Function Materialization in Object Bases

Alfons Kemper

Christoph Kilger

Guido Moerkotte

Universitat Karlsruhe
Fakultat fir Informatik
D-7500 KNarlsruhe, F.R. G.

Netmail: [kemper|kilger|moer|@ira.uka.de

Abstract

We describe function materialization as an optimization
concept in object-oriented databases. Exploiting the
object-oriented paradigm—namely classification, object
identity, and encapsulation—~facilitates a rather easy in-
corporation of function materialization mto (existing)
object-oriented systems. Furthermore, the exploitation
of encapsulation (information hiding) and object iden-
tity provides for additional performance tuning measures
which drastically decrease the rematerialization over-
head incurred by updates in the object base. The pa-
per concludes with a quantitative analysis of function
materialization based on a sample performance bench-
mark obtained from our experimental object base system
GOM.

1 Introduction

Once the Iinitial “hype” associated with object-
oriented database systems settles the prospective
users—especially those from the engineering application
domains—will evaluate this new database technology es-
pecially on the basis of performance. Of course, the large
body of knowledge of optimization techniques that was
gathered over the last 15 years in, e.g., the relational
area provides a good starting point. But lastly, only
those optimization techniques that are specifically tai-
lored for the object-oriented model will yield—the much-
needed—drastic performance improvements.

In this paper we describe one (further) piece 1n the mo-
saic of performance enhancement techniques that we in-
corporated in our experimental object base system GOM
[12}: the materialization of functions, i.e., the precom-
putation of function results.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.
© 1991 ACM 0-89791-425-2/91/0005/0258...$1.50

Materialization—just like indexing—is based on the
assumption that the precomputed results are eventually
utilized in the evaluation of some associative data ac-
cess. Function materialization is a dual approach to our
previously discussed indexing structures, called dccess
Support Relation [10, 11], which constitute materializa-
tions of heavily traversed path expressions that relate
objects along attribute chains.

Similarly to indexing, function materialization induces
an overhead on update operations. The primary chal-
lenge in the design of function materialization is the re-
duction of the invalidation and rematerialization over-
head upon update operations. In this respect func-
tion materialization is related to relational view ma-
terialization {1, 3, 4]. Analogous work exists for the
POSTGRES data model to optimize the evaluation of
queries accessing (virtual) POSTQUEL attributes, e.y |
[6,7,8,13, 14, 15].

The above cited work is similar to ours with respect to
the general idea of precomputing (caching) results How-
ever, the exploitation of object-oriented features. espe-
cially the classification of objects into {ypes, object iden-
tity, and the principle of encapsulation facilitates a much
finer-grained control over the rematerialization require-
ments of precomputed results in our approach than is
possible in relational view materialization and extended
relational caching: First, we can cleanly separate those
object instances that are involved in the materialization
of a function result from non-involved objects. Thus.
the penalty incurred by the need to rematerialize a re-
sult can be restricted to the involved objects. Second.
within those objects that are involved in some matenal-
ization, we can decide in which function materialization
they have been involved and which attributes are rele-
vant for the respective function materialization. Third.
utilizing information hiding we can exploit operational
semantics in order to reduce the rematerialization over-
head even further. For example, in geometric modeling
the data type implementor could provide the knowledge
that scale is the only transformation that could possibly
invalidate a precomputed volume result while rotate and

258

translate leave the materialized volume invariant.

These tuning measures suggest that we can pro-
vide function materialization at a much lower update
penalty than relational view materialization can possi-
bly achieve—which is also indicated by our first quan-
titative analysis. This makes function materialization
even feasible for rather update-intensive applications.

Our approach is based on the modification and—
subsequent—recompilation of those type schemes whose
instances are involved in the materialization of a func-
tion result; thus leaving the remainder of the object sys-
tem nvariant. This makes it easy to incorporate our
concepts even into existing object base systems: Only
very few system modules liave to be modified while the
kernel system remains largely unchanged.

The remainder of this paper is organized as follows.
In the next section we briefly review our object model
GOM. Then, in Section 3 the static aspects of func-
tion materialization are presented. In Section 4 we deal
with the mechanisms to keep materialized results up to
date while the state of the object base is being mod-
ifiled. Reducing the update overhead is the subject of
Section 5. In Section 6 we provide a (first) quantita-
tive analysis of function materialization based on some
simple benchmarks derived from computer geometry ap-
plications. Section 7 concludes tliis paper.

2 GOM: Our Object-Oriented
Data Model

In essence, GOM provides all the compulsory features
identified in the “Manifesto”! [2] in one orthogonal syn-
tactical framework. GODM supports single nheritance
coupled with subtyping and substututability under strong
iyping: a subtype instance is always substitutable for
a supertype instance. All database components, e.g.,
attributes, variables, set- and list-elements, are con-
strained to a particular type or a subtype thereof. GOM
supports object identity in such a way that the OID of
an object is guaranteed to remain invariant throughout
its lifetime. Objects are referenced via their object iden-
tifier; referencing and dereferencing is implicit in GOM.
The following sample type definition introduces a new
tuple structured type Vertez:
type Vertex is
public X, setX, Y, set.Y, Z, set_Z,
translate, scale, rotate. dist
body [X, Y, Z: float;]
operations
declare translate: Vertex — void;

end type Vertex;

The public clause lists all the type-associated opera-

1 Albeit the design of GOM was carried out before the *Mani-
festo” was written.

type Cuboid supertype ANY is
public V1, set_V1, .., V8. set.V8, . . length,
width, height, volume, weight, rotate. scale. ...
body [V1,...,V8: Vertex; Mat: Material: Value: float:]
operations
declare length: — float;

declare width: — float:
declare height: — float:
declare volume: — float;

declare weight: — float:
declare translate: Vertex — void;
declare scale: Vertex — void;
declare rotate: char, float — void;
declare distance: Robot — float;
implementation

define length is

return self. V1.dist(self.V2);
define volume is

return selflength * self. width = self height;
define weight is

return self.volume * self. Mat.SpecWeight:
define translate(t) is

begin

self.V1.translate(t);

self.V8.translate(t);
end define translate;

end type Cuboid;
Figure 1: Skeleton of the Type Definition Cuboud

tions that constitute the interface of the newly defined
tvpe. GOM enforces information hiding by object en-
capsulation, i.e., only the operations that are explicitly
made public can be invoked on instances of the type.
However, for each attribute A two built-in operations
named A4 to read the attribute and sei_ to write the at-
tribute are implicitly provided.? It is the type designer’s
choice whether these operations are made public by 1n-
cluding them in the public-clause.

Figure 1 shows the definition of the type Cuboud which
serves as the running example throughout the remain-
der of this paper. In this definition, we have intention-
ally made all parts of the structure of a Cuboid visible
(public), e.g., all boundary Vertez objects VI, ... VS
are accessible and directly modifiable. This 1s needed to
demonstrate our function materialization approach in its
full generality. In Section 5 we will refine the definition of
Cubord by hiding many of the structural details of the
Cuboid representation—and, thus, drastically decrease
the invalidation penalty of many update operations.

Note that the definition of Cuboid makes use of two
auxiliary types Material and Robot that are not outlined
here. A sample database is shown in Figure 2. The
object identifiers are denoted by idy, ida, etc.

2 Actually, in GOM a more elegant mechanism to realize value
returning and value receiving operations is provided (see {12]).

259

1d77 Material

Name: “Iron”
SpecWeight: 7.86

1dy Cuboid s Cuboid
Mat: i(l'n NI&L’ l,d77
Value: 39.99 Value: 19.95
Vl: Ldll V?: l,dm Vi: ldgl V?,: ldn
V3: wdia V4: idyy V3:wdoa Vd4: idoy
V5: 1dis V6 idis V5: 1dys V61 wdas
V7:dyr V8: idis V7:der V8: idoas
1d11 Vertex 1dyg Vertex 1day Vertex 1dag Vertex
X: 0.0 X: 0.0 X: 0.0 X: 0.0
Y- 0.0 Y: 6.694 Y: 0.0 Y: 5.848
Z:0.0 Z:6.694 Z.0.0 Z:5.848

Figure 2: Database Extension of Example Schema

3 Static Aspects of Function

Materialization

Consider the above definition of the type Cuboid with
the associated functions volume and weight. Assume
that the following query, which is phrased in the QUEL-
like query language GOMdl, is to be evaluated:

range ¢: Cuboid
retrieve c
where c.volume > 20.0 and c.weight > 100.0

To evaluate this query each Cuboid instance has to be
visited and the selection predicate has to be evaluated by
invoking the functions volume and weight. To expedite
the evaluation of this query the results of volume and
wetght can be precomputed: we call this the material-
1zation of the functions volume and wewght. In GOMd],
the materialization of the functions volume and weight
1s mitiated by the following statement:

range c: Cuboid
materialize c.volume, c.weight

The evaluation of queries which reference the wvolume
and/or the weight of Cuboid-instances can exploit the
precomputed results instead of invoking the functions
volume or weight, respectively.

There are two obvious locations where materialized re-
sults could possibly be stored: in or near the argument
objects of the materialized function or in a separate data
structure. Storing the results near the argument objects
means that the argument and the function result are
stored within the same page such that the access from
the argument to the appropriate result requires no ad-
ditional page access. In general, storing results near the
argument objects has several disadvantages:

First, if the materialized function f:¢;,....tn — ¢
has more than one argument one of the argument types
must be designated to hold the materialized result. But
this argument has to maintain the results of all argument
combinations—which, in general, won’t fit on one page.

Second, clustering of (precomputed) function results
would be beneficial to support selective queries on the
results. But this is not possible if the location of the
materialized results is determined by the location of the
argument objects.

Therefore we chose to store materialized results in a
separate data structure disassociated from the argument
objects. This decision is also backed by a quantitative
analysis undertaken in the extended relational system
POSTGRES by A. Jhingran [8] where separate caching of
precomputed POSTQUEL attributes proved to be almost
always superior to caching within the tuples.

If several functions are materialized which share all
argument types the results of these functions may be
stored in the same data structure. This provides for
more efficiency when evaluating queries accessing results
of several functions and avoids to store arguments redun-
dantly.

These thoughts lead us to the following definition:

Definition 3.1 (Generalized Materializat. Relat.)

Let ty, ..., tn,th, ...\t be types and fi,.... fin sude-
effect free functions with fy - by, 0ty — t) for
1 < j < m. The generalized materiahzalion rela-
twon {{f1,. .. fm) for the functions fi,.... fn s of arily
n+ 2xm and has the followng form:

[Olitly - ~a071:tnyf1:t/1v V1: [)001, - ":fm~tl

L m»

The attributes Oy, ..., O, store the arguments. i.e , val-
ues if the argument type is atomic or references to ob-
jects if the argument type is complex; the attributes
fi,..., fm store the results or, if the result type is comn-
plex, references to the result objects. The attributes
Vi, ..., Vi (standing for validity) indicate whether the
stored results are currently valid. In this paper we re-
strict our discussion to functions having complex argu-
ment types and atomic result types. However, our con-
cepts scale up to arbitrary functions as detailed in [9].
For each tuple 7 of a GMR extension {{f1,. ., fm))
over types tq,...,t, the following condition must hold:

Mo, 0. {fi,. . fml) =ezt(ty) x ... x ext{ty) A
.V =true = 1.f; = f;(1.01,...,7.0,)

Vi bool] O

Thus, upon an update to a database object that invali-
dates a materialized function result we have two choices.
Immediate rematerialization: The invalidated function
result is immediately recomputed as soon as the invali-
dation occurs.

Lazy remaierialization: The invalidated function result
is only marked as being invalid by setting the corre-
sponding V, attribute to false. The rematerialization of

260

invalidated results is carried out as soon as the load of
the object base management system falls below a prede-
termined threshold or—at the latest—at the next time
the function result is needed.

Example: Consider the database extension in Fig-
ure 2. The extension of the GMR ((volume, weight)) with
all results valid is depicted below.

l {volume, weight)) I

Oy:Cuboid | volume:float | Vy:bool | weight:float | Va:bool
1dy 300.0 true 2358.0 true
1dy 200.0 true 1572.0 true
1d3 100.0 true 1900.0 true

&

4 Dynamic Aspects of Function
Materialization

In this section we will investigate the algorithms that
are needed to keep GMRs in a consistent state while the
object base is being modified.

The modification of an object is reported to the GMR
manager. Then, the GMR manager invalidates or re-
materializes all results affected by the update. There-
fore, the GMR manager maintains the Reverse Refer-
ence Relation (RRR), which contains tuples of the form
[0, f, {01,...,0,)]. Herein, o is a reference to an ob-
Ject utilized during the materialization of the result
f(o1,...,0n). Note that o needs not to be one of the
arguments o1, ...,0n; 1t could be some object related
(via attributes) to one of the arguments. Thus, each tu-
ple of the RRR constitutes a reference from an object
o influencing a materialized result to the tuple of the
appropriate GMR in which the result is stored. We call
this a reverse reference as there exists a reference chain
in the opposite direction in the object base.

Definition 4.1 (Reverse Reference Relation)
The Reverse Reference Relation RRR 1s a set of tuples
of the form [O:OID, F: Functionld, A: (OID)].

For each tuple r € RRR the follounng condition holds:
The object (with the identifier) r.O has been accessed
during the materialization of the function r.F with the
argument list r.A. 0

The entries are inserted into the RRR during the ma-
terialization process. Therefore, each materialized func-
tion f and all functions invoked by f are modified—the
modified versions are extended by statements that in-
form the GMR manager about the set of accessed ob-
jects. During a (re-)materialization of some result the
modified versions of these functions are invoked.

| RRR]
(0] F A
idy | volume (ad1)
idy | weight | (idy)
wdy | distance | (1dy, 1ds) {
wdy | distance | (1dy,1ds)

{(volume. weight))

O; |volume| Vi |weight| 15
: : : wdy | 300.0 {true|2358.0 | true
uds | distance | (udy, 1ds) wdy | 200.0 jtrue|1372.0{true
ids | distance | (1dz, 1ds)

1d11 | volume (idy) [

{(distance)) |
wd11 | werght (id1) - -
idu, | distance | (uds, idy) | o) D2 distance] Vi

’. 1dy {1dy 10.2 | true
. X . 1dy [1ds 213.0 | true
1dr7 | weight (1dy) 1da |1dy 85.2 | true
tdr7 | wewght (id2) 1ds | 1ds 5.0 true

Figure 3: The Data Structures of the GMR Manager

Example: Consider the GMRs {(volume, weght)) and
{(distance)) (this example is based on Figure 2). The
extensions of the RRR and the two GMRs are shown in
Figure 3. Note that two Robots with the identifiers id,
and ids are assumed to exist in the object base. o

Based on the RRR we can now outline the algorithms
for invalidating or rematerializing a stored function re-
sult, i.e., the computations that have to be performed by
the GMR manager when an object o has been updated
The GMR manager is notified about an update by the
statement GMR_Manager.invalidate(o).

The algorithms below reflect the two possibilities of
lazy rematerialization and tmmediate rematerialization:

lazy(o) = foreach triple [o, fi,{01,...,0n)] in RRR do
(1) set Vi := false of the appropriate tuple
in «flv' "~fly"'7f1n>>

(2) remove [o, fi,{01,...,0,)] from RRR

Step 2 of the algorithm—i.e., the removal of the RRR
entry—ensures that for the same, repeatedly performed
object update the invalidation is done only once. Subse-
quent invalidations due to updates of o will be blocked
at the beginning of lazy(o) by not finding the RRR entry
which was removed upon the first invalidation—thus the
unnecessary penalty of accessing the tuple in the GMR
to re-invalidate an already invalidated result is avoided.
Upon the next rematerialization of f(o1,...,0,) all rel-
evant RRR entries are (re-)inserted into the RRR—
analogously to the immediate rematerialization algo-
rithm shown below.

Under the immediate rematerialization strategy we
have to recompute the affected function results.

immediate(o) =

261

foreach triple [o, fi, (01,...,0n)] in RRR do
(1) remove [0, f., (01,...,0x}] from RRR
(2) recompute fi(o1,...,0.) and
* remember all accessed objects {01, ..., 05}
+ replace the old value of fi(o1,...,0n)

in{fi,..s froeo o fm))
(3) foreach v in {of,...,0p} do
+ insert the triple [v, fi, {01,...,0n)]
into RRR (if not present)

‘We will explain step 1 of this algorithm last. In step 2 we
recompute the function result f;(o1, ..., 0n) and remem-
ber all objects visited in this process in order to insert
them into the RRR in step 3. However, it cannot be
guaranteed that the RRR does not contain any obsolete
entries which constitute “leftovers” from the previous
materialization(s) of f;(01, ..., 0,)—this happens when-
ever two subsequent materializations of f,(01,...,0n)
visit different sets of objects. Let [w, fi,{01,...,0n)]
be such a “leftover” entry meaning that in an earlier
materialization of f;(o1,...,0n) the object w was vis-
ited; but the current materialized result of f;(o1,...,0n)
is not dependent on the state of w. Then the next
(seemingly relevant) update on w will remove the triple
[w, fi, {01, .,0n)] from the RRR by step 1 of the above
outlined algorithm while steps 2 and 3 do not inject any
new information that is not already present in the GMR
and the RRR. With respect to removing left-over en-
tries our RRR maintenance algorithm can be termed
lazy because left-over entries are removed only when the
corresponding object is updated.

The easiest way to realize the notification of the GMR
manager about updates is to modify all update opera-
tions such that every invocation of an update opera-
tion triggers the invocation of GMR_-Manager.invalidate.
Figure 4 in Section 5 shows the modification of the up-
date operation set_X. Another possible approach, the
adaptation of the object manager, is discussed in [9].

5 Strategies to Reduce the In-
validation Overhead

The invalidation mechanism described so far is (stiil)
rather unsophisticated and, therefore, induces unneces-
sarily high update penalties upon object modifications.
In the following we will describe three dual techniques
to reduce the update penalty—consisting of invalidation
and rematerialization—by better exploiting the poten-
tial of the object-oriented paradigm. The techniques de-
scribed in this section are based on the following ideas:
Isolation of relevant object properties: Materialized re-
sults typically depend on only a small fraction of the
state of the objects visited in the course of material-
ization. For example, the materialized volume certainly
does not depend on the Value and Mat attributes of a
Cuboud.

Reduction of RRR lookups: The unsophisticated ver-
sion of the invalidation process has to check the RRR
each time any object o is being updated. This leads to
many unnecessary table lookups which can be avoided by
maintaining more information within the objects being
involved in some materialization—and thus restricting
the lookup penalty to only these objects.

Ezploitation of strict encapsulation: By strictly encap-
sulating the representation of objects used by a mate-
rialized function the number of update operations that
need to be modified can be reduced significantly. Since
internal subobjects of a strictly encapsulated object can-
not be updated separately-—without invoking an outer-
level operation of the strictly encapsulated object—uwe
can drastically reduce the number of invalidations by
triggering the invalidation only by the outer-level oper-
ation.

Due to space limitations we will restrict the discussion
here to materialized functions that access only tuple-
structured types. However, the concepts can easily be
extended to set- and list-structured types (see [9]).

5.1 Isolation of Relevant Object Proper-
ties

Suppose that volume and weight have been materialized.
Then these two materialized functions surely don’t de-
pend on the attribute Value Nevertheless, under the
unsophisticated invalidation strategy the operation in-
vocation

1dy.setValue(123.50);
does lead to the 1nvalidation of id;.volume and
idy.weight, both of which are unnecessary. Likewise, the
operation invocation

1dy.set_Mat(Copper);
leads to the necessary invalidation of id, . weght, but also
to the unnecessary invalidation of id;.volume. In order
to avoid such unnecessary invalidations the system has
to separate the relevant properties of the objects visited
during a particular materialization from the irrelevant
ones. Then invalidations should only be initiated if a
relevant property of an object is modified.

1! Copper being of type Material

Definition 5.1 (Relevant Attributes)
Let f :t1,...,tn — tnyy be a materialized function.
Then the set RelAttr(f) is defined as:

RelAttr(f) = {t.A | there ezt 01, On Of 1Ype
t1, ..., tn and o of tuple type t
such that 0.4 1s accessed to
maleriahize f(oy,....04)})

The relevant properties of a materialized function f are
automatically extracted from the implementation of the
function f—of course, also inspecting all functions in-
voked by f. The mechanism for extracting the set Re-
[Attr from the implementation of a function is given in

262

(9]. A materialized function result f(oy, ..., 0n) can only
be invalidated by an invocation o.set-A(...) on some ob-
ject o of type t and t.A € RelAttr(f).> The following is
the key definition for avoiding unnecessary GMR inval-
idations:

Definition 5.2 (Schema Dependent Functions)
Let t be a tuple type and let A be any atiribute of t. We
define the set of (materialized) functions which depend
on the update operation t.set A as

SchemaDepFct(t.set_A) = {f|f is a materal. function
and t.A € RelAtir(f)} 0

Now, the invalidation overhead can be reduced by (1)
modifying only those update operations ¢.set_4 that are
relevant to some materialized function, i.e., only those
operations ¢.set.4 where SchemaDepFct(t.set_.A) # {},
and (2) informing the GMR manager not only about the
updated object, but also about the set of materialized
functions potentially affected by the update. Thus, the
modification o.set_A(...) of an object o of type ¢ triggers
the invocation of the GMR manager as follows:

GMR.Manager.invalidate(o, SchemaDepFct(t.set-A));

SchemaDepFct(t.set_4) is inserted as a set-valued con-
stant into the body of the modified update operation
t.set_A—thus, the expression SchemaDepFct(t.sei_A)
needs not be evaluated each time o.set-A(...) is invoked.
However, the materialization of a further function for
which .4 is relevant requires a recompilation of ¢.set. A
with a modified set-valued constant.

Example: The relevant properties for the function
volume are given below:

RelAttr(volume) = {Cubord. V1,Cubord. V2,Cubord. V4,
Cuboid. V5, Vertex. X, Vertez. Y, Vertez. Z}

From this it follows that the stored results of the function
volume can only be invalidated by the update operations
set V1, sel_ V2, set.V4 and set_V5 associated with type
Cubord, and by the set_ X, set.Y and set.Z operations
of type Vertez. O

5.2 Marking “Used” Objects to Reduce
RRR Lookup

The improvement of the invalidation process developed
in the preceding subsection ensures that no more un-
necessary invalidations occur.* However, one problem
still remains: the GMR manager is invoked more often

30f course, also create and delete operations on the argument
types affect materialized resulits and, therefore, have to be modified
(see [9)).

4 Actually, under the unlikely condition that the same object
type is utilized in the same materialization in different contexts
there may still be an unnecessary invalidation.

than necessary to check within the RRR whether an in-
validation has to take place. Suppose object o of type
t is updated by operation o.set_A(...) and all functions
which have used o for materialization are not contained
in SchemaDepFct(t.set.4). In this case there cannot be
a materialized value that must be invalidated due to the
update o.set-A. Consider, for example, the update

idizy.set X(2.5); !! Vertex tdi;1 not being a boundary

Vertez of any Cuboid

of the Vertezr instance idy;, that is not referenced by
any Cuboid. Since the functions volume and weight
are contained in the set SchemaDepFct(Vertex.set)
the GMR manager is being invoked—only to find out
by a RRR-lookup that no invalidation has to be per-
formed. This imposes a (terrible) penalty upon geomet-
ric transformations of “innocent” objects, e.g., Cyln-
ders and Pyramads, if the volume of Cuboid has been
materialized—due to the fact that all three types are
clients of the same type Vertez.

Our goal is to invoke GMR.Manager.invalidate only
when an invalidation has to take place. Therefore.
we append to each object o the set-valued attribute
ObjDepFct that contains the identifiers of all materi-
alized functions that have used o during their materi-
alization. Now, the set of functions whose results are
invalidated by the update 0.set_A can be determined ex-
actly by 0.0bjDepFet N SchemaDepFci(t.set-A). The
set-valued attributes ObjDepFct are maintained in the
same way as the entries of the RRR: if an entry
lo, fi, (01, ...,0p)] is inserted into (removed from) the
RRR, fi is inserted into (removed from) o.0bjDepFct.

Note that conceptually it would be possible to mi-
grate all RRR information into the individual objects—-
avoiding the RRR and all RRR lookups altogether. But
since a single object is usually involved in numerous ma-
terializations of different functions and different argu-
ment combinations, this requires too much storage space
within the objects and, thus, destroys any kind of object
clustering.

Example: Recall the database extension shown in
Figure 2. Suppose that the two GMRs ((volume, weight))
and {(distance)) were introduced.

Consider the invocation id;;.set.X(3.0) which modi-
fies the X coordinate of Vertex idy;. Figure 4 shows
the modification of the update operation Verter.set_\.
The set of materialized functions that is dependent upon
the update id;;.set.X(3.0) is then given by the inter-
section of the sets SchemaDepFct{ Vertex sei_\') and
idll. Ob]Decht

SchemaDep Fet(Verter.set_X) = {volume,weight,distance}

idai. ObjDep Fct

= {volume. weight}

In this case, the intersection coincides with the set
ids,.ObjDepFct. However, in general this is not the case.
&

263

WLLITLIIA LVAQLLAE LA

Wi jeey 1Vl illli‘lgef

declare set_X: Vertex || loat — void
code set.X;

define set X(x) is
self. X := x;

declare set X: Vertex || float — void
code set X';

1

i

|

i define set X'(x) is

| begin

¢ oself.X = X;

i RelevFct := self. ObjDepFect

X N SchemaDepFct(Vertex.set.X)
, if RelevFct £ {}then

. GMR Manager.invalidate(self,RelevFct);
i end define set. X',

’

1dy Cuboid
ObjDepFct: { volume,
weight }
Mat: 1dgg Value: 39.99
V1:dn V2: idis
V7: idl‘; V8 2d13
1dyy Vertez
ObjDepFct: { volume,
weight }
X: 0.0
Y: 0.0
Z: 0.0

Figure 4: Interaction between Schema and Object Manager

5.3 Information Hiding

Despite the improvements of the invalidation mechanism
outlined in the previous two subsections three problems
that can be avolded by exploiting information hiding
remain.

First, the improvements incorporated so far do not
totally prevent the penalization of operations on ob-
jects not involved in any materialization. For example,
update operations defined on other geometric objects,
e.g., Pyramads, are penalized by the materialization of
Cuboid.volume, if the type Vertex is utilized in the def-
inition of both types. This is a consequence of modify-
ing the update operations of the lower-level types, e.g.,
Vertez.set_X which 1s then invcked on every update of
attribute .X of type Vertez.

Second, a single update operation consisting of a se-
quence of lower-level operations may trigger many sub-
sequent rematerializations of the same precomputed re-
sult. For example, one single invocation of idy.scale(. .)
triggers 12 (!) rematerializations of id;.volume initiated
by the set_X, set_Y and set_Z operations of type Vertex.
Obviously, one invalidation should be enough.

Third, our algorithms detailed so far cannot detect the
irrelevance of an update operation sequentially invok-
ing lower-level operations which neutralize each other
with respect to a precomputed result. For example,
the invocation of id;.rotate performs 12 invalidations of
idy.volume despite the fact that no invalidation is re-
quired since the volume stays invariant under rotation.

We can exploit information hiding to avoid the un-
necessary overhead incurred by the three above men-
tioned problems. Analogous to information hiding in
traditional software design we call an object sirictly en-
capsulated if the direct access to the representation of

this object—including all its subobjects—is prohibited:
manipulations may only be possible by invoking public
operations defined on the type of that object. These op-
erations constitute the object wmierfece. In GOM strict
encapsulation is realized (1) by disclosing all access op-
erations for attributes from the public clause, (2) by
creating all subobjects of an encapsulated complex ob-
ject during the initialization of that object, and (3) by
enforcing that no public operation returns references to
subobjects. Thus, no undesired access to subobjects via.
e.g., object sharing is possible.

By enforcing strict encapsulation only updating inter-
face operations have to be modified to perform invalida-
tions. Further, the number of invalidations due to the in-
vocation of an update operation is reduced to one. Last
not least, update operations leaving the result of a ma-
terialized function invariant need not be modified. Thus
by specifying and exploiting a set of Invalidated Func-
tions for each invalidating public operation the above
mentioned problems can easily be eliminated.

Definition 5.3 (Invalidated Functions)

Let t be a strictly encapsulated type and u be a public
operation associated with that type. We define the set of
imvalidated (materialized) functions of t u as

InvalidatedFet(t.u) = {f] f is a materialized function
and t.u affects results of f}

We assume that the set [nvalidatedFct(t.u) for each
operation t.u is determined by the database pro-
grammer. Then all update operations u for which
InvalidatedFet(t.u) # {}, are extended by statements
to inform the GMR manager—analogously to the mod-
ification of elementary update operations.

264

As outlined in Section 4 the materialized function f
and all functions invoked by f are modified to mark all
used objects. If for the materialization of a function f
a strictly encapsulated object is used, only this object,
but none of its subobjects, have to be marked. Public
functions of strictly encapsulated types are regarded to
be atomic—thus, functions invoked by public functions
may remain unchanged.

Example: Consider the type definition of Cuboid as
presented in Figure 1. Now assume that the public
clause reads as follows:

persistent type Cuboid supertype ANY is
public rotate, scale, translate, volume, weight

end type Cuboid;

From this type definition it can be deduced—by a close
observation of the operational semantics—that the only
operation that affects a materialized volume is the op-
eration scale. All other operations do not invalidate the
precomputed volume. With respect to the materializa-
tion of volume, scale has to be modified as follows:

declare scale: Cuboid || Vertex — void code scale’;

define scale’ (v) is

begin
I Statements to scale the cuboid !!
RelevFct := self.ObjDepFct N

InvalidatedFct(Cuboid.scale);
if RelevFct # {} then
GMR_-Manager.invalidate(self, RelevFct);
end define scale; &

6 Benchmark Results

This section sketches the results of a first quantita-
tive analysis of function materialization. The bench-
marks were run on our experimental object base system
GOM that is built on top of the EXODUS storage man-
ager [5]. The analysis is based on the Cuboid example
(see Section 2). All subsequent results were measured
on a database containing 8000 Cuboid instances, each
Cubord referencing 8 Vertez instances and one Material
instance. The database was stored on a disk with 25
ms average transfer time directly connected to a DEC
Station 3100 with 16 MByte main memory running un-
der the Ultrix operating system. The reported times
correspond to the user times, i.e., the actual times a
user has to wait to obtain the result. The benchmark
was run in single user mode, thus eliminating interac-
tion by concurrent users. Since the described database
is rather small we decided to use a correspondingly small
database buffer of 600 kBytes to compensate for the
small database volume.

6.1 Application Profile

The operation mix is described as a quadruple M =
(Qmix,Um,r,Pup,#ops)‘ Here, the query mix Qp.z 1>
the set of (two) weighted queries of the form Qn,, =
{(w1, Qbw), (w2, Qw)} where wy + wa = 1. The
two queries—Quy (backward query) and Qy, (forward
query)—are outlined as follows, where r and random are
randomly chosen and = is a small constant:
Qow = Qrw =

range c: Cuboid range c¢: Cuboid

retrieve ¢ retrieve c.volume

where c.volume = r =¢ where c.CuboidID?= random®

The update mix Up,, = {(w}, D), (w5, I),(wh,S).
{wh, R), (w§, T)} consists of weighted update operations.
The letters represent the following updates: D denotes
the deletion of a randomly chosen Cuboid.® I denotes
the creation of a new Cuboid of randomly chosen di-
mensions, and S, R and T represent scalation, rotation
and translation of a randomly chosen Cuboud, respec-
tively. Again the sum of all weights has to be 1, i.e..
Z?zl w, = 1. The weights indicate the probability that
one particular update (query) is chosen from the set of
possible updates (queries). For example. if a query 1s to
be performed it will be Qp,, with probability w,

The update probability P,, determines the ratio be-
tween updates and quertes in the benchmarked appli-
cation. For example, a value P,, = 0.1 determines
that—on the average—out of 100 operations we will en-
counter 10 updates which are randomly chosen from the
set Upmyz—according to the weights wi, .., wi—and 90
querles which are randomly chosen from the set Q,,,, -
according to the weights wy and w,.

The variable #ops denotes the total number of oper-
ations performed in the described benchmark.

6.2 Results

The first benchmark determines the performance of
function materialization for an application profile un-
der varying update probabilities. The update probabil-
ity was varied from 0 to 1 with increments of 0.05. For
each update probability 40 operations were executed on
the object base. The application profile and the perfor-
mance measurements are graphically visualized in Fig-
ure 5. The update probability is plotted against the «-
axis and the time to perform the 40 operations is plotted
against the logarithmcally scaled y-axis. Ve measured
three different program versions:

WithoutGMR: the “normal” program without any func-
tion materialization.

WithGMR: the GMR {(volume})) is maintained under m-
mediate rematertalization and utilized to evaluate the

5 CuboidID is an additional user-supplied attribute to uniquely
select a particular Cubo:d.
8Finding the qualifying Cubord was supported by an index.

265

queries.

InfoHiding: in this version the GMR {(volume)) 1s main-
tained under information hiding to reduce the invalida-
tion and rematerialization overhead.

1000

[sec]

Lt asud

100

WithoutGMR <—
WithGMR —+—

NI W8 PRI |
23t

[njl'oHiding -?—

0.1 : !
0 0.2 0.4 0.6 0.8 1
Update Probability
#Op Qg Uiz PUP
Qpy =0.5 I=05
40 wa::O.S 5=05 0.0...1.0

Figure 5: Varying Update Probabilies

From the plot in Figure 5 we can deduce that up to an
update probability of about 0.9 the GMR-version out-
performs the non-supported version. Exploiting infor-
mation hiding in the GMR maintenance moves the break
even point to about Py, = 0.95.

From this first benchmark we can conclude that mate-
rialization achieves a tremendous performance gain for
backward queries. In the next benchmark we want to in-
vestigate the costs of forward queries for which the gain
due to materialization is less dramatic but—as it turns
out—still significant. In this benchmark we steadily in-
crease the number of forward queries, the only operation
performed in this benchmark. The results are shown in
Figure 6. We observe that the exploitation of the GMR
{(volume)) constitutes a performance gain of about a fac-
tor 4 to 5. The reader should notice, however, that in
this benchmark only queries and no updates were per-
formed.

The subsequent benchmark was designed to investi-
gate the overhead of invalidation and rematerialization
incurred by function materialization. For this purpose
we used an application profile that consists of only ro-
tate operations, the number of which is steadily in-
creased. The results are visualized in Figure 7. Aside
from the three previously introduced program versions
WithGMR, WithoutGMR and InfoHiding, we incorpo-
rated into this benchmark a fourth system configura-
tion, called Lazy. In this configuration we maintained
the GMR (volume)) under lazy remateralization. Un-
der Lazy all materialized volume results had been inval-

100 ¢ T T T T T T 7 =
fec] | oo 5
L o 1
10 2
N WithoutGMR <— 1
- WithGMR — 1
1 ! 1 { 1 1 ! 1 1
200 400 600 800 1000 1200 1400 1600 1800 2000
Number of Forward Queries
#0p szr Umu: P“P
200...2000 | Q=10 | — 0.0

Figure 6: Cost of Forward Queries

idated before the benchmark was started—this causes
the RRR and the sets ObjDepFct to be emtpy with re-
spect to {(volume)). Nevertheless, this configuration still
imposes a penalty on performing a geometric transfor-
mation due to the checks that have to be made within
objects of type Vertez——to determine that the set Oby-
DepFct is empty. From Figure 7 we conclude that this
penalty is, however, rather low since the curves Withoul-
GMR and Lazy run very close. This means that switch-
ing from :mmediate rematerialization to lazy remateri-
alization drastically decreases the update penalty. This
malkes our materialization concept even viable for appli-
cation domains where occasional “bursts of updates” are
followed by prolonged periods of a rather static behavior.
e.g., the life cycle of an engineering artifact.

The InfoHiding version induces an overhead that 1s
similar to Lazy—remember that we only perform rotate
operations which, under information hiding, do not re-
quire an invalidation. However, if the benchmark con-
sisted of scale operations the InfoHiding configuration
would have much higher overhead than the Lazy ver-
sion. We remember that the “normal” WithGMR ver-
sion cannot detect that rotfate is irrelevant for material-
ized volume results. Therefore, a substantial penalty is
incurred due to the invalidation and rematerialization
The penalty constitutes almost a factor 10 as compared
to the unsupported version.

7 Conclusion

In this paper we developed an architecture and effi-
cient algorithms for the maintenance of materialized
functions in object-oriented databases. Qur architec-
ture provides for easy incorporation of function mate-
rialization into existing object base systems because 1t

266

10000
[sec]

T 1 1} I 3
WithoutGMR <~]
WithGMR + 1
A2y ——— 1

InfoHiding -x-

YT

1000

T
M sl

100

LR R

L aaaaaul

10) L 1 |
0 500 1000 1500 2000
Number of Rotations

#0p
250 ... 2500

Pup
1.0

U7TL1I

R=10

Qmaz

Figure 7: Invalidation Overhead

is largely based on rewriting the schema. We placed
particular emphasis on reducing the invalidation and
rematerialization overhead. By exploiting the object-
oriented paradigm—namely object typing, object iden-
tity, and encapsulation—we were able to achieve fine-
grained control over the invalidation requirements and,
thus, to lower the invalidation and rematerialization
penalty incurred by update operations. In addition,
one can tune the system by switching between immed:-
ate and lazy rematerialization. The latter strategy can
be used to decrease the penalty during update-intensive
phases even further. On an experimental basis we incor-
porated function materialization—currently limited to
single function GMRs—in our object base management
system GOM. The first quantitative analyses gathered
from two benchmark sets, one from the computer geom-
etry domain (reported on in this paper) and one from a
more traditional administrative application (see [9]) are
very promising. Especially when functions are utilized in
search predicates—our so-called backward queries—the
materialization constitutes a tremendous performance
gain, even for rather high update probabilities.

Currently, we are extending our rule-based query opti-
mizer [10] to generate query evaluation plans that utilize
madterialized values instead of recomputing them.

Acknowledgements

Peter C. Lockemann’s continuous support of our re-
search is gratefully acknowledged. Andreas Horder car-
ried out the computer geometry benchmark; Michael
Steinbrunn participated in the design and prototypical
realization of the concepts.

References

(1]

2500

(7]

(8]

(13]

(14]

(15]

267

M. E. Adiba and B. G. Lindsay. Database snapshots.
In Proc. of The Conf. on Very Large Data Bases. pages
86-91, Montreal, Canada, Aug 80.

M. Atkinson, F. Bancilhon, D. J. DeWitt, K. R. Dit-
trich, D. Maier, and S. Zdonik. The object-oriented
database system manifesto. In Proc. of the DOOD
Conf., pages 40-57, Kyoto, Japan, Dec 1989.

J. Blakeley, N. Coburn, and P. Larson. Updating de-
rived relations: Detecting irrelevant and autonomously
computable updates. ACM TODS, 14(3):369-400, Sep
89.

J. Blakeley, P. Larson, and F. Tompa. Efficiently updat-
ing materialized views. In Proc. of the ACM SIGMOD
Conf., pages 61-71, Washington, D.C., 1986.

M. Carey et al. Objects and file management in the
EXODUS extensible database system. In Proc. of The
Conf. on Very Large Data Bases, Kyoto, Japan, Aug 86.

E. Hanson. A performance analysis of view materializa-
tion strategies. In Proc. of the ACM SIGMOD Conf..
pages 440-453, San Francisco, CA, May 87.

E. Hanson. Processing queries against database proce-
dures. In Proc. of the ACM SIGMOD Conf., Chicago.
May 88.

A. Jhingran. A performance study of query optimization
algorithms on a database system supporting procedures.
In Proc. of The Conf. on Very Large Duta Bases, pages
88-99, L.A., CA, Sep 1988.

A. Kemper, C. Kilger, and G. Moerkotte.
ization of functions in object bases. Technical Report
28/90, Fakultat fiir Informatik, Universitat Karlsruhe.
D-7500 Karlsruhe, Nov. 1990.

A. Kemper and G. Moerkotte. Advanced query pro-
cessing in object bases using access support relations.
In Proc. of The Conf. on Very Large Data Bases, pages
290-301, Brisbane, Australia, Aug 1990.

Material-

A. Kemper and G. Moerkotte. Access support in object
bases. In Proc. of the ACM SIGMOD Conf., pages 364-
374, Atlantic City, NJ, May 90.

A. Kemper, G. Moerkotte, H.-D. Walter, and A. Zach-
mann. GOM: a strongly typed, persistent object model
with polymorphism. In Proc. of BTW, pages 1982117,
Kaiserslautern, Mar 1991. Springer-Verlag.

T. K. Sellis. Intelligent caching and indexing techniques
for relational database systems. Information Systems.
13(2):175-186, 1988.

M. Stonebraker. J. Anton, and E. Hanson. Extend-
ing a database system with procedures. ACM Trano.
Database Systems, 12(3):350-376, Sep 1987.

M. Stonebraker, A. Jhingran, J. Goh, and S. Potami-
anos. On rules, procedures, caching and views in data
base systems. In Proc. of the ACM SIGMOD Conf,
pages 281-290, Atlantic City, NJ, May 90.

	Abstract
	Introduction
	GOM: Our Object-Oriented Data Model
	Static Aspects of Function Materialization
	Dynamic Aspects of Function Materialization
	Strategies to Reduce the Invalidation Overhead
	Benchmark Results
	Conclusion
	References

