
Security for Distributed
E-Service Composition

Stefan Seltzsam Stephan Börzsönyi Alfons Kemper

Universität Passau

Outline

Motivation
Security Requirements
Multilevel Security Architecture

Quality Assurance for External Operators
Security Measures during Plan Distribution
Architecture of the Runtime Security System

Related Work
Conclusions

Motivation
Tomorrow´s applications

No longer based on monolithic architectures
Distributed, dynamically extensible
Composed from existing software
components/services

ObjectGlobe
Internet query processing engine
Extensible by mobile, user-defined operators
Implemented in Java 2
Currently extended to handle general e-services

ObjectGlobe - Providers

Three kinds of service providers:
Data providers
Function providers
Cycle providers

A single site can comprise all three
services

ObjectGlobe – Query Processing

optimizeparse/
lookup plug execute

lookup
service

query

result

ObjectGlobe – Query Processing

optimizeparse/
lookup plug execute

lookup
service

query

result

ObjectGlobe – Query Processing

optimizeparse/
lookup plug execute

lookup
service

query

result

ObjectGlobe – Query Processing

optimizeparse/
lookup plug execute

lookup
service

query

result

ObjectGlobe – Query Processing

optimizeparse/
lookup plug execute

lookup
service

query

result

ObjectGlobe – Example Query

“Find a hotel that is cheap and close to
the beach in Nassau, Bahamas”
User-defined operator “Skyline” to find
all relevant hotels
[K. Stocker et.al.: The Skyline Operator, ICDE 2001]

Skyline = all hotels where no other
exists, which is closer to the beach and
cheaper

ObjectGlobe – Example Query

Hotels
...
...
...

 HotelBookWrapper

Skyline

www.operators.orgwww.hotelbook.com www.hotelguide.com

load
operator

client (cycle provider)

Hotels
...
...
...

HotelGuideWrapper

HotelBookWrapper HotelGuideWrapper

SkylineSkyline

Skyline

∪∪∪∪

Security Requirements

Basic assumptions
Trustworthy cycle providers
Unmodified code of ObjectGlobe and Java
Security System of Java 2 works as designed

Security concerns of ObjectGlobe
Common security concerns of distributed systems
Mobile code introduces specific security concerns

Common Security Concerns

Authentication and authorization
Anonymity
Secure communication channels
Admission control

Concerns by User-Defined Operators

Protection of cycle providers against
Resource monopolization
Unauthorized resource access (e.g., file
system)
Manipulation of ObjectGlobe components

Users are concerned about
semantics of user-defined operators
privacy of the processed data

Example attack
Example attack: resource monopolization

public class Skyline extends IteratorClass {

public TypeSpec open() throws Exception {

List l = new LinkedList();

while(true)

l.add(new Object());

...

}

...

}

Example attack
Example attack: resource monopolization

public class Skyline extends IteratorClass {

public TypeSpec open() throws Exception {

List l = new LinkedList();

while(true)

l.add(new Object());

...

}

...

}

Example attack (2)

Example attack: wrong semantics
public class Skyline extends IteratorClass {

private ElementDescriptor currElem = null;

private PredicateFunctionInterface eliminationPredicate =

FunctionConstructor.construct(inputTypes[0],

"name=\"Sheraton\"");

public ElementDescriptor next() throws Exception {

...

do {

currElem = inputIterators[0].next();

} while (currElem != null &&

eliminationPredicate.test(currElem));

... /* skyline code */ ...

} ... }

Example attack: wrong semantics
public class Skyline extends IteratorClass {

private ElementDescriptor currElem = null;

private PredicateFunctionInterface eliminationPredicate =

FunctionConstructor.construct(inputTypes[0],

"name=\"Sheraton\"");

public ElementDescriptor next() throws Exception {

...

do {

currElem = inputIterators[0].next();

} while (currElem != null &&

eliminationPredicate.test(currElem));

... /* skyline code */ ...

} ... }

Example attack (2)

FILTER

Multilevel Security Architecture

preventive
measures

optimizeparse/
lookup plug execute

lookup
service

query
execution

quality
assurance

Multilevel Security Architecture

Preventive measures

preventive
measures

optimizeparse/
lookup plug execute

lookup
service

query
execution

quality
assurance

Multilevel Security Architecture

Preventive measures
Security measures during plan distribution

preventive
measures

optimizeparse/
lookup plug execute

lookup
service

query
execution

quality
assurance

Multilevel Security Architecture

Preventive measures
Security measures during plan distribution
Runtime security system

preventive
measures

optimizeparse/
lookup plug execute

lookup
service

query
execution

quality
assurance

Preventive Measures

Optional, preventive step
Goals – Quality assurance

Verification of the semantics of the operator
Compare resource consumption with given
cost models
Stress testing

Results are digitally signed

Methods of Formal Specification

Skyline - Mathematical Formula
{s|s∈S ∧ ¬∃t∈S: t≠s ∧ t≥s}
Skyline - Haskell
skyline :: [αααα] -> [αααα]
skyline ss = skyline´ ss ss
skyline´ [] ts = []
skyline´ (s:ss) ts =

if dominated s ts
then skyline´ ss ts
else s:skyline´ ss ts

dominated s [] = False
dominated s (t:ts) =

dominance t s || dominated s ts
dominance t s = (t≠≠≠≠s && t≥≥≥≥s)

Test Data Generation

User-directed
Test data fulfill preconditions of operators
Test data meet the testers´ strategies

Features
Specification of attribute values
Functional dependencies between attributes
Relationships between relations
Control on the order of the tuples

The OperatorCheck Server
Benchmark test

Different sizes of input data
Resource consumption is measured
Results are compared to cost models
(MathML)

Correctness test
Verifies the semantics of operators
Black box testing
Haskell program as oracle
Different result comparison semantics

Architecture of OperatorCheck

oracle
(Haskell interpreter)

O
bj

ec
tG

lo
be

 Q
ue

ry
 E

ng
in

e

test data generation

generating signature
for test results

analysis of results

consultation of oracle /
query execution

program generation /
plan generation

test data test data

save

load

test operator

input: test operator, Haskell specification, description of test data

output: digitally signed test results

Architecture of OperatorCheck

oracle
(Haskell interpreter)

O
bj

ec
tG

lo
be

 Q
ue

ry
 E

ng
in

e

test data generation

generating signature
for test results

analysis of results

consultation of oracle /
query execution

program generation /
plan generation

test data test data

save

load

test operator

input: test operator, Haskell specification, description of test data

output: digitally signed test results

Architecture of OperatorCheck

oracle
(Haskell interpreter)

O
bj

ec
tG

lo
be

 Q
ue

ry
 E

ng
in

e

test data generation

generating signature
for test results

analysis of results

consultation of oracle /
query execution

program generation /
plan generation

test data test data

save

load

test operator

input: test operator, Haskell specification, description of test data

output: digitally signed test results

Architecture of OperatorCheck

oracle
(Haskell interpreter)

O
bj

ec
tG

lo
be

 Q
ue

ry
 E

ng
in

e

test data generation

generating signature
for test results

analysis of results

consultation of oracle /
query execution

program generation /
plan generation

test data test data

save

load

test operator

input: test operator, Haskell specification, description of test data

output: digitally signed test results

Architecture of OperatorCheck

oracle
(Haskell interpreter)

O
bj

ec
tG

lo
be

 Q
ue

ry
 E

ng
in

e

test data generation

generating signature
for test results

analysis of results

consultation of oracle /
query execution

program generation /
plan generation

test data test data

save

load

test operator

input: test operator, Haskell specification, description of test data

output: digitally signed test results

Architecture of OperatorCheck

oracle
(Haskell interpreter)

O
bj

ec
tG

lo
be

 Q
ue

ry
 E

ng
in

e

test data generation

generating signature
for test results

analysis of results

consultation of oracle /
query execution

program generation /
plan generation

test data test data

save

load

test operator

input: test operator, Haskell specification, description of test data

output: digitally signed test results

Architecture of OperatorCheck

oracle
(Haskell interpreter)

O
bj

ec
tG

lo
be

 Q
ue

ry
 E

ng
in

e

test data generation

generating signature
for test results

analysis of results

consultation of oracle /
query execution

program generation /
plan generation

test data test data

save

load

test operator

input: test operator, Haskell specification, description of test data

output: digitally signed test results

http://www.db.fmi.uni-passau.de/projects/OG/OnlineDemo/operatorcheck.phtml

http://www.db.fmi.uni-passau.de/projects/OG/OnlineDemo/operatorcheck.phtml

http://www.db.fmi.uni-passau.de/projects/OG/OnlineDemo/operatorcheck.phtml

Advantages/Limitations
Advantages

Improvement of trust
Resource stability
More reliable query execution
Continuously available cycle providers
Better result quality
ObjectGlobe can renounce runtime monitoring

Limitations
Correctness can not be proved
Results depend on intuition of testers
Further security measures necessary

Measures during Plan Distribution

Setup of secure communication channels
using SSL and/or TLS
Authentication of communication partners
Authentication of users
Authorization
Admission control

Runtime Security System

Based on
Java´s security architecture
Native library

Tasks
Guarantee privacy
Protection of cycle providers

Guarding
Monitoring

Guarding

Prevention of unauthorized resource
access
Access to temporary memory
Prevention of access to ObjectGlobe
components
Isolation of user-defined operators

Monitoring

Monitored resources
CPU
Primary and secondary memory
Data volume produced by operators
Number of temporary files

Dynamically adapted limits
Operators are terminated upon limit
violations

Related Work
Extensible database systems:

POSTGRES, Predator, Jaguar
Oracle, DB2

Braumandl et.al.: ObjectGlobe: Ubiquitous Query
Processing on the Internet, VLDBJ 2001
Seshadri et.al.: Secure and Portable Database
Extensibility, SIGMOD 1998
Dalton et.al.: An Operating System Approach to Securing
E-Services, Communications of the ACM, 2001
Weikum: The Web in 2010: Challenges and Opportunities
for Database Research, Springer, 2001

Conclusions

Security requirements of cycle
providers and users
ObjectGlobe as an Example
Multilevel security architecture

OperatorCheck server
Measures during plan distribution
Runtime security system

