Grid-based Data Stream Processing in e-Science

Richard Kuntschke1, Tobias Scholl1, Sebastian Huber1, Alfons Kemper1, Angelika Reiser1, Hans-Martin Adorf2, Gerard Lemson3, and Wolfgang Voges3

1Lehrstuhl Informatik III: Datenbanksysteme
Fakultät für Informatik
Technische Universität München

2Max-Planck-Institut für Astrophysik

3Max-Planck-Institut für extraterrestrische Physik
Important Challenges in e-Science

■ In general:
 - Large and exponentially growing amounts of data
 - Distributed data archives
 - No unique identifiers
 - Uncertainty

■ In astrophysics:
 Spectral Energy Distributions (SEDs)
 - Used to classify celestial objects (active galactic nuclei, brown dwarfs, neutron stars, ...)
 - Generation requires spatial (astrometric) matching
Spatial (Astrometric) Matching

Current solutions …

- … load all data into main memory
 - Uses a lot of memory
 - Infeasible if memory size is insufficient
- … process all data at once and deliver the complete result at the end
 - Inefficient
 - No results until all processing has completed
Our Contributions

- **StarGlobe**
 - Grid-based P2P Data Stream Management System implemented on top of Globus
 - In-network processing
 - Early filtering
 - Parallelization
 - Pipelining
 - Load-balancing
 - Mobile user-defined operators

- **Astrophysical Example Workflow**
 - Astrometric matching
 - Performance evaluation
The StarGlobe Architecture

- Stream 0
- Stream 1
- Super-Peer
- Backbone
- Publish
- Subscribe
- Query 1
- Query 2
- Fct-Provider
- Transform
- Filter

Grid-based Data Stream Processing in e-Science
Traditional Approach: Bring Data to Code
New Approach: Bring Code to Data

Grid-based Data Stream Processing in e-Science
Mobile User-Defined Operators

- Load user-defined operators from function provider servers in the network
- Common interface for integrating external operators
- Push-based iterator
- Flexibility
StreamIterator Interface

- open(Config, StreamWriter)
 - Configuration parameters
 - Writer for result stream
- next(StreamIteratorEvent)
 - Next element in input stream
 - Writing output to result stream using StreamWriter.write()
- close()
Communication between StreamProcessor and StreamIterator

XML InputStream 1 --> StreamHandler 1 --> StreamIterator --> StreamWriter --> XML OutputStream

XML InputStream 2 --> StreamHandler 2

... --> StreamHandler n

XML InputStream n --> StreamProcessor

Item 1 Item 2 Item n Result Item
Astrophysical Example Workflow

Grid-based Data Stream Processing in e-Science
Distributed Query Evaluation Plan
Distributed Query Evaluation Plan

plan-6
at peer-6

\(\chi^2 \text{filter-0} \)

join-0

plan-0
at peer-0

enrich-0

transform-0

stream-0

plan-1
at peer-1

enrich-1

transform-1

stream-1
Distributed Query Evaluation Plan

plan-10
at peer-10

display

χ^2filter-4

join-4
Evaluation of Early Filtering

<table>
<thead>
<tr>
<th></th>
<th>WITH early filtering</th>
<th></th>
<th>WITHOUT early filtering</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stream size</td>
<td># Match candidates</td>
<td>Stream size</td>
<td># Match candidates</td>
</tr>
<tr>
<td>After join-0</td>
<td>808 KB</td>
<td>611</td>
<td>808 KB</td>
<td>611</td>
</tr>
<tr>
<td>After join-1</td>
<td>1,874 KB</td>
<td>1,138</td>
<td>1,874 KB</td>
<td>1,138</td>
</tr>
<tr>
<td>After join-2</td>
<td>1,387 KB</td>
<td>826</td>
<td>1,387 KB</td>
<td>826</td>
</tr>
<tr>
<td>After join-3</td>
<td>6,355 KB</td>
<td>2,522</td>
<td>46,525 KB</td>
<td>15,489</td>
</tr>
<tr>
<td>After join-4</td>
<td>14,356 KB</td>
<td>3,815</td>
<td>1,838,648 KB</td>
<td>364,299</td>
</tr>
<tr>
<td>After filter-4</td>
<td>1,364 KB</td>
<td>318</td>
<td>1,364 KB</td>
<td>318</td>
</tr>
<tr>
<td>Duration h:m:s</td>
<td>00:02:58</td>
<td></td>
<td>02:46:00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th># MATCH CANDIDATES</th>
<th>FILTER RATIO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before filtering</td>
<td>After filtering</td>
</tr>
<tr>
<td>At join-0</td>
<td>611</td>
<td>289</td>
</tr>
<tr>
<td>At join-1</td>
<td>1,138</td>
<td>452</td>
</tr>
<tr>
<td>At join-2</td>
<td>826</td>
<td>458</td>
</tr>
<tr>
<td>At join-3</td>
<td>2,522</td>
<td>400</td>
</tr>
<tr>
<td>At join-4</td>
<td>3,815</td>
<td>318</td>
</tr>
</tbody>
</table>
Conclusion

- Synergies between research in computer science and other scientific disciplines, e.g., astrophysics

- StarGlobe
 - Handling large data volumes efficiently
 - Early filtering, parallelization, pipelining
 - Returning first results early on
 - Pipelining
 - Flexible support of domain-specific application logic
 - Mobile user-defined operators

- Results also applicable to other domains