
AutoGlobe: An Automatic Administration Concept for Service-Oriented
Database Applications

Stefan Seltzsam, Daniel Gmach, Stefan Krompass, Alfons Kemper
Technische Universität München

D-85748 Garching bei München, Germany
firstname.lastname@in.tum.de

Abstract

Future database application systems will be designed
as Service Oriented Architectures (SOAs) like SAP’s
NetWeaver instead of monolithic software systems such as
SAP’s R/3. The decomposition in finer-grained services al-
lows the usage of hardware clusters and a flexible service-
to-server allocation but also increases the complexity of
administration. Thus, new administration techniques like
our self-organizing infrastructure that we developed in co-
operation with the SAP Adaptive Computing Infrastructure
(ACI) group are necessary. For our purpose the available
hardware is virtualized, pooled, and monitored. A fuzzy
logic based controller module supervises all services run-
ning on the hardware platform and remedies exceptional
situations automatically. With this self-organizing infra-
structure we reduce the necessary hardware and adminis-
tration overhead and, thus, lower the total cost of owner-
ship (TCO).

We used our prototype implementation, called Auto-
Globe, for SAP-internal tests and we performed compre-
hensive simulation studies to demonstrate the effectiveness
of our proposed concept.

1. Introduction
Database systems are not used as stand-alone soft-

ware systems. Rather, they are accessed via application
services. Therefore, automatic administration concepts
for database applications cannot only concentrate on the
database alone, but have to comprise the entire service ar-
chitecture, of which the database is only one–albeit very
important–component. There exists a large research and de-
velopment effort in automatic administration concepts for
databases [3]. Concerning the administration of Service
Oriented Architectures (SOA) for database applications,
such as SAP’s new technology platform NetWeaver [20],
three objectives can be identified: Low administration ef-
fort, low total cost of ownership (TCO), and a high degree
of service performance, i.e., ensuring that a predefined num-
ber of clients (customers and employees) can be handled by
the infrastructure. To achieve the last objective, a highly
scaled hardware architecture can be used. Obviously, this

Adaptive Computing Infrastructure

Integration and Application Platform

SAP NetWeaver

Business Applications

mySAP Business Suite, SAP xAPPs

Figure 1. SAP NetWeaver Architecture

counteracts the second objective of low TCO. To balance
these three objectives, services have to be assigned to the
available servers in an optimized way. In cooperation with
the SAP Adaptive Computing Infrastructure (ACI) group
we develop such capabilities. Figure 1 shows the layering
of the SAP NetWeaver technology stack. NetWeaver itself
is an integration and application platform, i.e., a platform
for an SOA. On top of NetWeaver, the mySAP business
suite and other business applications are realized. The self-
management capabilities are provided by the adaptive com-
puting infrastructure layer below. For this layer, we are de-
veloping new concepts for self-organizing infrastructures.

The term ”self-organizing infrastructure” refers to self-
management capabilities including self-configuration, self-
optimization, self-healing, and self-protection. While ex-
isting implementations of these concepts are oftentimes
vendor-specific, we focus on a generic approach for hetero-
geneous hardware and software landscapes. Our approach
analyzes the current load induced by service instances as
well as their resource consumption and reacts on excep-
tional situations. For this dynamic adaption, services are
supervised by a fuzzy logic based controller. For example,
in case overloaded service instances are detected, the situa-
tion is remedied by either starting new service instances or
by moving instances to more powerful servers. With this ap-
proach of automatic runtime adaptions, AutoGlobe reduces
administrative overhead and achieves a reduction of TCO as
either more users can be handled with the existing hardware
or because less hardware is required initially.

The allocation decisions depend on the capabilities and
constraints of the application services and the hardware en-
vironment. These are described using a declarative XML
language. Among other constraints the maximum and min-
imum number of instances of a service can be defined, the
performance of hosts can be related to each other, and the
rules for the fuzzy controller can be specified. One basic as-
pect of AutoGlobe is that services are virtualized, i.e., they
are not running on a fixed server. Thereby, available re-
sources are shared between all services as appropriate for a
particular situation.

The remainder of the paper is organized as follows:
In Section 2 the architecture of AutoGlobe is presented,
which is based on our ServiceGlobe platform for location-
independent execution of Web services. The foundations of
fuzzy controllers are described in Section 3. A detailed de-
scription of the fuzzy controller of AutoGlobe is presented
in Section 4. Then, simulation study results follow in Sec-
tion 5. Finally, in Section 6 we present related work prior to
a conclusion and discussion of future research in Section 7.

2. Self-Organizing Infrastructure

AutoGlobe is based on our distributed and open Web
service platform ServiceGlobe [15, 16]. ServiceGlobe is
fully implemented in Java Version 2 and is based on stan-
dards like XML, SOAP, UDDI, and WSDL. The key inno-
vation of ServiceGlobe is its support for mobile code, i.e.,
services can be distributed and instantiated during runtime
on demand at arbitrary servers participating in the Service-
Globe federation. Those servers are called service hosts. Of
course, ServiceGlobe offers all the standard functionality of
a service platform like a transaction system and a security
system [23]. The goal of the AutoGlobe project is to add an
active control component for automated service and server
management to ServiceGlobe.

Services managed by the AutoGlobe platform are virtu-
alized by the use of service IP addresses, i.e., every service
has its own IP address assigned. This IP address is bound to
the physical network interface card (NIC) of the host run-
ning the service. Thus, if a service is moved from one host
to another, the virtual IP address is unbound from the NIC
of the old host running the service and afterwards bound to
the NIC of the target host. Consequently, services are de-
coupled from servers. This service virtualization is a vital
requirement for AutoGlobe.

The benefits of AutoGlobe can be experienced best on a
flexible infrastructure like a blade server environment that
we investigated, though not being restricted to this kind of
hardware infrastructure. Blade server are relatively cheap
compared to traditional mainframe hardware and the pro-
cessing power can easily be scaled to the respective de-
mand by varying the number of blades on the fly. Blade
servers normally store their data using a storage area net-

Controller

Advisor

Fuzzy Controller

0,5

0, 75

0, 25

0

1

0,5 0,750,25 1

Load Monitoring System

Load Situation

Load Archive

Load Monitor

Server

Load Monitor

Server

Load Monitor

Server

Figure 2. Architecture of the Controller
Framework

work (SAN) or a network attached storage (NAS). Thus,
CPU power and storage capacity can be scaled indepen-
dently and services can be executed on any blade because
services can access their persistent data regardless of the
blade on which they are running.

The architecture of our controller framework is shown in
Figure 2. Load monitors run on every server and report their
measurements to advisors. These measurements are used to
maintain an up-to-date local view of the load situation of the
system. Imminent overload situations are reported to a load
monitoring system which observes the load changes for a
while and triggers a fuzzy controller in case of a real over-
load situation. This fuzzy controller initiates actions to pre-
vent critical load situations. For example, if a CPU overload
on a service host is detected, the controller can move ser-
vices from this overloaded host to currently idle hosts. The
controller also reacts upon idle situations. As the proceed-
ing is quite analogous we will focus on overload situations
in the following. Failure situations like a program crash are
remedied for example with a restart. A load archive stores
aggregated historic load data. These modules are described
in more detail subsequently.

Load Monitors and Advisor Modules. Every server and
every service is monitored by a load monitor service, which
is a specialized service for resource monitoring of service
hosts and of resource usage of services, respectively.1

Load Monitoring System. In real systems short load peaks
are quite common. Immediate reaction on these peaks could
lead to an unsettled and instable system. Thus, if load val-
ues exceed a tunable threshold, the advisor passes the load
data to the load monitoring system module for further obser-
vation. Then, the load data is observed for a tunable period
of time (watchTime). If the average load during the watch
time is above a given threshold, a real overload situation is
detected and the fuzzy controller module is triggered.

Fuzzy Controller. The fuzzy controller identifies appropri-
ate actions to remedy overload situations. For this purpose,

1Figure 2 only shows the load monitors and advisors responsible for the
servers. For simplicity of the illustration, services running on the servers
and their load monitors and advisors are omitted.

0.2 0.4 l=0.6 0.8 10

0.2

0.4

0.6

0.8

1

highmediumlow

cpuLoad

CPU Load

()µ =high l

()µ =medium l 0.5

Linguistic
Terms

Membership
Functions

Linguistic
Variable

T
ru

th
 V

al
ue

Figure 3. Linguistic Variable cpuLoad

it is initialized with information about the current load sit-
uation of the affected services and servers. After that, the
fuzzy controller calculates the applicability of all actions.
If required, e.g., for a move action, the fuzzy controller af-
terwards calculates the score of all suitable target service
hosts. The action with the highest applicability is executed
and the host with the highest score is selected as target host
of the action, see Section 4.

Load Archive. The load archive stores a persistent aggre-
gated view of historic load data. This data is used to calcu-
late the average load of services during their watchTime and
to initialize all resource variables of the fuzzy controller.

3. Fuzzy Controller Basics
In general, fuzzy controllers are special expert systems

based on fuzzy logic [17]. Fuzzy controllers are used in con-
trol problems for which it is difficult or even impossible to
construct precise mathematical models. In the area of a self-
organizing infrastructure, these difficulties stem from inher-
ent nonlinearities, the time-varying nature of the services
to be controlled, and the complexity of the heterogeneous
system. Contrary to classical controllers, fuzzy controllers
are capable of utilizing knowledge of an experienced human
operator as an alternative to a precise model. This knowl-
edge is expressed using intuitive linguistic descriptions of
the manner of control.

Fuzzy logic is the theory of fuzzy sets devised by
Zadeh [26]. The membership grade of elements of fuzzy
sets ranges from 0 to 1 and is defined by a membership
function. Let X be an ordinary (i.e., crisp) set, then

A = {(x, µA (x)) | x ∈ X} with µA : X → [0, 1]

is a fuzzy set in X . The membership function µA maps
elements of X into real numbers in [0, 1]. A larger (truth)
value denotes a higher membership grade.

Linguistic variables are variables whose states are fuzzy
sets. These sets represent linguistic terms, such as low,
medium, or high. A linguistic variable is characterized by
its name, a set of linguistic terms, and a membership func-
tion for each linguistic term. An example for the linguistic
variable cpuLoad is shown in Figure 3. The figure shows

the three linguistic terms low, medium, and high with their
assigned trapezoid membership functions.

Figure 4 shows the general architecture of a fuzzy con-
troller according to [17]. The controller works by repeat-
ing a cycle of three steps. First, measurements are taken
of all variables representing relevant conditions of the con-
trolled infrastructure. These measurements are converted
into appropriate fuzzy sets (input variables) in the fuzzifica-
tion step. After that, these fuzzified values are used by the
inference engine to evaluate the fuzzy rule base. At last, the
resulting fuzzy sets (output variables) are converted into a
vector of crisp values during the defuzzification step. The
defuzzified values represent the actions taken by the fuzzy
controller to control the infrastructure and the target hosts
of the actions, respectively. We will now explain the fuzzy
controller mechanisms by way of an example from the au-
tomatic administration context in more detail.

During the fuzzification phase, the crisp values of the
measurements (e.g., CPU load of a host) are mapped onto
the corresponding linguistic input variables (e.g., cpuLoad)
by calculating membership rates using the membership
functions of the linguistic variables. For example, accord-
ing to Figure 3, a host having a measured CPU load l = 0.6
(60%) has 0.5 medium and 0.2 high cpuLoad.

In the inference phase, the fuzzy rule base is evaluated
using the fuzzified measurements. The form of the rules is
exemplified by the two sample rules2

IF cpuLoad IS high AND
(performanceIndex IS low OR
performanceIndex IS medium)

THEN scaleUp IS applicable

IF cpuLoad IS high AND performanceIndex IS high
THEN scaleOut IS applicable

with cpuLoad and performanceIndex (specifying the
relative performance of a server) being the input variables
and scaleUp and scaleOut being the output variables.
Typical fuzzy controllers have dozens of rules. Currently,
our AutoGlobe fuzzy controller currently comprises about
40 rules. The first sample rule states that it is reasonable to
move a service to a more powerful host (scale-up) if the host
running the service has a high load and a low or medium
performance index (the higher the performance index of a
host, the more powerful it is). The second rule states that
it is reasonable to start an additional service instance, if the
host running the service is highly loaded despite it being
very powerful.

Conjunctions of truth values in the antecedent of a rule
are evaluated using the minimum function. Analogously,
disjunctions are evaluated using the maximum function.
Given a performance index i and a CPU load of l = 0.9,
the membership grades for the linguistic variable cpuLoad

2These simple rules are only used to explain the inference phase. The
rules used in our self-organizing system are generally more complex.

Fuzzy Controller

Actions

Conditions

Controlled Adaptive
Computing

Infrastructure (1)
Fuzzy Inference (3) Fuzzy Rule Base

Defuzzification (4)

Fuzzification (2)

Figure 4. Architecture of a Fuzzy Controller

0.2 0.4 a=0.6 0.8 10

0.2

0.4

0.6

0.8

1

applicable

Applicability

Clipped Fuzzy Set

scale-up

T
ru

th
 V

al
u

e

Figure 5. Max-Min Inference Result

are µlow(l) = 0, µmedium(l) = 0 and µhigh(l) = 0.8.
We assume for this example that the membership grades
for the linguistic variable performanceIndex are µlow(i) =
0, µmedium(i) = 0.6 and µhigh(i) = 0.3. Thus, the
truth value of the antecedent of the first rule evaluates to
min(0.8, max(0, 0.6)) = 0.6 and the truth value of the an-
tecedent of the second rule evaluates to min(0.8, 0.3) =
0.3.

In classical logic, the consequent of an implication is
true if the antecedent evaluates to true. For fuzzy inference,
there are several different inference functions proposed in
the literature. We use the popular max-min inference func-
tion. Using this function, the fuzzy set specified in the con-
sequent of a rule (e.g., applicable) is clipped off at a height
corresponding to the rule’s antecedent degree of truth. After
rule evaluation, all fuzzy sets referring to the same output
variable are combined using the fuzzy union operation:

µA∪B(x) = max (µA (x) , µB (x)) for all x ∈ X

The resulting combined fuzzy set is the result of the infer-
ence step. Figure 5 shows the result of the inference for the
linguistic output variable scaleUp.

During the defuzzification phase, a sharp output value is
calculated from the fuzzy set that results from the inference
phase. There are several defuzzification methods described
in the literature. We use a maximum method, such that the
result is determined as the leftmost of all values at which
the maximum truth value occurs. Regarding our example
shown in Figure 5, the crisp value for the action scale-up is
0.6, i.e., the action is applicable to a degree of 0.6. The lin-
guistic variable scaleOut is defined analogously. Thus, the

scale-in or stop

Failure

Another
Host?

Another
Action?

Failure

Yes

Detection of an
Exceptional

Situation

Selection of an
Action – Fuzzy

Controller

Selection of a
Host – Fuzzy

Controller

Execution of the
Action

Success

Yes

No

Success

Other Action Success

Failure

No

Failure

Figure 6. Interaction of Fuzzy Controllers

Variable Description
cpuLoad CPU load of a server
memLoad memory load of a server
performanceIndex performance index of the server
instanceLoad load of a service instance
serviceLoad average load of all instances of a service
instancesOnServer number of services running on a server
instancesOfService number of instances of a service

Table 1. Input Variables for Action-Selection

action scale-out is applicable to a degree of 0.3. Therefore,
the controller will favor the scale-up action for execution.

4. Fuzzy Controller for Load Balancing
The fuzzy controller module in AutoGlobe consists of

two separate fuzzy controllers. The first one reacts on ex-
ceptional situations and determines an appropriate action.
If the selected action requires a target host, e.g., scale-out, a
second fuzzy controller is triggered to determine a suitable
service host. Figure 6 shows the interaction of the two fuzzy
controllers selection of an action and selection of a host. Af-
ter a rearrangement has taken place, the involved services
and servers are protected for a certain time, i.e., they are ex-
cluded from further actions. This protection mode prevents
the system from oscillation, e.g., moving services back and
forth.

4.1. Action-Selection Process

First, the input variables of the fuzzy controller are ini-
tialized. Table 1 shows the input variables of our controller.
All variables of the fuzzy controller regarding CPU or mem-
ory load are set to the arithmetic means of the load val-
ues during the service specific watchTime. The other vari-
ables are initialized using the current measurements or us-
ing available meta data, e.g., for the performanceIndex.

The fuzzy controller distinguishes between exceptional
situations induced by a service and exceptional situations
induced by a server (see Figure 7). If a service triggered the
controller, it decides on the basis of information from the
considered service, the service instance, and the server on
which it is executed. Other services running on the consid-
ered host are not considered. If a server triggered the fuzzy
controller, it takes the information of all services running on
the considered host into account.

Detection of an
Exceptual
Situation

Selection of an
Action for a

Service

Ordered Set of
Actions

Service Server
Caused by?

For all Services on
the Server

Selection of an
Action for
Service n

Selection of an
Action for
Service 2

Selection of an
Action for
Service 1

Verification of the
Constraints and Sorting

of the Actions

...

Figure 7. Flowchart of Action-Selection

Variable Description
start starting of a service
stop stopping of a service
scaleIn stopping of a service instance
scaleOut starting of a service instance
scaleUp movement of a service instance to a more pow-

erful host
scaleDown movement of a service instance to a less pow-

erful host
move movement of a service instance to an equiva-

lently powerful host
increase-priority increasing the priority of a service
reduce-priority reducing the priority of a service

Table 2. Output Variables for Action-Selection

Since the action-selection process depends on the spe-
cific situation, our controller is able to handle dedicated
rule bases for different exceptional situations (triggers). We
distinguish between four different triggers: serviceOver-
loaded, serviceIdle, serverOverloaded, and serverIdle. Fur-
ther, our controller facilitates dynamic adaptations. For ex-
ample, an administrator can add service-specific rule bases
for mission critical services, e.g., to favor powerful servers
for these services. A rule base comprises dozens of rules
each consisting of an antecedent and a consequent.

The fuzzy controller evaluates the appropriate rule base
and calculates crisp values for the output variables. Table 2
shows the output variables. These output variables repre-
sent the actions executed by the controller to control the
infrastructure.

The fuzzy controller only considers actions that do not
violate any given constraint, e.g., a traditional SAP database
service does not support a scale-out. Thus, the action scale-
out is not possible for such a service. These constraints are
defined using a declarative XML language. The result of
the fuzzy controller is a list of actions along with their rat-
ings between 0% and 100%. These ratings determine the
applicability of the actions in the current situation. In case
that a server triggered the controller, we execute the fuzzy
controller for each service running on the server and subse-

Variable Description
cpuLoad CPU load on the server as average load over all

CPUs
memLoad memory load on the server
instancesOnServer number of instances on the server
performanceIndex performance index of the server
numberOfCpus number of CPUs of the server
cpuClock clock speed of the CPUs of the server
cpuCache cache size of the CPUs of the server
memory memory size of the server
swapSpace size of the available swap space
tempSpace size of the available temporary disk space

Table 3. Input Variables for Server-Selection

quently collect the possible actions of all services.
Afterwards, the actions are sorted by their applicability

in descending order. Actions whose applicability value is
lower than an administrator-controlled minimum threshold
are discarded. The first action of the list is selected and ver-
ified once more. This is necessary, because the fuzzy con-
troller is able to handle several exceptional situations con-
currently. Thus, for example, if now the maximum number
of instances of a service are running, the controller cannot
start another one and, therefore, cannot perform a scale-out.

4.2. Server-Selection Process

In the case of a scale-out, scale-up, scale-down, move, or
start, an appropriate target server where the action should
take place must be chosen. The selection of a server pro-
ceeds analogously to the selection of an action. First, a list
of all possible servers is determined. Initially, these are all
servers on which an instance of the service can be started
and that are not in protection mode. For each server the
fuzzy controller is executed with the input variables initial-
ized to the current values. Table 3 shows the input variables
for the server-selection.

Since the server-selection process depends on the spe-
cific action, our controller is able to handle different rule
bases for different actions. With these rules we determine
how proper a server is for the problem. In the defuzzifica-
tion phase, the controller calculates a crisp value for every
possible host and selects the most applicable server.

4.3. Execution of the Controller’s Decision

The controller can operate in two different modes: In the
automatic mode, the actions are logged and then executed.
In semi-automatic mode, the human administrator is con-
tacted to confirm the action before execution. If there are
no possible hosts and actions with a sufficient applicabil-
ity, the controller requests human interaction by alerting the
system administrator.

For this purpose, our controller offers a graphical con-
troller console which displays the monitored state of the
system. Using this console the administrator can manu-
ally execute the actions that are normally triggered by the
fuzzy controller. Figure 8 shows the GUI of the controller

Figure 8. Administrator Controller GUI

console. There are three different views: the server view
displays information about the controlled servers, the ser-
vice view is analogously displaying information about the
controlled services and the message view lists administra-
tive messages and notifications. The presented screenshot
shows the server view. The panel on the left-hand side
shows a list of all controlled servers grouped by category.
The upper right-hand panel displays overview information
about all servers belonging to the selected category. Fi-
nally, the lower right-hand panel displays detailed informa-
tion about the selected server.

5. Simulation Studies

We performed comprehensive simulation studies us-
ing our prototype implementation AutoGlobe to assess the
effectiveness of our autonomic computing infrastructure.
They have been conducted using a simulation environment
that models a realistic SAP installation.

5.1. Description of the Simulation Environment

The simulation environment models a realistic SAP sys-
tem with the corresponding hardware. The simulated ser-
vices and servers are described using our declarative XML
language, just like real existing services and servers. Fig-
ure 9 shows the architecture of our simulated SAP installa-
tion, which is—like real SAP systems—divided into three
layers: the presentation layer, the application server layer,
and the database layer. End-users communicate with the
SAP installation using clients in the presentation layer. The
end-users’ clients themselves do not affect the system, thus
we only simulate the number of users connected to ser-
vices of our simulated SAP installation. Our installation
comprises three subsystems in the application and database
layer: Enterprise Resource Planning (ERP), Customer Re-
lationship Management (CRM), and Business Warehouse
(BW), each running its own dedicated database and central
instance. The central instance application servers (CI) are

Presentation Layer

PP

CI

Database

LES LES LES LES HR

FI FI FI PP PP

BW

CI

Database

CRM

CI

Database

BW: Business Warehouse
CI: Central Instance
CRM: Customer Relationship Management
FI: Financial Accounting

HR: Human Resources
LES: Logistics Execution System
PP: Production and Planning System

Figure 9. Example of an SAP Environment

0

10

20

30

40

50

60

70

80

0:00 4:00 8:00 12:00 16:00 20:00 0:00

BW LES

L
oa

d

Time

Figure 10. Load Curves of LES and BW

responsible for the global lock management of their partic-
ular subsystem. The other application servers (BW, CRM,
FI, HR, LES, PP) execute the application logic, i.e., process
user requests. Our controller supervises these application
servers, databases, and central instances.

In a real system, there is a lot of communication be-
tween the individual services. In our simulation environ-
ment, we neglect communication costs, because we assume
a local high-bandwidth network connection. This is realistic
in blade server environments, which are normally equipped
with, e.g., Gigabit Ethernet or Infiniband.

Our system simulates a varying number of users which
are generating user requests. As observed in existing SAP
installations, the course of a request is simulated as follows.
First, a request increases the load of the affected service
host for a short period. Before handling the request in the
database, the lock management of the central instance (CI)
is requested. Finally, the database sends the answer back
to the application server. Since the load caused by a single
request depends on the specific service (e.g., an FI request
produces lower load than a BW request) our simulation sys-
tem uses service-specific parameters to simulate the impact
of requests. In addition to the load produced by user re-
quests, every application server itself induces a basic load.

The load curves generated by simulated services follow
predetermined patterns that can be observed in many com-
panies running SAP software. Figure 10 shows example
load curves for an LES and for a BW application server
over one day. At eight o’clock, when the employees start

Chassis with 8 x FSC – BX300

Chassis with 8 x FSC – BX600

HP – Proliant BL40p

DBServer1

DB ERP

HP – Proliant BL40p

DBServer2

DB CRM

HP – Proliant BL40p

DBServer3

DB BW

Server with
Service Allocation

Blade Server with
Service Allocation

B
la

de
1

LE
S

B
la

de
2

LE
S

B
la

de
3

F
I

B
la

de
4

P
P

B
la

de
5

F
I

B
la

de
6

C
I E

R
P

B
la

de
7

C
I C

R
M

B
la

de
8

C
I B

W

B
la

de
9

B
W

B
la

de
10

H
R

B
la

de
11

F
I

B
la

de
12

LE
S

B
la

de
13

LE
S

B
la

de
14

P
P

B
la

de
15

C
R

M

B
la

de
16

B
W

H
os

tn
am

e

S
er

vi
ce

In

st
an

ce
s

 Hardware

Hostname

Service Instances

Figure 11. Simulated Hardware and Initial Al-
location

to work, the number of requests sent to the LES application
servers increases. There are three peaks, one in the morn-
ing, one before midday and one before the employees leave.
The load curve of a BW application server is different. Dur-
ing the night, several heavy-load batch jobs are processed.
During the day, only few user requests have to be processed
based on the aggregated data.

We assume a hardware environment that is scaled for
peak load as it is quite common in today’s computing cen-
ters. A standard single processor blade in our simulation
(performance index = 1) is dimensioned to handle at most
150 users of one service. The CPU load of the blades is be-
tween 60% and 80% during main activity in order to retain
reserves for unpredictable load bursts. Figure 11 shows the
simulated hardware and the initial static allocation of the
services. The simulated servers are3:
• 8 FSC-BX300 blades with one Intel Pentium III 933

MHz processor and 2 GB main memory each (perfor-
mance index = 1).

• 8 FSC-BX600 blades with two Intel Pentium III 933
MHz processors and 4 GB main memory each (perfor-
mance index = 2).

• 3 HP-Proliant BL40p servers with four Intel Xeon MP
2,8 GHz processors and 12 GB main memory each
(performance index = 9).

Table 4 shows the maximum number of users per service
and the number of instances that are started initially. These
numbers are reasonable for a medium-sized company run-
ning SAP, e.g., most departments use the LES application
servers while only the staff department uses the HR appli-
cation servers.

Every simulation starts with the same reasonable initial
allocation of the services shown in Figure 11. We run dif-
ferent simulation series and always increase the number of
users by 5% until the system becomes overloaded. The BW
is an exception, because it processes batch jobs instead of

3The performance index values stated are based on estimations and do
not necessarily reflect the real performance of the servers.

Service Number of Users Number of Instances
FI 600 3
LES 900 4
PP 450 2
HR 300 1
CRM 300 1
BW 60 2

Table 4. Initial Number of Users

Service Conditions Possible
Actions

database ERP exclusive –
min. perf. index 5

database BW, CRM min. perf. index 5 –
central instances – –
application server min. 2 FI instances scale-in,

min. 2 LES instances scale-Out

Table 5. Services in the CM Scenario

interactive requests. Thus, we increase the load per batch
job by 5% and leave the number of jobs constant.

We perform simulation series using three different sce-
narios. In the static scenario, a computing environment with
all services being static is simulated. Today, this is the stan-
dard environment used in most computing centers. In the
constrained mobility (CM) scenario, we simulate a SAP en-
vironment supervised by our controller, with some but not
all services supporting move, scale-in, and scale-out actions
(Table 5 gives an overview). The exclusive condition states
that no other service may be executed on the host. The
minimum performance index defines the minimum perfor-
mance requirements of a service. The minimum instances
condition defines the minimum number of instances of a
service allowed. In this scenario, all databases and central
instances are static. Application servers support scale-in
and scale-out. After a scale-out, the system does not dy-
namically redistribute the users, i.e., users are logged in
at one service instance during their complete session. We
simulate a fluctuation of the users, i.e., users infrequently
log themselves off of the application server they are con-
nected to and reconnect to the currently least-loaded server.
This behavior can be observed in real systems, too. In the
full mobility (FM) scenario, we simulate a system where
the BW database can be distributed across several servers.
The central instances and the other application servers can
be moved from one host to another, see Table 6 for details.
Furthermore, if a new instance of a service is started, the
users are equally redistributed across all instances.

Today, the movement of services is not yet supported
by all services, because services must explicitly assist the
movement. This requires that the service is able to store its
internal state before it is stopped and that the newly started
instance can restore the old state. Furthermore, it must be
guaranteed that the users are reconnected automatically to
the newly instantiated service instance. In the future, we
expect, that more services support dynamic relocation and,

Service Conditions Possible Actions
database exclusive –
ERP min. perf. index 5
database
CRM

min. perf. index 5 –

database
BW

min. perf. index 5 scale-in, scale-out,

central – scale-up, scale-down
instances move
application min. 2 FI instances scale-up, scale-down,
server min. 2 LES instances scale-in, scale-out, move

Table 6. Services in the FM Scenario
thus, we consider them in the full mobility scenario.

To prevent the system from reacting too late, we set the
threshold value for a CPU overload to 70%, i.e., if a server
has more than 70% CPU load it is considered overloaded.
In this case, the controller monitors the load values of the
service for 10 minutes (watchTime) in order to prevent the
system from over-reacting upon short load bursts. After an
action took place, the affected services and servers are pro-
tected for 30 minutes. The threshold value for an idle sit-
uation depends on the server and is 12.5% divided by the
performance index of the server. An idle situation is recog-
nized after a watchTime of 20 minutes.

All simulation runs have been carried out in 40-fold ac-
celeration and are simulating a system for 80 hours. The
shown time intervals correspond to simulated time.

5.2. Results of the Simulation Studies

Figures 12, 13, and 14 show simulation results with the
number of users increased by 15% compared to the user
numbers shown in Table 4. These results demonstrate how
the SAP installation handles an increasing number of users.
The figures show the load curves of all servers and the av-
erage load of the whole system, indicated by the thick line.

In the static scenario, several servers become overloaded,
i.e., have a CPU load of more than 80% for a long time, at
regular intervals, thus a non self-organizing infrastructure
cannot handle this situation satisfactorily. If a host running
an interactive service is overloaded, the service requires
more time to process the requests and, therefore, delays new
requests. Thus, users cannot perform all their requests in a
given period, e.g., a working day, and requests will be de-
layed till next day.

The situation already improves in the constrained mobil-
ity scenario. The controller reacts on arising overload situ-
ations by automatically starting additional instances of ser-
vices. Because the users are not dynamically redistributed
after a scale-out has taken place, the original servers remain
quite loaded. Due to user fluctuations, the load of the ini-
tially overloaded services slowly decreases. Altogether, the
overload situations are on average shorter than in the static
scenario, but due to the restrictions of the static user dis-
tribution, the overload situations cannot be prevented com-
pletely.

0 %

20 %

40 %

60 %

80 %

100 %

12:00 00:00 12:00 00:00 12:00 00:00

C
PU

 L
oa

d

Time

FI on Blade3
FI on Blade5

FI on Blade11
Controller Actions

Figure 15. CPU Load of the FI (Static)

0 %

20 %

40 %

60 %

80 %

100 %

12:00 00:00 12:00 00:00 12:00 00:00

C
PU

 L
oa

d

Time

FI on Blade3
FI on Blade4
FI on Blade5
FI on Blade6

FI on Blade9
FI on DBServer3

FI on Blade11
FI on Blade13

FI on Blade15
Controller Actions

Out
Blade6

Out
DBServer3 1 2

Out
Blade4

In
Blade6

In
Blade4

In
Blade11

In
DBServer3 Out

Blade13

Out
DBServer3

3 4
In
Blade5

In
Blade9

In
Blade15

In
DBServer3

1: In
Blade5

2: Out
Blade5

3: Out
Blade15

4: Out
Blade9

Figure 16. CPU Load of the FI (CM)

In the full mobility scenario, the results are significantly
improved. Idle resources are efficiently used to relieve the
load on heavily used resources. Thus, the utilization of
the hardware is well-balanced. Due to the dynamic redis-
tribution of users across all service instances, the effects
of controller actions are observable almost instantly. An-
other advantage of the full mobility scenario is that the con-
troller can react more flexibly on overload situations. The
remaining short overload peaks at the beginning stem from
the watchTime. If the instances of a service become over-
loaded, the controller monitors the instances for 10 min-
utes before starting a new instance. Therefore, for a short
time, the existing instances stay overloaded. After the first
day, there are normally more instances of every application
server running than in the beginning. Thus, if the controller
does not stop too many instances, the load can be distributed
across a sufficient number of instances, and overload situa-
tions can be avoided.

In order to demonstrate the behavior of our controller
in more detail, we present the FI application servers’ load
curves of the above described simulations.

Figure 15 shows the load curve of the FI application
servers in the static scenario. There are three instances
running on Blade3, Blade5, and Blade11. As services are
static, the controller cannot remedy the overload situations.
Thus, the service instances running on the less powerful

0 %

20 %

40 %

60 %

80 %

100 %

12:00 00:00 12:00 00:00 12:00 00:00

C
PU

 L
oa

d

Time
Figure 12. CPU Load of all Servers (Static Scenario)

0 %

20 %

40 %

60 %

80 %

100 %

12:00 00:00 12:00 00:00 12:00 00:00

C
PU

 L
oa

d

Time
Figure 13. CPU Load of all Servers (Constrained Mobility Scenario)

0 %

20 %

40 %

60 %

80 %

100 %

12:00 00:00 12:00 00:00 12:00 00:00

C
PU

 L
oa

d

Time
Figure 14. CPU Load of all Servers (Full Mobility Scenario)

Blade1

Blade2

Blade3

Blade4

Blade5

Blade6

Blade7

Blade8

Blade9

Blade10

Blade11

Blade12

Blade13

Blade14

Blade15

Blade16

DBServer1

DBServer2

DBServer3

Average Load

0 %

20 %

40 %

60 %

80 %

100 %

12:00 00:00 12:00 00:00 12:00 00:00

C
PU

 L
oa

d

Time

FI on Blade2
FI on Blade3
FI on Blade5
FI on Blade7
FI on Blade8

FI on Blade9
FI on Blade10
FI on Blade11
FI on Blade12
FI on Blade13

FI on Blade14
FI on Blade15
FI on Blade16

Controller Actions

Out
Blade9

Out
Blade2

In
Blade2

Out
Blade2

Out
Blade8

In
Blade8

Move
Blade11
Blade13

Out
Blade16

1

2

3

In
Blade5

Up
Blade3

Blade15

Out
Blade3

Move
Blade9
Blade14

Move
Blade14
Blade10

Up
Blade3

Blade14

Move
Blade10
Blade16

4 5 6

Up
Blade2
Blade15

Move
Blade8
Blade2

1: Move
Blade5
Blade7

2: In
Blade16

3: Out
Blade5

4: Out
Blade3

5: Move
Blade15
Blade12

6: Out
Blade8

Figure 17. CPU Load of the FI (FM)
blades become overloaded periodically. If a service or a
server is overloaded, it can no longer be used in a reason-
able way because the processing of mission critical OLTP-
requests is slowed down.

Figure 16 shows load curves in the constrained mobility
scenario. When the employees begin to work, the instances
on Blade3 and Blade5 become overloaded. The controller’s
reaction is to start an additional instance on Blade6 (“Out
Blade6”). Since users are not redistributed dynamically, the
load of Blade3 and Blade5 only decreases slowly. These
two hosts are still overloaded after the protection time, thus
the controller starts another instance on DBServer3 (“Out
DBServer3”). Because these actions do not remedy the
overload on Blade5 fast enough, the controller decides to
stop the instance running on Blade5 (“In Blade5”) to pro-
tect the host from a continuous overload situation. This FI
instance is started again (“Out Blade5”) after a short period
of time due to an overload situation on Blade6. Another
FI instance is started on Blade4 (“Out Blade4”). Further
on, the controller starts new FI instances as required and
stops instances running on overloaded blades and idle in-
stances. During the second day, the controller needs only to
execute one scale-in action because the FI instances run-
ning on Blade3, Blade5, and DBServer3 can handle the
load. The FI instance on Blade11 is stopped (“In Blade11”)
because Blade11 is additionally running a CRM instance
and, thus, is overloaded. The FI instance running on DB-
Server3 is stopped (“In DBServer3”) in the night because
the database of the BW subsystem uses the resources of DB-
Server3 heavily. Thus, at the beginning of the third day, the
remaining FI instances become overloaded. To remedy this
overload situation, the controller starts new FI instances as
required. In summary, the controller can avert most immi-
nent overload situations from the FI. The remaining over-
load situation periods are short.

Figure 17 shows load curves in the full mobility sce-
nario. Again, the controller adds and stops instances as
required. Additionally, service instances are moved from
heavy loaded servers to other servers. In this scenario, users
are dynamically redistributed, thus the effects of controller

actions are observable instantly and overload situation can
be averted completely.

5.3. Summary of Simulation Assessment

We ran simulation series for the three scenarios and each
time increased the number of users by 5% until the system
became overloaded. Table 7 shows the maximum numbers
of users that can be handled by the existing hardware in the
different scenarios relative to the number of users stated in
Table 4.

Scenario static constrained mobility full mobility
Max. Users 100% 115% 135%

Table 7. Maximum Possible, Relative Number
of Users

In the static scenario, the hardware is sized for the initial
number of users. Thus, if we increase the number of users
by 5%, the installation immediately becomes overloaded,
i.e., batch jobs are not processed in time and the response
time of interactive requests increases. Thus, the working
schedule is screwed up. Eventually, this might lead to an
instable system. Using our controller in the constrained
mobility scenario, the SAP installation can already handle
15% more users, because available idle resources are used
to remedy overload situations. Due to the restrictions of the
static user distribution and of the available actions, idle re-
sources cannot be used as efficiently as in the full mobility
scenario. Nevertheless, our controller already works quite
well for the constrained mobility scenario. In the full mo-
bility scenario, our controller can push the number of users
that can be handled by the SAP installation to 135% com-
pared to the static scenario. The number of users is higher
than in the constrained mobility scenario, because more ser-
vices are mobile and dynamic relocation is supported.

The conclusion of our studies is, that our controller can
improve the capability of current IT-infrastructures if static
services like databases and central instances are deployed
well. Additional degrees of freedom and dynamic user re-
distribution result in much more effective controller actions
and, thus, a higher number of users that can be handled by
the available hardware.

6 Related Work
IBM coined the term of autonomic computing [11] in

October 2001 and triggered several research projects of
global industrial players in this area. An autonomic com-
puting system provides self-managing capabilities, i.e., it
handles self-configuration, self-healing, self-optimization,
and self-protection. Weikum [25] motivates the automatic
tuning concepts in the database area and concludes that it
should be based on the paradigm of a feedback control loop
which consists of three phases: observation, prediction, and
reaction.

Modern database systems are increasingly realizing au-
tomatic administration features. [18] presents IBM’s au-
tonomic query optimizer—based on a feedback control
loop—that automatically self-validates its cost model with-
out requiring any user interaction to repair incorrect statis-
tics or cardinality estimates. [2] proposes the application
of a fuzzy controller for Quality of Service (QoS) manage-
ment of query execution plans in distributed query process-
ing systems. Actions like alterNetServiceQuality, move-
Plan, useCompression, or increasePriority are triggered by
the fuzzy controller to enforce QoS parameters like query
result quality, query execution time, and query evaluation
cost. In [3] new administration and management concepts
from IBM DB2, Microsoft SQL Server, and Oracle 10g
were presented. All these self-administration concepts from
the DBMS manufacturers and from researchers consider
the database system isolated and integrate specialized self-
management capabilities. Nevertheless, these concepts are
not sufficient to provide comprehensive automatic admin-
istration for self-organizing infrastructures. Therefore, the
complete system, i.e., the database applications and the
databases themselves, must be regarded.

There are first results in the area of autonomic infras-
tructures, e.g., IBM Director 4.1 [12]. Using this tool, ad-
ministrators can view and track the hardware configura-
tion of remote systems and monitor the usage and perfor-
mance of critical components. Further, it contains tightly
integrated tools, e.g., for monitoring the availability of
hardware and software and distributing system resources
according to administrator-defined policy entitlements, to
optimize performance and maximize availability. HP re-
searchers [14, 22] discuss load-balancing technologies for
services. Their basic objective is to make sure all system
resources work effectively. While the commercial products
depend on vendor-specific hardware-features, our solution
is independent from the underlying hardware. Further, our
adaptive controller supervises and controls a complex self-
organizing infrastructure without human interaction and/or
supports administrators by giving recommendations.

Currently, a shift from Web services to Grid services can
be observed. Basically, a Grid Service is a Web service im-
plementing some standard interfaces. Thus, our administra-
tion concept can be used within grids as well. The Con-
dor project [4] provides a flexible framework for match-
ing resource requests with resources available in Grid en-
vironments. Its goal is to harness wasted CPU power from
otherwise idle desktop workstations. The Enterprise Grid
Alliance [5] is a consortium formed to develop enterprise
grid solutions and accelerate the deployment of grid com-
puting in enterprises. Major hardware and software ven-
dors are members of the EGA, e.g., Fujitsu Siemens, HP,
Intel, Oracle, and Sun. Commercial infrastructures, e.g.,
Fujitsu Siemens’s FlexFrame [6], IBM’s Dynamic Infra-

structure [13], and Sun’s N1 Advanced Architecture for
SAP [24] offer a flexible infrastructure and virtualized ser-
vices like AutoGlobe, but are tailored and limited to the
mySAP Business Suite. The automatic administration of
these infrastructures is mostly rule-based and not as flexi-
ble as our fuzzy controller. At this stage, there are already
some large scale deployments of, e.g., FlexFrame within
enterprises like T-Systems [19] and Hella [10] showing the
benefits of such infrastructures.

For the description of the servers and services we use a
proprietary XML language that is based on preliminary ver-
sions of an XML language for the description of servers and
services from the project group Scheduling and Resource
Management of the Global Grid Forum [7]. If this XML
language becomes a standard, we will adopt it. In [1] the
concepts and terminology of load balancing are explained
pragmatically. This book shows the complexity of load bal-
ancing in computing infrastructures.

In [8], we presented feed-forward control techniques for
adaptive infrastructures which are orthogonal to the tech-
niques presented in this paper: exploitation of administra-
tor given hints and short-term load forecasting for services
with periodic behavior. Using these techniques, adaptive
infrastructures can react proactively on imminent overload
situations. There are overlaps between some aspects of the
administration concepts presented in this paper and the Ger-
man paper [9]. In [9], we put the main emphasis on the
optimization of the static allocation of services to servers.

7. Conclusion: Status and Future Work

We presented a novel fuzzy controller based automatic
administration concept which is hiding the ever increasing
complexity of managing IT-infrastructures. We introduced
our service platform ServiceGlobe, which forms the basis
of AutoGlobe. After that, we described the architecture of
AutoGlobe and its controller framework, which enhances
ServiceGlobe with functionality to generate an up-to-date
view of the load situation of the system. This view is used
by a fuzzy controller to generate actions to remedy immi-
nent overload, failure, and idle situations.

We implemented a research prototype of AutoGlobe and
field tested it on blade server environments run by the ACI
group of SAP using a rule base comprising about 40 rules.
Up to now, the largest environment used for testing was a
blade server system with 160 processors overall (with 2 and
4 processors per blade, respectively). Using our prototype
we demonstrated the effectiveness of our proposed solution
by performing a set of comprehensive simulation studies.
The results of these studies confirm the applicability of a
fuzzy controller for the supervision of a self-organizing in-
frastructure and the benefits of such an infrastructure even
for already existing complex environments.

A demonstration of the self-management capabilities at

the Sapphire 2003 [21] gained huge interest among the SAP
customers. SAP NetWeaver and new architectures like the
Fujitsu Siemens blade server infrastructure FlexFrame can
profit from the presented techniques by supplementing the
service virtualization features with self-management capa-
bilities.

We plan to improve the decisions of the controller even
more. First, we will enhance the controller in such a way
that it can manage explicit reservations, i.e., that an admin-
istrator can register mission-critical tasks along with their
resource requirements. Second, we work on predicting the
future load of services based on historic data stored in the
load archive using pattern matching and data mining tech-
niques. First encouraging simulation studies have already
been conducted. The reservations and load prediction can
be used to improve the action and host selection process
of the controller. Additionally, based on explicit reserva-
tions for mission critical services and on the predicted load
situation of services, we plan to develop a landscape de-
signer tool. This tool calculates a statically optimized pre-
assignment of all services to improve the dynamic optimiza-
tion potential of the fuzzy controller. Eventually, we plan
to enhance AutoGlobe towards QoS management for self-
organizing infrastructures. The actions will then be used to
enforce Service Level Agreements.

8. Acknowledgments
We would like to thank Wolfgang Becker, Ingo Bohn,

and Thorsten Dräger of SAP’s Adaptive Computing Infra-
structure group for their cooperation. Also, we would like
to thank Tobias Brandl for helping in the implementation of
AutoGlobe.

References
[1] T. Bourke. Server Load Balancing. O’Reilly & Associates,

Sebastopol, CA, USA, 2001.
[2] R. Braumandl, A. Kemper, and D. Kossmann. Quality of

Service in an Information Economy. ACM Transactions on
Internet Technology (TOIT), 3(4):291–333, 2003.

[3] S. Chaudhuri, B. Dageville, and G. Lohman. Self-Managing
Technology in Database Management Systems. Tutorial
at the International Conference on Very Large Data Bases
(VLDB), Toronto, Canada, Sept. 2004.

[4] Condor. http://www.cs.wisc.edu/condor/, 2005.
[5] Enterprise Grid Alliance. http://www.gridalliance.org.
[6] FlexFrame für mySAP Business Suite. http://www.

fujitsu-siemens.de/le/solutions/it infrastructure solutions/
sap infrastructure/index.html.

[7] Scheduling and Resource Management Area of the Global
Grid Forum. https://forge.gridforum.org/projects/srm/.

[8] D. Gmach, S. Krompass, S. Seltzsam, M. Wimmer, and
A. Kemper. Dynamic Load Balancing of Virtualized
Database Services Using Hints and Load Forecasting. In
Proceedings of the 17th Conference on Advanced Informa-
tion Systems Engineering (CAiSE’05) - Workshops Vol. 2,
pages 23–37, June 2005.

[9] D. Gmach, S. Seltzsam, M. Wimmer, and A. Kemper. Au-
toGlobe: Automatische Administration von dienstbasierten
Datenbankanwendungen. In Proceedings of the GI Confer-
ence on Database Systems for Business, Technology, and
Web (BTW), pages 205–224, Feb. 2005.

[10] S. Hofmeyer. Flexibler geht’s nicht. SAP Info – Das SAP-
Magazin, (121):60–62, Oct. 2004.

[11] P. Horn. Autonomic Computing: IBM’s Perspective on the
State of Information Technology. http://www.research.ibm.
com/autonomic/manifesto/autonomic computing.pdf, 2001.

[12] IBM Director 4.1. http://www.ibm.com/servers/eserver/
xseries/systems management/director 4.html.

[13] IBM Dynamic Infrastructure for mySAP Business Suite.
http://www.ibm.com/solutions/sap/us/en/xslpage/xmlid/
25044.

[14] L. Jin, F. Casati, M. Sayal, and M.-C. Shan. Load Balancing
in Distributed Workflow Management System. In Proceed-
ings of the ACM Symposium on Applied Computing (SAC),
Las Vegas, NV, USA, March 2001.

[15] M. Keidl, S. Seltzsam, and A. Kemper. Reliable Web Ser-
vice Execution and Deployment in Dynamic Environments.
In Proceedings of the International Workshop on Technolo-
gies for E-Services (TES), volume 2819 of Lecture Notes
in Computer Science (LNCS), pages 104–118, Berlin, Ger-
many, Sept. 2003.

[16] M. Keidl, S. Seltzsam, K. Stocker, and A. Kemper. Service-
Globe: Distributing E-Services across the Internet (Demon-
stration). In Proceedings of the International Conference
on Very Large Data Bases (VLDB), pages 1047–1050, Hong
Kong, China, Aug. 2002.

[17] G. J. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic: Theory
and Applications. Prentice Hall, Upper Saddle River, NJ,
USA, 1994.

[18] V. Markl, G. M. Lohman, and V. Raman. LEO: An Au-
tonomic Query Optimizer for DB2. IBM Systems Journal,
42(1):98–106, 2003.

[19] U. Petersen, S. Dreyer, and N. Paira. A Flexible Framework.
SAP INFO – The SAP Magazine, (120):64–65, Sept. 2004.

[20] SAP NetWeaver. http://www.sap.com/solutions/netweaver/.
[21] SAP Keynote: Turning Vision into Reality: Customer

Roadmaps to Lower TCO. http://www.sap.com/community/
events/2003 orlando/keynotes.asp, 2003. SAPPHIRE’03.

[22] M. Sayal, F. Casati, U. Dayal, and M.-C. Shan. Business
Process Cockpit. In Proceedings of the International Con-
ference on Very Large Data Bases (VLDB), Hong Kong,
China, Aug. 2002.

[23] S. Seltzsam, S. Börzsönyi, and A. Kemper. Security for Dis-
tributed E-Service Composition. In Proceedings of the In-
ternational Workshop on Technologies for E-Services (TES),
volume 2193 of Lecture Notes in Computer Science (LNCS),
pages 147–162, Rome, Italy, Sept. 2001.

[24] N1 Advanced Architecture für SAP. http://de.sun.com/
solutions/solution sales/sap erp/n1aa/index.html.

[25] G. Weikum, A. Mönkeberg, C. Hasse, and P. Zabback.
Self-tuning Database Technology and Information Services:
from Wishful Thinking to Viable Engineering. In Proceed-
ings of the International Conference on Very Large Data
Bases (VLDB), pages 20–31, Hong Kong, China, Aug. 2002.

[26] L. A. Zadeh. Fuzzy Sets. Information and Control,
8(3):338–353, 1965.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

