
in object BasesFunction Materialization

Christoph KilgerAlfons Kernper Guido Moerkotte

Ulliversitat I{arlsruhe

Fakultat fur Informatili

D-7500 l~arlsruhe, F. R. G.

INetlmail: [kemperlliilger \moer]Qira. uka. cle

Abstract

We describe funct$on materzakation as an optimization

concept in object-oriented databases. Exploiting the

object-oriented paradigm—namely class lficatton, object

identzty, and encapsalatzon-—- facilitates a rather easy in-

corporation of function materialization mto (existing)

object-oriented systems. Furthermore, the exploitation

of encapsulation (information hiding) and object iden-

tity provides for additional performance tuning measures

which drastically decrease the rematerialization over-

head incurred by updates in the object base. The pa-

per concludes with a quantitative analysis of function

materialization based on a sample performance bench-

mark obtained from our experimental object base system

GOM.

1 Introduction

Once the initial “hype’> associated with object-

oriented database systems settles the prospective

users—especially those from the engineering application

domains-will evaluate this new database technology es-

pecially on the basis of performance. Of course, the large

body of knowledge of optimization techniques that Jvas

gathered over the last 15 years in, e.g., the relational

area provides a good starting point. But lastly, only

those optimization techniques that are specifically tai-

lored for the object-oriented model will yield—the much-

needed-—clrastic performance improvements.

In this paper we describe one (further) piece m the mo-

saic of performance enhancement techniques that we in-

corporated in our experimental object base system GOM

[12]: the matertaltzatzon of functtons, i.e., the precom-

putation of function results.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

m 1S91 ACM 0-89791 -425-2/9110005/0258...$1 .50

Materialization—just like indexing-is based on the

assumption that the precomputed results are eventuall)

utilized in the evaluation of some associative data ac-

cess. Function materialization is a dual approach to our

previously discussed indexing structures, called .iccess

Support Relatzon [10, 1 I], winch constitute materializa-

tions of heavily traversed path expressions that relate

objects along attribute chains

Similarly to indexing, function materialization induces

an overhead on update operations. The primary chal-

lenge in the design of function matei-lalization is the re-

duction of the invalidation and rernaterialization over-

head upon update operations. In this respect func-

tion materialization is related to relational vieiv ma-

terialization [1, 3, 4]. .Aualogous \VOrli exists for the

POSTGRES data model to optimize the evaluation of

queries accessing (virtual) POSTQUEL attributes, c.: ,

[6, 7,8, 13, 14, 15].

The above cited work is similar to ours wlt,h respect to

the general idea of precomputing (caching) results How-

ever, the exploitation of object-oriented features, espe-

cially the classification of objects into types, ubjeci ~de?/-

ttty, and the principle of encapsulation facilitates a much

finer-grained control over the rematerializatlou requir-

ements of precomputed results in our approach than is

possible in relational view materialization and extended

relational caching: First, we can cleanly separate those

object instances that are involved in the materialization

of a function result from non-involved objects. Thus.

the penalty incurred by the need to rematerlalize a re-

sult can be restricted to the revolved objects. Secoud,

wthin those objects that are involved in some nlaterlal-

ization, we can decide in which function materialization

they have been involved and !vhich attributes are rele-

vant, for the respective function materialization. Third.

utilizing information hiding we can explolt operationa~

semantics in order to reduce the rernaterializatlon over-

head even further. For example, in geometric modeling

the data type implementor could provide the knowledge

that scale is the only transformation that could possibly

invalidate a precomputed volume result while rotate allcl

258

translate leave the materialized uolume invariant,

These tuning measures suggest that \ve can pro-

vide function materialization at a much lower update

penalty than relational view materialization can possi-

bly achieve-which is also indicated by our first quan-

titative analysis. This makes function materialization

even feasible for rather update-intensive applications.

Our approach is based on the modification and-

subsequent-recompilation of those type schemes whose

instances are involved in the materialization of a func-

tlon result; thus leaving the renminderof the object sys-

tem invariant. This makes it easy to incorporate our

concepts even into existing object base systems: Only

very fe]v system modules have Lo be modified while the

kernel system remains largely unchanged.

The remainder of this paper is organized as follows.

In the next section we briefiy review our object model

GOM. Then, in Section 3 the static aspects of func-

tion materializationare presented. In Section 4 we deal

with the mechanisms to keep materialized results up to

elate while the state of the object base is being mod-

ified. Reducing the update overhead is the subject of

Section 5. In Section 6 we provide a (first) quantita-

tive analysis of function materialization based on some

simple benchmarks derived from computer geometry ap-

plications. Section 7 concludes this paper.

2 GOM: Our Object-Oriented

Data Model

In essence, GOM provides all the compulsory features

identified in the “Manifesto” 1 [2] in one orthogonal syn-

tactical framework. GONI supports single ~nhemtance

coupled with wbtyptnq and substztutclbzlzty under strong

typtnj: a subtype instance is always substitutable for

a supertype instance. All database components, e.g.,

attributes, variables, set- and list-elements, are con-

strained to a particular type or a subtype thereof. CTOM

supports object zdentity in such a way that the OID of

an object is guaranteed to remain invariant throughout

its lifetime. Objects are referenced via their object iden-

tifier; referencing and dereferencing is implicit in GOM.

The following sample type definition introduces a new

tuple structured type Vertex:

type Vertex is

public X, set-~, Y, set.Y, Z, set-Z,

translate, scale, rotate, dlst

body [X, Y, Z: float;]

operations

declare translate: Vertex — void;

. . .

end type Vertex;

The public clause lists all the type-associatecl opera-

1.klbeit the design of GOM was carried out before the ‘“Mani-

festo” was written.

type Cuboid supertype .\li Y is

public VI, set-Vi, . . . V8, set-.V8, lel,~tl,,

width, height, volume, weight, rotate. scale.

body [VI,. . .,V8: Vertex; Mat: }faterial: \’alue: floac:]

operations

declare length: - float;

declare width: — ffoat;

declare height: — float:

declare volume: — float;

declare weight: — float:

declare translate: Vertex — void;

declare scale: Vertex — void;

declare rotate: char, float — void;

declare distance: Robot — float;

implementation

define length is

return self. Vl.dist(self. V2);

define volume is

return self.length * self. width * self. height;

define weight is

return self. volume * self. NI:Lt, Spec\Velgll{:

define translate(t) is

begin

self. Vl. translate(t);

. .

self. V8. translate(t);

end define translate;

. . .

end type Crrboid;

F’i~ure 1: Skeleton of the Type Definition (’11601(/

tions that constitute the interface of the ne!vly defined

type. GOM enforces information hiding by object en-

capsulation, i.e., only the operations that are explicitly

made public can be invoked on instances of the type.

However, for each attribute A two budt-in operations

named A to read the attribute and set-i to tvrite the aL-

tribute are implicitly provided. z It is the type desqyer”. s

choice whether these operations are made public by ill-

cluding them in the public-clause.

Figure 1 shows the definition of the type C’u601d which

serves as the running example throughout, the remain-

der of this paper. In this definition, we have lntentlou-

ally made all parts of the structure of a C’ubot(l visible

(public), e.g., all boundary Vertez objects VII. . . . VS

are accessible and directly modifiable. TINS]s needed to

demonstrate our function materialization approach in its

full generality. In Section .5 we will refine the definltlou of

Cubozd by hiding many of the structural details of Lhe

C’uboid representation-and, thus, clrastlcally decrease

the invalidation penalty of many update operations.

Note that the definition of Cubozd makes use of t\vo

auxiliary types Materifti and Robot that are not outlined

here. A sample database is shown in Figure 2. The

object identifiers are denoted by idl, id?, etc.

2Actually, in GOM a more elegant mechanis:n LO realize value

returning and value receiving operations is provideci (see [1’2]).

259

2c177 Muteraal

Name: “Iron”

SpecWeight: 7.86

1(11 Cubotd

zdll Vertex Zdlg Vertex

~~

W“”u

kdT Cubozd

Ldzl Vertex adza Vertez

mm

First, if the materialized function ~: t ~, t,, — t’

has more than one argument one of the argument types

must be designated to hold the materialized result. BUL

this argument has to maintain the results of all argument

combinations—which, in general, won’t fit on one page.

Second, clustering of (recomputed) function results

would be beneficial to support selective queries on the

results. But this is not possible if the locatlon of the

materialized results is determined by the Iocatlon of the

argument objects.

Therefore we chose to store materialized results in a

separate data structure disassociated from the argument

objects. This decision is also backed by a quantitati~e

analysis undertaken in the extended relational system

POSTGRES by A. Jhingran [8] where separate caching of

precomputed POSTQUEL attributes proved to be ahmost

always superior to caching within the tuples.

If several functions are materialized which share all
I I 1 I

argument types the results of these functions n-my be
Figure 2: Database Extension of Example Schema

3 Static Aspects of Function

Mat erializat ion

Consider the above definition of the type Cubozd with

the associated functions uolume and we~ghf. Assume

that the following query, which is phrased in the QUE~-

like query language GOMql, is to be evaluated:

range c: Cuboid

retrieve c

where c.volurne > 20.() and c.~vmght > 100.0

To evaluate this query each Cubozd instance has to be

visited and the selection predicate has to be evaluated by

invoking the functions uolume and wetght To expedite

the evaluation of this query the results of volume and

wetght can be precomputed: we call this the matertal-

i.zatzon of the functions volume and we~ght. In GOMql,

the materialization of the functions volume and wezght

is mltiated by the following statement:

range c: Cuboid

materialize c.volume, c.weight

The evaluation of queries which reference the volume

and/or the wezght of Cubotd-instances can exploit the

precomputed results instead of invoking the functions

volume or weight, respectively.

There are two obvious locations where materialized re-

sults could possibly be stored: in or near the argument

objects of the materialized function or in a separate data

structure. Storing the results near the argument objects

means that the argument and the function result are

stored within the same page such that the access from

the argument to the appropriate result requires no ad-

ditional page access. In general, storing results near the

argument objects has several disadvantages:

stored in the same data structure. This provides for

more efficiency when evaluating queries accessing results

of several functions and avoids to store arguments redun-

dantly.

These thoughts lead us to the following definition:

Definition 3.1 (Generalized Materializat. Ilelat.)

Let tl,....tn.t~,t~,lt~,l be types and j’l,l.l ,slde-

effect free functtons with fj tl, ... ,t,, — t; JOI”
l<j <m. The generalized materzaflzatlon rela-

tton ((fl, . . jm)) for the functzons f’l, f,,, 15 oj (LrLLy

n + 2 + m and has the following jorni:

The attributes 01, 0,, store the arguments. i.e , val-

ues if the argument type is atomic or references to ob-

jects if the argument type is complex; the attributes

fl , fm store the results or, if the result type is com-

plex, references to the result objects. The attributes

VI, Vm (standing for ualzdzty) indicate whether the

stored results are currently valid. In this paper we re-

strict our discussion to functions having complex argu-

ment types and atomic result types. However, OLIr con-

cepts scale up to arbitrary functions as detailed In [9].

For each tuple r of a GMR extension ((fl, ., f,,,))
over types tl, tn the following condition must hold:

7ro,, ,om ((fl,...)fm)) = ezt(t~) x x ezt(tn) ~

Thus, upon an update to a database object that invali-

dates a materialized function result we have two choices.

Immedzate rematerzaluatzon: The invahdatecl function

result is immediately recomputed as soon as the illwd}-

dation occurs.

Lazy rematerzallzation: The invalidated function result

is only marked as being invalid by setting the corre-

sponding V, attribute to false. The rematerlalization of

260

invalidated results is carried out as soon as the load of

the object base management system falls below a prede-

termined threshold or—at the latest—at the next time

the function result is needed.

Exaxnple: Consider tile database extension in Fig-

ure2. Theextension of the GMR((volume, wezght)) with

all results valid is depicted below.

ETzE
I
I [(volume, wezght))

=f==5=5

true 1900.0 tT7Je

o

4 Dynamic Aspects of Function

Mat erializat ion

In this section we will investigate the algorithms that

are needed to keep GMR.s in a consistent state while the

object base is being modified.

The modification of an object is reported to the GMR

manager. Then, the GMR manager invalidates or re-

materializes all results affected by the update. There-

fore, the GMR manager maintains the Reverse Refer-

ence Relation (RRR), which contains tuples of the form

[o, ~, (ol, on)]. Herein, o is a reference to an ob-

ject utilized during the materialization of the result

f(ol). . ., o,,). Note that o needs not to be one of the

arguments 01, 0,1; it could be some object related

(via attributes) to one of the arguments. Thus, each tu-

ple of the RRR constitutes a reference from an object

o influencing a materialized result to the tuple of the

appropriate GMR in which the result is stored. We call

this a reverse reference as there exists a reference chain

in the opposite direction in the object base.

Definition 4.1 (Reverse Reference Relation)

The Reverse Reference Relatton RRR M a set of tup[es

of the form [0: OID, F: FunctzonIdj .4: (OID)].

For each tuple r E RRR the followzng condttton holds:

The ob]ect (with the zdentzfier) r.o has been accessed

during the materzaiization of the functton r.F wtth the

argument list r.A. •1

The entries are inserted into the RRR during the ma-

terialization process. Therefore, each materialized func-

tion f and all functions invoked by f are modified-the

modified versions are extended by statements that in-

form the GMR manager about the set of accessed ob-

jects. During a (re-)materialization of some result the

modified versions of these functions are invoked.

RRR

F A-T—
id]

id~

Ldl

~dl

Uis

ids

idll

ldll

idl]

idT7

idi7
.

volume (zd,)

weight (idl)

distance (zdl, zd4)

dzstance (zdl , ad5)

distance (kdl, ,d,)

dzstance (ad2, zd5)

volume {idl)

wetght (idl)

distance (tall, id,)

Lwezght (td])

wezght (idz)

Ld2 200.0 IItrue 15;?.0 true

((distance))

zdl id5 213.0 true

td2 id4 85.2 true

Figure 3: The Data Structures of the GMR hlanager

Exanaple: Consider the GMRs ((volume, wet~ht}) and

((distance)) (this example is based on Figure 2), TIIe

extensions of the RRR and the two GMRs are shown ill

Figure 3. Note that two Robots with the identifiers idq

and id5 are assumed to exist in the object base. o

Based on the RRR we can now outline the algorithms

for invalidating or rematerializing a stored function re-

sult, i,e., the computations that have to be performed Ibj

the GMR manager when an object o has beeu updated

The GMR manager is notified about all upda{e by Llle

statement GJfRJIanager. znvalzdate(o).

The algorithms below reflect the two possl bill ties u1’

lazy rematemalization and Lmmedlate rematenallzatzon

lazy(o) = foreaclz triple [o, f,, (01, on)] in RRR do

(1) set K := false of the appropriate tuple

in ((flfff))
(2) remove [O, ft, (01,... ,0,,)] frOIll RRR

Step 2 of the algorlthrn—i.e., the removal of the RRR

entry-ensures that for the same, repeatedly performed

object update the invalidation is done only once. Subse-

quent invalidations due to updates of o JVI1l be blocked

at the beginning of lazy(o) by not finding the RRR entry

which was removed upon the first invalidatloll-tllus the

unnecessary penalty of accessing the tuple in Lhe G AIR

to re-invalidate an already invalidated result is avoided.

Upon the next rernaterialization of ~(ol, on) all rel-

evant RRR entries are (re-)inserted into the RRR—

analogously to the immediate rematerialization algo-

rithm shown below.

Under the zmmedzate rematerzall~atzon strategy wt-

have to recompute

immediate(o) s

the affected function results

261

foreach triple [o, f,, (o1, o,,)] in RRR do

(I) remove [o, f,, (01, on)] from RRR

(~) recompute ~,(ol, on) and

* remember all accessed objects {oj, o:}

* replace the old value of j, (o1, on)

iIl((f,,..., f,, fm))fm))

(3) foreach u in {oj, o~} do

* insert the triple [v, ~,, (01, . . ., 0~)]

into RRR (if not present)

We will explain step 1 oft his algorithm last. In step 2 we

recompute the function result j~ (01, on) and remem-

ber all objects visited in this process in order to insert

them into the RRR in step 3. However, it cannot be

guaranteed that the RRR does not contain any obsolete

entries which constitute “leftovers” from the previous

materlahzation(s) of .f~(ol, ., on)—this happens when-

ever two subsequent materializations of ~~(o1, on)

visit different sets of objects. Let [w, j~, (ol, o,,)]

be such a “leftover” entry meaning that in an earlier

materialization of ~~(01, . . . on) the object w was vis-

ited; but the current materialized result of fi (01, on)

is not dependent on the state of w. Then the next

(seemingly relevant) update on w will remove the triple

[W, f,, (o,,..., on)] from the RRR by step 1 of the above

outlined algorithm while steps 2 and 3 do not inject any

new inforlnation that is not already present in the GMR

and the RRR. With respect to removing left-over en-

tries our RRR maintenance algorithm can be termed

lazy because left-over entries are removed only when the

corresponding object is updated.

The easiest way to realize the notification of the GMR

manager about updates is to modify all update opera-

tions such that every invocation of an update opera-

tion triggers the invocation of GMRJlanager. invalidate.

Figure 4 in Section 5 shows the modification of the up-

date operation set.X. Another possible approach, the

adaptation of the object manager, is discussed in [9].

5 Strategies to Reduce the In-

validation Overhead

The invalidation mechanism described so far is (still)

rather unsophisticated and, therefore, induces unneces-

sarily high update penalties upon object modifications

In the following we will describe three dual techniques

to reduce the update penalty—consisting of invalidation

and rematerialization—by better exploiting the poten-

tial of the object-oriented paradigm. The techniques de-

scribed in this section are based on the following ideas:

Isoiatzon of relevant ob~ect properties: Materialized re-

sults typically depend on only a small fraction of the

state of the objects visited in the course of material-

ization. For example, the materialized uolume certainly

does not depend on the Value and Mat attributes of a

Cubotd.

Reductzon of RRR lookups: The unsophisticated ver-

sion of the invalidation process has to check the RIM

each time any object o is being updated. This leads LO

many unnecessary table lookups which can be avoided by

maintaining more information within the objects being

involved in some materialization—and thus restricting

the lookup penalty to only these objects.

Ezploztatlon of strxct encapsulation: By strictiy encap-

mrlatiug the representation of objects used by a nlate-

rialized function the number of update operations that

need to be modified can be reduced significantly. Since

internal subobjects of a strictly encapsulated object can-

not be updated separately—without invoking an outer-

level operation of the strictly encapsulated object—we

can drastically reduce the number of invalidations by

triggering the invalidation only by the outer-level oper-

ation.

Due to space limitations we will restrict the discussion

here to materialized functions that access only tuple-

structured types. However, the concepts can easily be

extended to set- and list-structured types (see [9]).

5.1 Isolation of Relevant Object Proper-

ties

Suppose that volume and wezght have been materialized.

Then these two materialized functions surely don ‘t de-

pend on the attribute Value Nevertheless, under the

unsophisticated invalidation strategy the operation in-

vocation

tall. set-Value(123.50);

does lead to the invalidation of idl. volun~e and

idl .wetght, both of which are unnecessary. Lil<e\vise, the

operation invocation

zdl.set_Mat (Copper); !! Copper being of type :~[aterml

leads to the necessary invalidation of idl. wezqht, but also

to the unnecessary invalidation of idl .volunle. In order

to avoid such unnecessary invalidations the system has

to separate the relevant properties of the objects visited

during a particular materialization from the irrelevant

ones. Then invalidations should only be initiated if a

relevant property of an object is modified.

Definition 5.1 (Relevant Attributes)

Cetj:tl,tn - in+l be a mater la[ized function.

Then the set RelAttr(f) is defined as:

ReiAttr(f) = {t. /i I there ezW 01, . . . 0,, of type

tlj ..., tn and o of tuple type t

such that o..~ M acce~>ed to

mater2a12ze f(ol, ., ., 0,,)} ❑

The relevant properties of a materialized function f are

automatically extracted from the implementation of the

function f—of course, also inspecting all functions inv-

oked by f. The mechanism for extracting the set Re-

L4ttrfrom the implementation of a functlou is giveu ill

262

[9]. A materialized function result j(ol, on) can only

be invalidated by an invocation o.set..-l(. . .) on some ob-

ject o of type f, and -t. A G R.e/Attr(j).3 The following is

the key definition for avoiding unnecessary GMRinval-

idations:

Definition 5.2 (Schema Dependent Functions)

Let t be a tuple type and let A be any attribute oft. We

define the set of (materialized) functtons which depend

on the update operation t.set~ as

SchemaDepFct(t. set-.4) = {flf is a matertal. functzon

and t..4 G R,eL4ttr(f)} a

Now, the invalidation overhead can be reduced by (1)

modifying only those update operations t set-4 that are

relevant to some materialized function, i.e., only those

operations t.set-4 where SchemaDepFct(t. setJ.) # {},

and (2) informing the GMR manager not only about the

updated object, but also about the set of materialized

functions potentially affected by the update. Thus, the

modification o.set_A(. . .) of an object o of type t triggers

the invocation of the GMR manager as follows:

GMR.Mcmager.invaliclate(o, SchemaDepFct(t. setA));

SchemaDepFct (t. set_4) is inserted as a set-valued con-

stant into the body of the modified update operation

t .set_A-thus, the expression SchemaDepFct (t .set_4)

needs not be evaluated each time o.set_4(. . .) is invoked.

However, the materialization of a further function for

which t ..4 is relevant requires a recompilation oft set .A

with a modified set-valued constant.

Example: The relevant properties for the function

volume are given below:

ReL4ttr(volume) = { Cabozd. Vlt (Abowl. V2, Cubotd. VJ,

Cuboitl. V5, Vertex. X, Vertex. Y, Vertex. Z}

From this it follows that the stored results of the function

volume can only be invalidated by the update operations

set-Vi , set- V2, sei-V~ and set- V*5 associated with type

Cubozd, and by the set_X, set-Y and set.Z operations

of type Vertex. o

5.2 Marking “Used” Objects to Reduce

RRR Lookup

The improvement of the invalidation process developed

in the preceding subsection ensures that no more un-

necessary invalidations occur. ~ However, one problem

still remains: the C,IVIR manager is invoked more often

30f course, also create and delete operations on the argument

tYPes affect materialized reSUlts and, therefore. have m be modified
(see [9]).

4.Lctually, under the unlikely condition that the same object

type is utilized in the same materialization in different contexts

there may still be an unnecessary invalidation.

than necessary to check within the RRR whether an In-

validation has to take place. Suppose object o of type

t is updated by operation o.set_4(. .) and all function>

which have used o for materialization are not contained

in SchemaDepFct (t. set_4). In this case there cannot be

a materialized value that must be invalidated due to the

update o.set_4. Consider, for example, the update

idlll.set_X(’2.5); !! Vertex ~dlll not being a boundary

Vertex of any Cubozd

of the Vertez instance idlll that is not referenced b}

any Cubotd. Since the functions volume and uetghi

are contained in the set SchemaDepFct(b’erte.z. bet_Y)

the GMR manager is being invoked-only to fincl out

by a RRR-lookup that no invalidation has Lo be per-

formed. This imposes a (terrible) penalty upon geomet-

ric transformations of “innocent)’ objects, e.g., Cyltn-

ders and Pyramzds, if the volume of C’ubo~d has been

materialized—due to the fact that all three tyI~es are

clients of the same type Vertez.

Our goal is to invoke GMR-ltlan ager. zntralzdat e only

when an invalidation has to take place. Therefore.

we append to each object o the set-valued attribute

ObjDepFct that contains the identifiers of all materi-

alized functions that have used o during theu nlaLeri-

alization. Now, the set of functions whose results are

invalidated by the update o.setfl can be cletermined ex-

actly by o. ObjDepFct n SchemaDep Fct (t .set_4). The

set-valued attributes ObjDepFct are maintained in the

same way as the entries of the RRR: lf an entry

[o, f,, (ol, on)] is inserted into (removecl from) the

RRR, fi is inserted into (removed from) o. ObjDepFct,

Note that conceptually it would be possible to nli-

grate all RRR information into the individual objects--

avoiding the RRR and all RRR lookups altogether, But,

since a single object is usually involved in numerous ma-

terializations of different functions and difierent argu-

ment combinations, this requires too much storage space

within the objects and, thus, destroys any kind of object

clustering.

Example: Recall the database extension shown iu

Figure 2?. Suppose that the two GMRs ((voiume, wezght))

and ((dist ante)) were introduced.

Consider the invocation idll .setJ(3.0) Jvhicb nlodi-

fies the X coordinate of Vertex idl 1. Figure 4 shows

the modification of the update operation Verfex. set_.Y.

The set of materialized functions that is dependent UPOII

the update idll set-Y (3.0) is then given by the inter-

section of the sets SchemaDepFct (Verte~ set–Y) and

idll. Ob~DepFct.

SchemrsDepFct(Vertex. setJ’) = { volume, wetgt~t, dtstunct}

idn~ Obj’DepFct = { uolume. weight }

In this case, the intersection coincides with the set
“.
td31. ObjDepFct. However, in generaI this is not the case.

o

263

u U.Jet_ b lvlallager

,. .-. . -------- ------- ------ ------- _____T
~ declare set-~: Vertex \\ float - void 1

I

I code set_X: I
1 1

I I

I define set4Y(x) is
I
I

I
self..X := x;

I
1 1-------- -------- ---------- -------- -----.

1

schema rewrite

~-------------- ------ ----------------- -
1

~ declare set~~: Vertex II float - void
I
1

I code settiy’; I
1 I
1 I

~ define set~y ’(x) is
1
I

I

I begin
!
[

1 1
1 self..X := x; 1
1 I
! RelevFct := self. ObjDepFct I
I

n SchemaDepFct(Vertex. set-Y), I1
i

if RelevFct # { } then
1

! 1
i
{ GMR-Manager.invalidate(self,RelevFct); ~

~ end define set_Y’, 1
1

L ------------- -------------------- -----,

1(LI Cuboad

ObjDepFct: { volume,

weight }

Mat: adg~ Value: 39.99

VI: Hill V2: td12

VT: id~~ V8: td18

Zdl] Vertex

ObjDepFct: { volume,

weight }

x: 0.0

Y: 0.0

z: 0.0

Figure 4: Interaction between Schema and Object hianager

Information Hiding

Despite the improvements of the invalidation mechanism

outlined in the previous two subsections three problems

that can be avoided by exploiting information hiding

remain.

First, the improvements incorporated so far do not

totally prevent the penalization of operations on ob-

jects not involved in any materialization. For example,

update operations defined on other geometric objects,

e.g., Pyramzds, are penalized by the materialization of

Cuhoid.volume, if the type Verte~ is utilized in the def-

inition of both types. This is a consecluence of modify-

ing the update operations of the lower-level types, e.g.,

Vertez.set–Y which is then invoked on every update of

attribute X of type Vertex.

Second, a single update operation consisting of a se-

quence of lower-level operations may trigger many sub-

sequent rematerializations of the same precomputed re-

sult. For example, one single invocation of icll ..sca/e(. , .)

triggers 12 (!) rematerializations of idl .vofume initiated

by the set-X, set_Y and set-Z operations of type Vertex.

Obviously, one invalidation should be enough.

Third, our algorithms detailed so far cannot detect the

irrelevance of an update operation sequentially invok-

ing lower-level operations which neutralize each other

with respect to a precomputed result. For example,

the invocation of idl rotate performs 12 invalidations of

idl .uolume despite the fact that no invalidation is re-

quired since the volume stays invariant under rotation.

We can exploit information hiding to avoid the un-

necessary overhead incurred by the thlee above rnen-

tioned problems. Analogous to information hiding in

traditional software design we call an object strzctly en-

capsulated if the direct access to the representation of

this oblect—including all its subobjects—is proh >iteil:

manipulations may only be possible by invoking public

operations defined on the type of that object. These o1>-

erations constitute the object t~derface, lU Gohl strict

encapsulation is realized (1) by disclosing all access op-

erations for attributes from the public clause, (2) by

creating all subobjects of an encapsulated complex ob-

ject during the initialization of that object, and (3) by

enforcing that no public operation returns references to

subobjects. Thus, no undesired access to subobjects via,

e.g., object sharing is possible.

By enforcing strict encapsulation only updating inter-

face operations have to be modified to perform invalida-

tions. Further, the number of invalidations due to the in-

vocation of an update operation is reduced to one. Last

not least, update operations leaving the result of a mat-

erialized function invariant need not be modified. Thus

by specifying and exploiting a set of Invalidated FuILe-

tzons for each invalidating public operation the above

mentioned problems can easily be eliminated.

Definition 5.3 (Invalidated Functions)

Let t be a strzctiy encapsulated type and u be a PUb[ZC

operatzon associated wzth that type. We dejine the bet O]

invalidated (mate rza[ized) functzons of t u as

InvaltdatedFct (t .u) = {f I f is a materialized functiou

and t.u affects results of f} ❑

We assume that the set InualidatedFct (t. u) for each

operation t. u is determined by the database pro-

grammer, Then all update operations u for which

Inva12datedFct (t .u) # {}, are extended by staLenlenL>

to inform the GMR manager—analogously to the mod-

ification of elementary update operations.

264

As outlined in Section 4 the materialized function ~

and all functions invoked by ~ are modified to mark all

used objects. If for the materialization of a function ~

a strictly encapsulated object is used, only this object,

but none of its subobjects, have to be marked. Public

functions of strictly encapsulated types are regarded to

be atomic-thus, functions invoked by public functions

may remain unchanged.

Example: Consider the type definition of Cubotd as

presented in Figure 1. Now assume that the public

clause reads as follows:

persistent type Cuboid supertype ANY is

public rotate, scale, translate, volume, weight

. . .

end type Cuboid;

From this type definition it can be deduced—by a close

observation of the operational semantics-that the only

operation that affects a materialized uolu771e is the op-

eration scale. All other operations do not invalidate the

precom~uted voiume. With res~ect to the materializa-
‘.
tlon of volume, scale has to be modified as follows:

declare scale: Cuboid / / Vertex - void code scale’;

define scale’ (v) is

begin
!! Statements to scale the ~uboid !!.

RelevFct := self. ObjDepFct n

InvalidatedFct(Cuboid.scale);

if RelevFct # { } then

GM R_Manager.invalidate (self, RelevFct);

end define scale; o

6 Benchmark Results

This section sketches the results of a first quantita-

tive analysis of function materialization. The bench-

marks were run on our experimental object base system

GOIV1 that is built on top of the EXODUS storage man-

ager [5]. The analysis is based on the Cubold example

(see Section 2). All subsequent results were measured

on a database containing S000 Cuboid instances, each

C’ubozd referencing 8 Vertex instances and one Matertal

instance. The database was stored on a disk with 25

ms average transfer time directly connected to a DEC

Station 3100 with 16 MByte main memory running un-

der the Ultrix operating system. The reported times

correspond to the user times, i.e., the actual times a

user has to wait to obtain the result. The benchmark

was run in single user mode, thus eliminating interac-

tion by concurrent users. Since the described database

is rather small we decided to use a correspondingly small

database buffer of 600 kBytes to compensate for the

small database volume.

6.1 Application Profile

The operation mix is described as a quadruple !\/ =

(Qnaia, u~,=, p~p, #ops). Here, the query mm Q“,,= 1>

the set of (two) weighted queries of the form Q,,l,= =

{(UJI, Qb~), (~2, Q\~)} where W, +- w? = 1. The
two queries—QbW (backward query) and Qf ~ (forlvard

query)—are outlined as follows, where r and random are

randomly chosen and s is a small constallc:

Q,w = Q,w =
range c: Cuboid range c: Cuboid

retrieve c retrieve c.volume

where c.volume = r + 6 where c. CuboldID3 = randomh

The update mix U,n,z = {(w;, D), (wj, 1), (Luj, S),

(w4, R), (w&, T)} consists of weighted update operations.

The letters represent the following updates: D denotes

the deletion of a randomly chosen Cabotd,6 I denotes

the creation of a new Cubozd of randomly chosen cli-

mensions, and S, R and T represent scalation, ~otatiou

and translation of a randomly chosen Cubotd, respec-

tiv$y. Again the sum of all weights has to be 1, i.e..

~,=1 LO; = 1. The weights indicate the probability that

one particular update (query) is chosen from the set of

possible updates (queries). For example. if a query IS to

be performed it will be QbW with probability WI

The update probability PUP determines the ratio be-

tween updates and queries in the benchmarked appli-

cation. For example, a value PUP = 0.1 determmes

that-on the average—out of 100 operations we will ell-

counter 10 updates which are randomly chosen from the

set iYmtZ-according to the weights wj, . . . LUj —and 90

queries which are randomly chosen from the set Q,,,,. --

according to the weights WI and W2.

The variable #ops denotes the total l~un~ber of oper-

ations performed in the described benchmark.

6.2 Results

The first benchmark determines the performance of

function materialization for an application profile un-

der varying update probabilities. The updaLe probabil-

ity was varied from O to 1 with increments of 0.05. l?o~

each update probability 40 operations were executed on

the object base. The application profile and the perfor-

mance measurements are graphically \isualized Ln l?ig-

ure 5. The update probability is plotted against the .r-

axis and the time to perform the 40 operaLions i~ plotted

against the logaritlmmcally scaled y-axis. \Ve measured

three different program versions:

WithoutGMR.: the “normal” program without any func-

tion materialization.

WithGMR: the GMR ((volume)) is maintained under tm-

medtate rematerlalization and utilized to evaluale the

5 Cubo3dID is an additional user-supplied attribute co unlcluely

select a particular Cubozd.

6 Finding the ctualifyimg Cwbo?d was su~rx,rtecl b! aII inckx.

265

queries.

lrL~oiYiding: in this version the GMR ((7Joht7ne)) is main-

tained under information hiding to reduce the invalida-

tion and rematerialization overhead.

100

10

1

0.1
o 0.2 0.4 0.6 0.8 1

Update Probability

t -!&

-i-

200 400 60(J S00 1O(J() 1200 1400” 1600 ISOO ~()()o

Nunlber of Forward Queries

#op Q ~,z I urn,= I PILP

200...2000 I Qf,” =1.0 I – 0.0

Figure 6: Cost, of Forward Queries

Figure 5: Varying Update Probabilies

From the plot in Figure 5 we can deduce that up to an

update probability of about 0.9 the GMR-version out-

performs the non-supported version. Exploiting infor-

mation hiding in the GMR maintenance moves the break

even point to about PUP = 0.95.

From this first benchmark we can conclude that mate-

rialization achieves a tremendous performance gain for

backward queries. In the next benchmark we want to in-

vestigate the costs of forward queries for which the gain

due to materialization is less dramatic but—as it turns

out—still significant. In this benchmark we steadily in-

crease the number of forward queries, the only operation

performed in this benchmark. The results are shown in

Figure 6. We observe that the exploitation of the GMR

((volume)) constitutes a performance gain of about a fac-

tor 4 to 5. The reader should notice, however, that in

this benchmark only queries and no updates were per-

formed.

The subsequent benchmark was designed to investi-

gate the overhead of invalidation and rematerialization

incurred by function materialization. For this purpose

we used an application profile that consists of only ro-

tate operations, the number of which is steadily in-

creased. The results are visualized in Figure 7. Aside

from the three previously introduced program versions

Wzth GMR, Without GMR and InfoHidzng, we incorpo-

rated into this benchmark a fourth system configura-

tion, called ~azy. In this configuration we maintained

the GMR ((voiume)) under la~y rematerzali;atzon. Un-

der Lazy all materialized volume results had been inval-

idated before the benchmark was startecl—this causefi

the RRR and the sets ObjDepFct to be emtpy with re-

spect to ((volume)). Nevertheless, this configuration still

imposes a penalty on performing a geometric transform-

ation due to the checks that have to be made within

objects of type Vertez—to determine that the set O&

DepFct is empty. From Figure 7 we conclude that this

penalty is, however, rather low since the curves W~thout-

GMR and La=y run very close. This means that swit,dl-

ing from zmmedzate rematerializatiou to Ia:y remateri-

alization drastically decreases the update penalty, This

makes our materialization concept even viable for appli-

cation domains where occasional “bursts of updates” are

followed by prolonged periods of a rather static behavior.

e.g., the life cycle of an engineering artifact.

The ln~oi7iding version induces an overhead that IS

similar to Lazy—remember that we only perform rotate

operations which, under information hiding, do not, re-

quire an invalidation. However, if the bellch~nark co Li-

sisted of scuie operations the InfoHzdz?Lq configuration

would have much higher overhead than the L(L;y ver-

sion. We remember that the “normal” Wtth GMR ~er-

sion cannot detect that rotate is irrelevant for material-

ized volume results. Therefore, a substant,lal penalty i>

incurred due to the invalidation and rernaterialization

The penalty constitutes ahmost a factor 10 as compared

to the unsupported version.

7 Conclusion

In this paper we developed an architecture and effi-

cient algorithms for the maintenance of materialized

functions in object-oriented databases. Our architec-

ture provides for easy incorporation of function mate-

rialization into existing object base systems because lt

266

References10000
[xc]

1000

100

10 i I I 1 I 1
0 500 1000 1500 2000 2500

Number of Rotations

#top Q mzr I Umzx Pup

250 . . . 2500 — R= 1.0 1.0

Figure 7: Invalidation Overhead

is largely based on rewriting the schema. We placed

particular emphasis on reducing the invalidation and

rematerialization overhead. By exploiting the object-

oriented paradigm—namely object typing, object iden-

tity, and encapsulation—we were able to achieve fine-

grained control over the invalidation requirements and,

thus, to lower the invalidation and rematerialization

penalty incurred by update operations. In addition,

one can tune the system by switching between zmrnedt-

ate and lazy rematerialization. The latter strategy can

be used to decrease the penalty during update-intensive

phases even further. On an experimental basis we incor-

porated function materialization-currently limited to

single function GMRs-in our object base management

system GOM. The first quantitative analyses gathered

from two benchmark sets, one from the computer geom-

etry domain (reported on in this paper) and one from a

more traditional administrative application (see [9]) are

very promising. Especially when functions are utilized in

search predicates—our so-called backward queries-the

materialization constitutes a tremendous performance

gain, even for rather high update probabilities.

Currently, we are extending our rule-based cluery opti-

mizer [10] to generate query evaluation plans that utilize

materialized values instead of recomputing them.

Acknowledgements

Peter C. Lockemann’s continuous support of our re-

search is gratefully acknowledged. Andreas Horder car-

ried out the computer geometry benchmark; Michael

Steinbrunn participated in the design and prototypical

realization of the concepts.

[1]

P]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

M. E. Adiba and B. G. Lindsay. Database snapsho Ls.

In Proc. of The Conf. on Very Large Data Bases. pages

86-91, Montreal, Canada, Aug 80.

M. Athson, F. Bancilhon, D. J. DeWitt, K. R. Dit-

trich, D. Maier, and S. Zdonik. The object-oriented

database system manifesto. In Proc. of the DOOD

Conf., pages 40-57, Kyoto, Japan, Dec 1989.

J. Blakeley, N. Coburn, and P. Larson. Updating &-

rived relations: Detecting irrelevant and autonomousl}~

computable updates. ACM TODS, 14(3) :36w40u, Sep

89.

J. Blakeley, P. Larson, and F. Tompa. Efficiently updat-

ing materialized views. In Proc. of the .4 CM SIG’MOD

Conf., pages 61-71, Washington, D. C., 1986.

hl. Carey et al. Objects and file management in the

EXODUS extensible database system. Iu Proc. of The

Conf. orI Very Large Data Bases, I{yoto, Japan, Aug 86.

E. Hanson. A performance analysis of view mate~ialwa-

tion strategies. In Proc. of the ACM SIG1L1OD L’oil.f..

pages 440–453, San Francisco, CA. Ma,Y 87.

E. Hanson. Processing queries against database proce-

dures. In Proc. of the A C&.? SIGMOD Con!., Chicago.

May 88.

A. Jhingran. A performance study of query optimization

algorithms on a database system supporting procedures.

In Proc. of The Conf. on Very Lurge DatcL Buses, p:Lges

88-99, L. A., CA, Sep 1988.

A. Kemper, C. Kilger, and G. Moerkotte. Material-

ization of functions in object bases. Technical Report

28/90, Fakultat fiir Informatik, Uuiversltat Karlsrulw.

D-75oo Karlsruhe, Nov. 1990.

A. Kernper and G. Moerkotte. Advanced query pro-

cessing in object bases using access support relatiou>.

In Proc. of The Conf. on Very Large Data Bases, pages

XIO-301, Brisbane, Australia, Aug 1990.

A. Kemper and G. Moerkotte. Access support in object

bases. In Proc. of the .4 CM SIG’MOD Conf., pages .36+

374, Atlantic City, NJ, May 90.

A. Kemper, G. Moerkotte, H.-D. Walter, aucl A. Zach-

mann. GOM: a strongly typed, persistent object mode]

with polymorphism. In Proc. of BT W, pages 198-217.

Kaiserslautern, Mar 1991. Springer-Verlag.

T. K. Sellis. Intelligent caching and mde.ting techniques

for relational database systems. Information .S’ystem.s.

13(2):175-186, 1988.

x1. Stonebraker, J. Anton, and E. Hanson. Extend-

ing a database system with procedures. .4 CM Tru m.

Database Systems, 12(3):350–376, Sep 1987.

M. Stonebraker, .4. Jhingran, J. Gob, and S. Potami-

anos. On rules, procedures, caching and views in data

base systems. In Proc. oj the A C,lf SIG’MOD Conj.,

pages 281–290, Atlantic City, NJ, May 90.

267

	Abstract
	Introduction
	GOM: Our Object-Oriented Data Model
	Static Aspects of Function Materialization
	Dynamic Aspects of Function Materialization
	Strategies to Reduce the Invalidation Overhead
	Benchmark Results
	Conclusion
	References

