to HBcrt

in Line 16. (4) Both sets are non-empty. Ev-
ery post-dependency CR of the previous transition needs to happen before ev-
ery pre-dependency CR of the current transition (Line 18). Line 20 saves crt in
crt old and the post-dependencies of t in CRSpost old to refer to them in the
next iteration when setting dependencies. Finally, the parent of the children is
set to cr and they are added at the front of the queue in Line 23. Q now holds
{cr3, cr7, cr8, cr9, cr10}. Planning continues with cr3 and cr4 which are similarly
decomposed as cr2.

4.3 Planning for atomic CRs

cr5 is the first atomic CR to be planned for. Algorithm2 determines all applicable
operators for cr5 in Line 2. Applicability of operators is defined in Subsect. 2.3.
We assume that there exists an applicable operator for the stop CR. It’s effects
are applied to ocr5

, lb, in Line 4. For example, the operator could call a stop
method on lb. If the operator returns true, cr5 is removed from Q and planning
continues with cr6 and cr7 (see Fig. 3) applying the same operator to them. If the
execution of the operator failed, i. e., it returns false, backtracking is triggered.
Backtracking finds a previously planned CR, that has another decomposition
alternative and restarts planning from that CR onwards to generate a non-failing
decomposition. The next CR in Q to plan for is cr8, the atomic update CR. The
operator previously given in List. 3 can be applied because its precondition is
satisfied by db. The operator increases the version attribute of db. Planning
continues with cr9 the non-atomic CR to execute the tests. We do not further
elaborate on its decomposition because we already showed how non-atomic CRs
are decomposed based on cr1. cr10, a state-changing CR to start db, is next in
Q. As cr2 left db in state Installed, only transition start (t) needs to be taken.
There are no depedencies associated to t, thus cr10 is only decomposed into crt,
an atomic start task (cr11). Planning ends with the application of an operator
to cr11.

4.4 Handling conflicts among CRs

CRs are always planned for in sequential order. Two CRs happening in parallel
could target the same domain object leading to unsound plans if their effects
interfere and an execution engine does not execute them the order they were
planned for. An additional temporal constraint needs to be added to keep the
plan sound. Let HB′

cr be the set of all CRs planned and happening before cr.
parentcr denotes the parent of cr, descendantscr the set of all descendants of
cr, and HBcr the local happening before relation of cr. HB′

cr, the multiset of
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all CRs planned and happening before cr, is defined as follows:
HB′

cr = HBcr ∪
⋃

cr′∈HBcr
descendants(cr′) ∪ HB′

parentcr
∪

⋃
cr′∈HBcr

HB′
cr′ .

Less formally, HB′
cr consists of all CRs directly happening before cr (HBcr), all

descendants of these CRs (
⋃

cr′∈HBcr
descendants(cr′)), all CRs beeing planned

for and happening before the parent HB′
parentcr

, and of all CRs transitively
happening before cr (

⋃
cr′∈HBcr

HB′
cr′). Let Ωcr be the set of CRs already part

of the decomposition tree before planning for cr. Let anchestorscr be the set of
all anchestors of cr. Then HPcr, the set of all CRs previously planned for and
happening in parallel to cr, is defined as HPcr = Ωcr −{HB′

cr ∪ anchestorscr}.
Using HPcr rules can be defined to resolve conflicts between parallel CRs. Two
constraints need to be checked before planning for a CR cr:

– If there exists a cr′ ∈ HPcr with the same target, i. e., ocr == ocr′ , then cr

needs to happen after cr′, i. e., HBcr = HBcr ∪ [cr′]. This prevents parallel
execution of cr and cr′ by an execution engine. Our approach assume that
CRs targeting different domain objects can be executed in parallel.

– If cr is a state-changing CR and a state-changing CR cr′ ∈ anchestorscr ex-
ists, such that ocr′ == ocr, then planning needs to fail because an anchestor
CR of cr already tries to change the state of the same domain object.

5 The Prototype

This section introduces and evaluates the performance of the developed proto-
type. Our experiments were conducted using WinXP, an Intel Xeon with 3Ghz,
and 1GB of RAM. The planner ran in non-Gui mode to evaluate the performance
of the pure algorithm. We planned for the patch CR using our fully developed
KB of the TikiWiki domain. A small underlying DOM instance comprising one
database, three Apache servers, and one load balancer produces a plan (the
atomic leaf nodes of the decomposition tree) consisting of 64 atomic CRs. In
total, the planner had to plan for 153 CRs (30 na, 64 at, and 59 sc) to com-
pletely decompose the patch CR. The depth of the decomposition tree is 11.
Planning took 3.6 seconds and 1,900 domain objects were serialized. Serializa-
tion of domain objects is necessary to restore older instances of the DOM in case
the planner backtracks. With increased size of the DOM planning takes longer.
Planning for 10 Apache servers results in a decomposition tree with 419 CRs, a
plan comprising 176 atomic CRs, and 14,000 domain object serializations. Total
planning time is 14.3 seconds, whereas 6.7% are spent on serialization consuming
1.6 MB of main memory.
The serialization and deserialization mechanism does not turn out to be a signif-
icant bottleneck. For instance, serializing 100,000 large domain objects takes 5.5
seconds and consumes 38.5 MB of main memory. Deserialization on backtracking
is slightly slower because the target reference has to be rerouted to the restored
domain object for each CR of the decomposition tree. The prototype serializes
the DOM instance before planning for any CR. Instead, it is sufficient to serial-
ize the DOM instance only for atomic CRs because only these can change the
model. To restore the model for a non-atomic or state-changing CR the DOM
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instance associated to the latest planned atomic CR needs to be restored. In
case of the patch example with three Apache instances 48% less domain objects
are serialized. All in all, the prototype proves that the generation of large plans
is possible within reasonable time compared to the actual execution time of the
plan.

6 Related Work

This section discusses related work in IT change planning, policy refinement, and
AI planning. CHAMPS by Keller et al. [8] formalizes planning and scheduling as
an optimization problem achieving a high degree of parallelism. Planning is solely
based on dependencies. CHAMPS does not address the abstraction mismatch.
Compared to our approach, the algorithm does not reason about the effects of
actions. It is difficult to reason about interaction of actions not previously as-
certained in a dependency structure. CHAMPS includes scheduling and domain
descriptions are automatically derived, while we focus on planning and rely on
an IT practitioner to describe the domain. Different to CHAMPS, we focus on
state-related constraints. However, we successfully planned for non-state related
constraints using methods and suitable preconditions.
Cordeiro et al. [1] introduce the notion of templates to reuse knowledge in IT
change design. Plan templates can be described by methods in our approach.
Different to CHAMPS, their algorithm plans for task refinement based on de-
pendencies. Compared to our work, the lifecycle-behavior and state-constraints
of domain objects are not made explicit. Furthermore, refinement not based on
dependencies is difficult to describe. Similar to CHAMPS, effects of actions are
not taken into account.
Aware of this, an algorithm that takes the effects of actions into account is later
proposed in [2]. Compared to our solution refinement of tasks is solely based
on dependencies, no native support for state-constraints is given, and lifecycle-
behavior is not made explicit. In addition to that, interchangeable reasoning
about refinement not necessarily based on dependencies and lifecycle-behavior
is not readily possible. Thus, Cordeiro et al. do not address the abstraction mis-
match. The work focuses on refinement driven by constraints.
Goldsack et al. [5] argue in favor of a pure declarative, state-based approach to
manage large data centers. Workflows are considered harmful due to side effects,
concurrent changes, and their procedural instead of declarative nature. Similar
to CHAMPS reasoning by refinement is not supported. Different to Goldsack
et al. our solution supports refinement.
Also related to our work is the area of Policy Based Management [10], in partic-
ular policy refinement. It is generally concerned with the refinement of abstract
high-level Quality of Service (QoS) goals into lower-level policies to achieve the
higher-level policy. There are subtle differences between IT change planning and
policy refinement. Traditionally, plans generated in IT Change Management do
not describe alternatives and are very much driven by best practices. Different to
that, change plans in policy refinement are goal driven and tend to consist of on
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event do something policies that can be even stored for later evaluation. Thus,
plans to achieve a high-level policy tend to incorporate different alternatives or
might be adapted when events occur.
Recent work on policy refinement has taken the abstraction mismatch into ac-
count. Bandara et al. [12], [13] propose a Goal-oriented policy refinement tech-
nique based on the Event Calculus and abductive reasoning techniques. High-
level goals formalized in temporal logic are refined until System Goals are reached
using formal refinement patterns introduced by Darimont et al. [11]. System
Goals can be implemented by state changes (called a strategy). Bandara et al.
[12], [13] use abductive reasoning, while Rubino-royal et al. [14] propose to use
model checking to derive strategies. Compared to our work, reasoning is proven
to be sound but is limited to a small set of goal decomposition patterns [11]. We
do not use abductive reasoning [13] or model checking [14] to derive a strategy
but state exploration of the STS. In [12], [13], and [14] state changes to domain
objects do not trigger further refinement steps. Low-level goals always address
a state to be achieved. This is different to our approach, where operators do not
need to change the lifecycle-state of a domain object. Similar to their work, we
use transition systems to describe the behavior of domain objects.
Also related to our work is the area of AI planning, particularly HTN planning,
which is used in the Refinement level. It has been subject to intense research [4].
It does not natively support to reason about the lifecycle-behavior of domain
objects, justifying the research regarding the hybrid approach. To the best of
our knowledge HTN has not yet been applied to IT change planning.

7 Conclusion and Future Work

We have identified an abstraction mismatch between task refinement, reason-
ing about the lifecycle of domain objects, and state-constraints in the area of
IT change request planning. We have proposed a hybrid algorithm to natively
address these abstractions and to reason interchangeably about them. Our re-
sults are quite positive. Having previously written KBs for IT change planning
in SHOP2 [9], a pure HTN planner, we found it easier to write and to maintain
KBs for the hybrid approach due to the clear separation of concepts. Our proto-
type proves that the algorithm can generate larger plans within reasonable time
and that OO models can be used as KBs to be planned over with reasonable
overhead for model backup and restoration.
For future work we envision a hybrid algorithm using a declarative specification
of state constraints and task refinement to address the abstraction mismatch.
Additional value could be generated because thinking declaratively about state-
constraints is easier than the procedural like approach we explored in this paper.
Furthermore, it provides us with more freedom to specify state-changing CRs
affecting many domain objects. We envision a Groovy based language inspired
by first-order-logic to qualify and quantify domain objects of the Domain Entity
level that are affected by state constraints. In addition to that, we want to ex-
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amine scalability, replanning, optimization, and scheduling techniques regarding
the hybrid approach.
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