
StreamGlobe: Adaptive Query Processing and Optimization in
Streaming P2P Environments

Bernhard Stegmaier Richard Kuntschke Alfons Kemper

TU München - Lehrstuhl Informatik III
Boltzmannstraße 3

D-85748 Garching bei M̈unchen
Germany

<first name.lastname>@in.tum.de

Abstract

Recent research and development efforts show the
increasing importance of processing data streams,
not only in the context of sensor networks, but also
in information retrieval networks. With the ad-
vent of various mobile devices being able to par-
ticipate in ubiquitous (wireless) networks, a major
challenge is to develop data stream management
systems (DSMS) for information retrieval in such
networks. In this paper, we present the architec-
ture of ourStreamGlobesystem, which is focused
on meeting the challenges of efficiently querying
data streams in an ad-hoc network environment.
StreamGlobe is based on a federation of hetero-
geneous peers ranging from small, possibly mo-
bile devices to stationary servers. On this foun-
dation, self-organizing network optimization and
expressive in-network query processing capabili-
ties enable powerful information processing and
retrieval. Data streams in StreamGlobe are rep-
resented in XML and queried using XQuery. We
report on our ongoing implementation effort and
briefly show our research agenda.

1 Introduction
In recent years, Peer-to-Peer (P2P) networks have gained
huge attention both in the media and the computer sci-
ence community. This is, on the one hand, due to the
stunning success of filesharing systems like, e.g., Napster
and Gnutella. But on the other hand, it is also caused by
the degree of flexibility these networks provide. For ex-
ample, they can be used for setting up ad-hoc sensor net-
works where sensors can join and leave the network at any

Copyright 2004, held by the author(s)

Proceedings of the First Workshop on Data Management for
Sensor Networks (DMSN 2004),
Toronto, Canada, August 30th, 2004.
http://db.cs.pitt.edu/dmsn04/

time, e.g., while moving across the area covered by the re-
spective network. Of course, this does not only hold for
the data delivering sensors, but also for the network nodes
that query the data streams within the ad-hoc network. In
the past, various approaches for finding information, i.e.,
documents, files, etc., in P2P networks have been stud-
ied, which has led to a number of topologies for P2P net-
works, one example being super-peer networks [28]. Deal-
ing with data streams, finding peers which deliver the re-
quired information is not the only task. Additionally, a
continuous data flow from data sources to consumers in
the network has to be established. An interesting challenge
arising in this highly dynamic environment is to develop
a distributed, self-organizing system for efficient routing
and in-network query processing. We pursue this goal with
our StreamGlobesystem which is based on its predeces-
sor ObjectGlobe [3]. StreamGlobe extends ObjectGlobe—
which is mainly focused on distributed query processing
for persistent data on the internet—by introducing query
processing capabilities on data streams in the network.
In our context, data streams are represented in XML and
queried (i.e., subscribed) using XQuery. While Stream-
Globe is not restricted to sensor networks, we use them as
a motivating example in the following.

Consider Figure 1 as an abstract example of a possible
application scenario for StreamGlobe. The depicted net-
work contains four so-calledsuper-peers(SP0 to SP3),
forming a stationary super-peer backbone network, and five
possibly mobilethin-peers, or peers for short, (P0 to P4)
connected to the backbone. PeersP0, P2 andP3 are a cell
phone, a laptop, and a PDA, respectively. These peers are
meant to register queries in the network and are therefore
at the receiving end of data streams. In contrast to that,
peersP1 andP4 are sensors delivering their sensor data to
the network in the form of XML data streams. Two ex-
amples for applications of similar real-life networks would
be satellite communication and weather observation. In
the former case, orbiting satellites would be the moving
sensors—or rather collections of sensors—streaming their
data to various receiving stations on the ground for evalu-

ation. In the latter case, the sensors would be attached to
weather balloons or observation planes, delivering data like
temperature, humidity, etc. to enable weather forecasts for
different regions.

To illustrate some of the difficulties of query process-
ing in such networks and to motivate our approach, we
now introduce a rather simplified real-world example in a
little more detail. Let us assume thatP4 in Figure 1 de-
livers a data stream produced by special sensor suits worn
by firefighters in action. The sensors continuously deliver
sensor readings containing the corresponding firefighter’s
identity (id), a timestamp (time), and the GPS coordinates
of the sensor (x , y), as well as information about the fire-
fighter’s vital statistics and the environmental conditions.
We have exemplarily chosen to monitor body temperature
(bt), pulse rate (pr), and oxygen saturation (os), as well
as environmental temperature (et), carbon dioxide concen-
tration (CO2), and sulfur dioxide concentration (SO2). For
brevity, we use the following simplified DTD to describe
the data stream, although StreamGlobe actually employs
XML Schema.

<!ELEMENT reading (id, time, x, y,
bt, pr, os,
et, CO2, SO2)>

<!ELEMENT id (#PCDATA)>
...

The remaining elements have analogous DTD entries. Let
us now further assume thatP0 andP2 are devices used by
an emergency physician and the fire department, respec-
tively. The former should receive a notification on a cell
phone whenever a firefighter’s oxygen saturation reaches a
critical level. Therefore, the peer represented by the physi-
cian’s cell phone registers the following XQuery.

for $m in stream("firefighters")/reading
where $m/os < 92 or $m/os > 98
return

<alert>
{$m/id} {$m/time} {$m/x} {$m/y}
{$m/os}

</alert>

The fire department wants to monitor the environmental
conditions, e.g., to be able to issue a warning if the condi-
tions get critical for the firefighters on site or the residents
living nearby. Thus, it registers the following XQuery.

for $m in stream("firefighters")/reading
return

<gas>
{$m/id} {$m/time} {$m/x} {$m/y}
{$m/CO2} {$m/SO2}

</gas>

StreamGlobe will handle this scenario as follows. Suppose
we want to reduce network traffic. The data ofP4 will be
sent toSP3 where it will be filtered, leaving only the ele-
mentsid , time , x , y , os , CO2andSO2 in the stream. The
elementsbt , pr and et can be removed as they are not

Figure 1: Example Scenario

needed (i.e. not subscribed) anywhere else in the network,
leading to a smaller data stream and reducing network traf-
fic. The resulting stream, containing the combined infor-
mation for satisfying the queries ofP0 andP2, is routed to
SP2. Note that up to now, data needed by bothP0 andP2

has been routed as one single stream through the network.
At SP2, however, the stream has to be split into the—in
our case—non-disjoint parts for the two receiving peers.
This involves replicating the stream and again filtering the
two new streams, resulting in two streams which constitute
the final results for the two queries. These are eventually
routed toP0 andP2 via SP0 andSP1, respectively.

Decisions such as where to execute which operators in
the network and how to route the data streams are made
by the StreamGlobe query optimizer. Additional difficul-
ties arise by the fact that the network can change over time
by adding or deleting queries and data streams which re-
quires a strategy for continuous or periodic reoptimization.
The distinguishing features of StreamGlobe compared to
related systems are thereby its self-organizing network, in
terms of continuous reactions to dynamic changes in reg-
istered data streams and queries, and its routing and op-
timization approaches for query and network traffic opti-
mization in P2P networks.

The remainder of the paper is organized as follows. Sec-
tion 2 presents some related work. In Section 3 we give
an overview of the StreamGlobe system architecture. Sec-
tion 4 deals with optimization and query processing in
StreamGlobe. In Section 5 we present a brief report on
the current implementation status of our StreamGlobe pro-
totype. Finally, Section 6 concludes the paper and gives an
outlook on future work.

2 Related Work
In the following, we present an overview of some work re-
lated to our StreamGlobe system. In particular, we deal
with work in the fields of data stream systems, query pro-
cessing, network architecture, and grid computing.

2.1 Data Stream Systems

With StreamGlobe being a system that handles and pro-
cesses data streams, it is worthwhile to take a look at other
recent approaches to building data stream systems.

One important project is TelegraphCQ [7]. This is a sys-
tem that deals with continuously adaptive query processing
in a data stream environment. Cougar [30] tasks sensor
networks through declarative queries. Aurora [6] is a new
DBMS for monitoring applications and constitutes a cen-
tralized stream processor for dealing with streaming data.
In [10] two complementary large-scale distributed stream
processing systems, Aurora* and Medusa, are described.
Aurora* is a distributed version of Aurora with nodes be-
longing to a common administrative domain. Medusa
supports the federated operation of several Aurora nodes
across administrative boundaries. STREAM [2] incorpo-
rates its own declarative query language for continuous
queries over data streams and relations. It handles streams
by converting them into relations using special windowing
operators and converting the query result back into a data
stream if necessary. PIPES [20] is a recent public domain
infrastructure for processing and exploring data streams.

All of these systems—more or less—focus on special
aspects of (adaptive) query processing, load balancing, or
quality-of-service management. The major contribution of
StreamGlobe is that it does not only efficiently locate and
query data streams, but also employs in-network query pro-
cessing for adaptively optimizing data flow within the net-
work. Thus, StreamGlobe pushes query processing from
subscribing clients towards data sources in the network.
The optimization is based on data stream clustering derived
from clustering the queries in the system. NiagaraCQ [8]
intends to achieve a high level of scalability in continuous
query processing by grouping continuous queries accord-
ing to similar structures. In StreamGlobe, we employ a
similar multi-query optimization approach to reduce net-
work traffic and to enable efficient query evaluation.

2.2 Query Processing

With respect to query processing, works in the fields of
multi-query optimization, as pointed out above, and con-
tinuous queries are related to StreamGlobe. Multi-query
optimization (MQO) has been addressed in [26]. It pur-
sues the goal of processing multiple queries all at once in-
stead of one query at a time. The main optimization po-
tential lies in the fact that queries may share a considerable
amount of common—or at least similar—input data that
can be reused for more than one query. Obviously, Stream-
Globe in general has to deal with a set of queries simul-
taneously, thus rendering multi-query optimization an ap-
plicable and suitable optimization approach. Also, queries
in StreamGlobe are usually continuous queries over data
streams. Efficient processing of such queries has been ex-
amined in [22]. Query processing in sensor networks has
been explicitly addressed in [31].

Multicast in IP, ad-hoc and sensor networks, described
for example in [15], routes data towards receiving ends in
a way that reduces network traffic by transmitting the same
message or document only once for all recipients instead of
multiple transmissions, one for each recipient. It is impor-
tant to point out that our work differs from these approaches
in a major way. Instead of only reusing existing messages

or documents, our system is able to perform expressive in-
network transformations of data streams. Therefore, it can
dynamically create appropriate data streams that best fit the
queries to be answered while at the same time reducing net-
work traffic.

To achieve this goal, StreamGlobe uses clustering tech-
niques to identify reusable existing data streams in the net-
work that fit newly registered queries. This approach has
similarly been applied in the world of persistent data where
view materialization and view selection are used to im-
prove the efficiency of query processing [21]. In [29], fur-
ther algorithms for solving the view materialization prob-
lem are devised. Materialized view selection and mainte-
nance have also been examined using techniques of multi-
query optimization [23].

As already mentioned, StreamGlobe uses XQuery to
query XML data streams. In [11] an XQuery engine called
XQRL for processing XQueries on streaming XML data
is introduced. In StreamGlobe, we use FluX [19], an-
other XQuery engine for efficiently processing XML data
streams. The query containment problem in the context of
XML queries, which is relevant for multi-query optimiza-
tion, has been addressed in [27].

2.3 Network Architecture

Considering network architecture, a lot of work has been
done with respect to P2P, Publish&Subscribe, and ad-hoc
networks.

P-Grid [1] is a self-organizing, structured P2P system.
The notion of self-organization with respect to stream pro-
cessing and stream routing is also central to StreamGlobe.
In [28] the concept of super-peer networks is introduced.
These networks are meant to improve the scalability of
P2P networks by using a super-peer backbone network.
The super-peers usually are powerful servers. Less power-
ful, possibly mobile thin-peers can register and deregister
themselves in the network via the super-peers.

HyperCuP [25] is an approach that uses hypercubes as
a network topology in P2P networks. It thereby achieves a
logarithmic upper bound for the number of hops needed to
get from one super-peer in the network to any other super-
peer. This topology is used in [5] to deal with distributed
queries and query optimization in P2P systems.

2.4 Grid Computing

StreamGlobe builds on and extends the Open Grid Services
Architecture (OGSA) and its reference implementation, the
Globus Toolkit [14] by adding data stream processing capa-
bilities to the grid computing domain. A related approach,
also building on Globus, is described in [9]. However, this
alternative approach concentrates mainly on data stream
analysis and quality-of-service aspects in data stream de-
livery whereas we primarily focus on self-organization, dis-
tributed in-network query processing and optimization.

Another system building on the Open Grid Services Ar-
chitecture is OGSA-DAI (Open Grid Services Architecture
Data Access and Integration) [24]. As the name suggests,
this project is concerned with constructing a middleware to

enable the access and integration of data from distributed
data sources via the grid. It also contains a distributed
query processor called OGSA-DQP. In contrast to Stream-
Globe, OGSA-DAI has no special focus on data streams.

3 StreamGlobe Architecture Overview
StreamGlobe constitutes a federation of servers (i.e., peers)
which carry out query processing tasks according to their
capabilities. The basic architecture of a peer is depicted
in Figure 2. The various layers of this architecture will be
sketched in the following. Dashed lines mark layers whose
presence depends on the capabilities of the respective peer.

3.1 Open Grid Services Architecture

The StreamGlobe architecture is based on grid standards.
Grid computing [13] and the associated Open Grid Ser-
vices Architecture (OGSA) [12] have gained considerable
attention recently. Grid computing denotes a distributed
computing infrastructure where computers can exchange
data and perform large-scale resource sharing over the grid.
To achieve this, an architecture for integrating heteroge-
neous dynamic services while guaranteeing certain quality-
of-service requirements is needed. For this purpose, the
Open Grid Services Architecture has been developed.

Despite the growing importance of the grid standards,
data stream processing in the grid computing context has
hardly been investigated so far. We have decided to im-
plement our StreamGlobe prototype as an extension of the
Globus Toolkit for grid computing [14]. Globus is a refer-
ence implementation of the Open Grid Services Architec-
ture. Our goal is to use existing Globus techniques for our
purposes where possible and to integrate the StreamGlobe
system and its functionality into the toolkit as an extension
of Globus for data stream processing.

The main aspects of Globus that will be used in Stream-
Globe are communication mechanisms andservice data el-
ements. Service data elements can be associated with any
service in the grid. They are essentially XML documents
satisfying a given XML Schema and describing properties
of the service they are associated with. In our context, ser-
vice data elements will be used for describing data streams
and properties like bandwith of network connections, pro-
cessing capabilities of peers, etc.

3.2 Network Topology

In the OGSA framework, direct communication between
all participating grid services is allowed. However, this be-
havior is not the normal way of communication in networks
including mobile devices. It might not even be desirable
in a scenario that tries to reduce network traffic as in our
case. For instance, mobile sensors will normally commu-
nicate via some kind of access point they are connected to.
Hence, in StreamGlobe we establish a logical P2P overlay
network constituting a federation of heterogeneous peers.
Developing a research platform, we do not restrict our-
selves to employing a special P2P network topology for
StreamGlobe at the moment. The P2P network consists
of a set ofpeers. Each peer has a set of other peers as

Data Sources
XQuery

Subscriptions

St
re

am
G

lo
be

P2P Overlay Network M
et

ad
at

a
M

an
ag

em
en

t

OGSA (Globus Toolkit)

Optimization

Data Stream Processing

FluXXSAG

Figure 2: Architecture Overview

neighbors. A peer only interacts with its neighbors, i.e., no
direct communication takes place between two peers not
being neighbors. If data has to be transferred between two
random peers, aroute between these two peers has to be
established such that two successive peers on this route are
neighbors and the starting point and the end point of the
route are the source peer and the destination peer, respec-
tively. For the implementation of this overlay network, pre-
vious work on P2P network topologies can be employed,
e.g., a structured approach based on Cayley graphs as used
in the HyperCuP [25] topology. Since a major goal is build-
ing a network with highly heterogeneous peers with respect
to computing power—ranging from small, mobile devices
to stationary workstations or servers—, we have to classify
peers according to their capabilities.Thin-peersare devices
with low computational power, like sensor devices, PDAs,
cell phones, etc., which are not able to carry out complex
query processing tasks. In contrast,super-peersare station-
ary workstations or servers providing enough resources for
extensive query processing. These super-peers establish a
backbone taking over query processing tasks which cannot
be performed by other peers. Thus, they constitute a super-
peer backbone network similar to that in [28].

3.3 Client Interface

User interaction in StreamGlobe is depicted at the top layer
of Figure 2. StreamGlobe enables clients to specifysub-
scription rulesfor information processing and retrieval us-
ing the XQuery language. Subscription rules are registered
at certain peers, i.e., normally at the devices users are work-
ing with, e.g., their laptops, PDAs, cell phones, etc. In our
context, subscriptions are transforming queries and not just
queries for retrieving matching files or documents. In fact,
StreamGlobe enables expressive transformations of data
streams according to registered subscription rules. Thus,
it allows clients to flexibly tailor data streams to their indi-
vidual requirements.

Similarly, data sources also register the provided data
streams at a certain peer within the StreamGlobe system.
Data streams can be registered in two ways. A data source
may register its data stream as an individual stream, which
then is published using a unique identifier. Another possi-
bility is registering a data stream as part of avirtual data

stream, which again is accessible using a unique identi-
fier and multiplexes all the data of the participating data
sources into one single stream. This technique is used in
the introductory example to merge the sensor data of all
firefighters. The schema of the data streams is specified us-
ing XML Schema. Streams are fed into StreamGlobe using
wrappers, which are running on corresponding peers and
transform the data into a suitable format, e.g., by convert-
ing raw sensor data to XML.

3.4 Peer Architecture

A more detailed view of the peer architecture is depicted
in Figure 3. It basically reflects the structure sitting on top
of the P2P network layer of Figure 2. The various com-
ponents are implemented as cooperating grid services in
the OGSA framework. The individual peers exchange con-
trol information, e.g., registration of new neighbors, sub-
scriptions, etc., via a top-level interface service, which dis-
patches the messages to corresponding subsidiary Stream-
Globe services, e.g., the optimization or the query engine
service. The communication of these services is conducted
via the RPC mechanisms of the Globus Toolkit. All ser-
vices marked by solid rectangles are mandatory for every
peer. Dashed boxes mark services that vary between dif-
ferent peers according to their functionality, as mentioned
earlier. For example, thin-peers do not incorporate a com-
plete optimization and query execution unit, but only pro-
vide basic functionality. A cell phone might for instance
only provide functionality for receiving and displaying data
streams and a sensor device might only be able to transmit
its measurement data.

The metadata management component, which will be
discussed further in the next section, interacts with each
of the components and provides information needed for
network management, optimization, and query execution.
Peers exchange XML data streams representing user data
over their data ports. The XML data streams are initially
parsed by the wrappers and represented as a sequence of
SAX events. Special events are interspersed within these
streams which are used for internal purposes. For example,
synchronization marks are generated whenever the system
restructures the data flow to synchronize all affected peers
for the change in query execution. Since the Globus Toolkit
currently does not provide suitable techniques for transmit-
ting data streams, we use our own protocol based on TCP
connections for this purpose.

3.5 Metadata Management

As Figures 2 and 3 suggest, metadata is needed in all layers
of the StreamGlobe architecture. The metadata manage-
ment (MDV) is based on the distributed metadata manage-
ment of ObjectGlobe [16] and forms a backbone that peers
exchange metadata with. In particular, the metadata man-
agement component records the following information:

• Network: The metadata management records the
neighborhood relationships between peers needed for
establishing the P2P overlay network.

to
 n

ei
gh

bo
rs

Out

RPC StreamGlobe
Interface

Optimizer

Query Engine

Data Port
In

to neighbors

to
 n

ei
gh

bo
rs

M
et

ad
at

a
M

an
ag

em
en

t

N
ot

if
y

Figure 3: Peer Architecture

• Subscriptions: All subscription rules and registered
data sources are recorded. For each registered data
source, the schema of the data stream is stored.
Schemas of data streams are specified using the XML
Schema language.

• Optimization: The metadata management main-
tains information needed for optimizing the network.
Among others, it maintains properties of network con-
nections, like bandwith and current amount of net-
work traffic. It also maintains the computational capa-
bilities of the peers and statistics of the data streams,
i.e., size and cardinality of the elements of a data
stream. The statistics can be provided either by the
data source itself or by computing them online as
the corresponding wrapper feeds the data stream into
StreamGlobe.

All metadata is stored locally at a peer in the form of
Globus service data elements. For being able to optimize
the network, special speaker-peers, which will be intro-
duced in Section 3.6, will need to have more global infor-
mation about a special set of peers (a certain subnet). In this
case, those special peers maintain additional information,
e.g., the graph of the network topology of the respective set
of peers, or are able to request the desired information from
the corresponding peers, e.g., statistics of a certain data
stream. To maintain a consistent state, peers have to notify
the speaker-peer of changes, e.g., if a peer joins or leaves
the network, new subscriptions or data streams are regis-
tered or existing subscriptions or data streams are deregis-
tered, etc. Therefore, MDVs of peers register themselves
as notification sinks or notification sources at the MDV of
their speaker-peer using the notification mechanism of the
Globus Toolkit.

3.6 Optimization and Evaluation Strategy

In Section 1, we have briefly introduced our approach of
optimizing the data flow in the network using in-network
query processing. In the following, we give an overview
of the optimization and evaluation strategy we employ in
StreamGlobe.

Optimization in a distributed architecture implies sev-
eral challenges. In order to perform optimization, some
metadata about the network—as described in the previous
section—has to be available. In a distributed system, there
are basically three approaches for performing optimization
using such metadata:

1. A single optimizing component has global knowl-
edge of all metadata and performs optimization with a
global view of the network.

2. Every peer has only local knowledge of its own meta-
data (including that its neighbors can be asked for their
metadata) and tries to optimize the network by making
locally optimal decisions.

3. A hybrid approach, in which special peers have global
knowledge of (small) subnets which are individually
optimized by the responsible peer.

Since we assume a large, distributed environment, a cen-
tralized optimization component as in the first method is
infeasible. The second approach fits quite nicely into a
distributed P2P network, but it seems unlikely that it will
deliver acceptable results. Hence, we focus on the hybrid
approach: A selected super-peer, calledspeaker-peer, is re-
sponsible for optimizing a certain subnet of the network.
Of course, this subnet may include other super-peers that
will not actively participate in optimizing this part of the
network. With peers joining and leaving subnets, a speaker-
peer might decide that a subnet is getting too big (or too
small). In this case, the subnet is split into two new sub-
nets and for each new subnet a responsible speaker-peer is
elected among the super-peers (or analogously a subnet is
merged with a neighboring subnet if it is getting too small).
Additionally, by varying the maximum size of a subnet op-
timized by a speaker-peer, the approaches (1) and (2) can
be simulated, which enables an evaluation of all three ap-
proaches in terms of optimization quality.

Basically, optimization in StreamGlobe determines the
peers at which (at least parts of) the subscriptions are ex-
ecuted and decides how to route the data streams in the
network. Optimization has three major goals:

1. Enable users to register arbitrary subscriptions at any
(suitable) device regardless of its processing capabili-
ties.

2. Achieve a good distribution of data streams in the net-
work without congesting it with redundant transmis-
sions.

3. Optimize the evaluation of a large number of subscrip-
tion rules by means of multi-query optimization.

The goals (1) and (3) are accomplished by pushing
query execution into the network. Subscription rules, i.e.,
XQueries, are evaluated using the FluX query engine [19]
that was developed in cooperation with our group. The sec-
ond goal is achieved by placingfiltering operatorson the
routes of data streams. These filtering operators are also ex-
ecuted by FluX. They could alternatively be implemented

using special filtering techniques such as XSAGs [18].
More details will be presented in Section 4.

Of course, optimization is a continuous process which
reoptimizes the system on-the-fly as peers come and go,
data sources and subscription rules are registered and
deregistered, and data streams change over time.

4 Optimization and Query Processing
In this section, we describe some of our approaches to opti-
mizing network traffic and performing efficient query pro-
cessing in StreamGlobe. This substantiates the strategy in-
troduced in the previous section.

4.1 Optimization

First, we address the key ideas for achieving the three op-
timization goals stated at the end of Section 3.6. The
first goal is achieved by appropriately pushing subscrip-
tion evaluation into the network. This is done by execut-
ing the subscription as a whole or in part at one or more
appropriate peers on a route from the data sources to the
peer where the subscription was registered. An appropriate
peer is a peer that is able to process the subscription, i.e.,
has sufficient computing power and is selected by the query
optimizer, taking into account optimization goals such as,
e.g., reducing network traffic. In order to support power-
ful subscription rules, the concept ofmobile codeis em-
ployed. Besides peers providing a basic set of functionality,
users are enabled to include user-defined code in subscrip-
tion rules, e.g., predicates, aggregation operators, etc. This
user-defined code is subsequently instantiated at the peer
processing the corresponding part of the subscription.

The second goal is accomplished by using two tech-
niques complementing each other. The first technique is
filtering of data streams. Filtering is achieved by using
either projection (called structural filtering) or selection
(called content-based filtering) or both on the elements of a
data stream—as described in the example scenario in Sec-
tion 1—and is performed byfiltering operators. These fil-
tering operators are executed at peers on the route of the
data stream as close to the source of the stream as possi-
ble. Thus, the amount of data that has to be transmitted
through the network is reduced. The second technique is
data stream clustering. This term denotes the combina-
tion of several similar or equal data streams in the network
to form one single stream that serves multiple recipients.
Data stream clustering in StreamGlobe works as follows.
During the registration of a new query, the system parses
the query, identifies its properties and stores them in a suit-
able data structure. In our case, this will be a Globus ser-
vice data element. The properties of a query include the
data streams needed to answer the query (content aspect),
the operations, e.g., projections, selections, joins, etc., used
to transform these input streams (structural aspect) and the
conditions needed for these operations, e.g., projection at-
tributes, selection and join predicates, etc. All transformed
data streams in the system, that where generated by a query,
are equally represented by their respective properties. Ini-
tial data streams, registered at a super-peer by some data

Forwarding

π
π

π/σ

FluX P0
π

π/σ

FluX

FluX

P2

P4

SP0

SP1

SP2

SP3

Projection

Projection and Selection

FluX Subscription Evaluation

!!

Figure 4: Query Evaluation Plan for the Example Scenario

source, are represented by a unique id. The reason for
choosing this properties approach is to get one level of ab-
straction higher compared to the schema representation of
data streams, thus facilitating the comparison of streams
and the search for reusable data streams in the network.

During the actual data stream clustering stage, the
speaker-peer of the affected subnet looks up all rele-
vant metadata (i.e. service data elements) of existing data
streams in its subnet and compares their properties to those
of the newly registered query. In a first simple greedy ap-
proach, the speaker-peer selects those data streams as input
streams for the new query that contain the necessary infor-
mation for answering the query, contain the least amount
of unnecessary information, and have to be routed through
the minimum number of peers to get to the recipient. Of
course, the decision where to execute certain query op-
erators, e.g., joins, in the network has also to be made.
This, along with more sophisticated methods for search-
ing reusable streams and routing them to recipients, is the
subject of future research and will be based on an appro-
priate cost model. Furthermore, we also intend to investi-
gate strategies for reorganizing the network in order to keep
the system globally effective even if local evolutions due to
network and/or subscription changes lead to a deterioration
of global system performance.

Data stream clustering as described above also con-
tributes to fulfilling the third goal of effective multi-query
optimization. In every subnet, the speaker-peer analyzes
the registered subscriptions and identifies common subex-
pressions. These common subexpressions are evaluated
once in this subnet by executing a subscription rule cor-
responding to a common subexpression at a suitable peer.
Rather than individually evaluating this subexpression in
each of the original subscriptions, the subscriptions are
rewritten to utilize the newly generated and specialized data
stream stemming from the common subexpression. Be-
sides reducing the workload of the affected peers, network
traffic might be further reduced. For instance, a common
task will be aggregating sensor data. Instead of transmit-
ting the whole dataset to every peer performing the same
aggregation, it will be executed near the data source and
only the aggregated results, which will constitute a smaller
data volume, will be delivered to the respective peers. Fur-
thermore, existing aggregated data streams in the system

can be reused to compute more common aggregates similar
to the roll up and the cube operations in data warehousing.

Figure 4 shows the query evaluation strategy using the
example scenario from Section 1. The symbols at the net-
work connections represent groups of elements. The dia-
mond represents the elementsbt , pr , andet , the circle
representsos , the triangle representsCO2andSO2, and the
rectangle representsid , time , x , andy . Projections cause
symbols to disappear as their corresponding elements are
filtered out of the stream. Selections remove certain in-
stances of elements that do not fulfill the selection predi-
cates which is depicted as dotted symbols. An exclamation
mark denotes a change in data representation, e.g., the in-
troduction of thealert element atSP2 in the result for the
query atP0. In our example, the introduction of thegas
element in the answer for the query atP2 is supposed to
take place atP2 itself and therefore does not show up in
the network. The decision whether to perform the FluX
subscription evaluation atP2, SP1, or SP2 is made by the
optimizer and is based on factors like computational power
and current load factor of peers.

The sample query evaluation plan in Figure 4 depicts
the situation after the data stream and the two queries of
Section 1 have been registered in the network of Figure 1.
Furthermore, the query optimizer has already optimized the
queries and integrated them into the system. First, the el-
ementsbt , pr , and et are removed from the stream by
a projection operator. To reduce network traffic, the opti-
mizer chooses to install the mobile code of the appropriate
projection operator as close to the data source as possible.
Since the data sourceP4 is a simple sensor without query
processing capabilities and is therefore not able to perform
the projection by itself, the projection operator has to be
installed and executed in the network at super-peerSP3.
The resulting data stream is routed only once (as one data
stream cluster) toSP2, although it is needed twice in the
system. Therefore, the optimizer decides to replicate the
data stream atSP2 to obtain two identical versions of the
stream. The decision of how to route and where to replicate
the stream is simply made by pursuing the goal of mini-
mizing the number of hops each stream has to go from its
source to its recipient in the network. Of course, more so-
phisticated optimization goals and routing strategies can be
employed here. We will examine this in future work. At

SP2, the stream with destinationP2, which is the fire de-
partment, is again reduced by a projection operator remov-
ing element os. The remaining stream is forwarded toP2

via the shortest path, in this case overSP1. The rest of the
query evaluation, consisting of the introduction of thegas
element, is performed atP2 itself. The stream with destina-
tion P0 is also filtered atSP2, this time using a projection
and a selection as demanded by the respective query. Also,
the newalert element in the query result is already intro-
duced atSP2. The resulting stream is then forwarded to
P0, again using the shortest path which is viaSP0. In gen-
eral, the shortest path is not unique and depends on the un-
derlying network topology. In the case of multiple shortest
paths, one appropriate path among them is chosen.

Continuing our example from Section 1, we now take
a look at a more complicated situation. Let us assume
that peerP1 represents a collection of weather sensors
delivering a virtual data stream registered at super-peer
SP0. Each sensor reading contains the identifier of the
corresponding sensor (id), a timestamp (time), the GPS
coordinates of the sensor (x , y), and measurements for
wind (wind), temperature (temp), humidity (hum), and air
pressure (ap). Sensor readings for wind consist of wind
strength (strength) and wind direction (direction).
The resulting data stream corresponds to the following
DTD.

<!ELEMENT reading (id, time, x, y,
wind, temp, hum, ap)>

<!ELEMENT id (#PCDATA)>
...
<!ELEMENT wind (strength, direction)>
<!ELEMENT strength (#PCDATA)>
<!ELEMENT direction (#PCDATA)>
...

We now further assume that the fire department atP2 reg-
isters a new query atSP1 in addition to the one already
registered in Section 1. This new query requires the data
from P4 to be joined with data fromP1. The fire depart-
ment is interested in finding out how strong and from which
direction the wind blew at the point in time and at the place
a gas concentration was measured. Therefore, it joins the
data of the gas sensors fromP4 with that of the weather
sensors fromP1. The join tries to find for each measured
gas concentration a sensor reading for wind strength and
direction that was close to the gas measurement in terms of
both, the point in time the respective sensor readings where
created and the geographical location at which the corre-
sponding sensors where located. This can be achieved by
using the bestmatch join operator [17].

One possibility to compute the join would be to filter
P1’s data stream accordingly atSP0 and route the result-
ing stream directly toSP1, where the join processing takes
place and the result gets delivered toP2. This would prob-
ably be the best solution if no data from peerP1 is needed
anywhere else in the network. However, whenP3 also re-
quests data fromP1, it might be better to route a data stream
with the data for bothP2 andP3 from SP0 to SP2 first and

then split the stream atSP2, routingP3’s part directly to
P3. The remaining stream for peerP2 could then be routed
to SP1, where the join processing could take place. But if
the join is known to produce a relatively small result com-
pared to the input streams, it would probably be better in
terms of network traffic to process the join already atSP2

and then route the result toP2 via SP1. This is an exam-
ple of a more difficult decision that has to be made by the
StreamGlobe query optimizer.

4.2 Query Processing

Let us now outline some basic concepts used for in-network
query processing. Query execution in StreamGlobe focuses
on processing streaming data and therefore employspush-
basedevaluation strategies—in contrast to traditional query
engines where data is normally “pulled” from subordinate
operators, e.g., by using the iterator model.

First, we will explain how filtering operators are exe-
cuted. As outlined before, filtering operators perform a
projection of a data stream on the required parts of the
entire schema and a selection according to predicates of
a subscription rule. Since the basic schema of the origi-
nal data stream remains the same1 (besides discarding un-
necessary information), projection can be done on-the-fly
without the need of buffering parts of the data stream. Per-
forming selections is somewhat more difficult, because in
the worst case data cannot be propagated before the predi-
cate is evaluated, which renders buffering inevitable. Thus,
we restrict filtering operators to only employ predicates re-
ferring to a single data object of the data stream. There-
with, at most the current data object has to be buffered for
being able to propagate the filtered data stream. Hence, we
can implement these operators scalably and efficiently us-
ing automata-based techniques as described in [18] or the
new FluX query engine which was developed in coopera-
tion with our group and will be sketched in the remainder
of this section.

In order to evaluate subscription rules on data
streams, we employ novel optimization techniques, called
FluX [19], for minimizing memory buffer consumption
during the execution of XQueries on streaming data. FluX
is an intermediate language extending the XQuery syntax
by event-based processing instructions which enables con-
scious handling of main memory buffers. The key idea of
the FluX query language is the novelprocess-streamstate-
ment { ps $x: ζ } for event-based (streaming) pro-
cessing of a substream assigned to a variable$x. It pro-
cesses the data stream by means of a list ofevent-handlers
ζ. Each event handler is of one of the two forms

• on a as $y return α

• on-first past(S) return α

with α being an arbitrary subexpression,a being the la-
bel of a tag, andS being a set of labels of XML tags. An
“on a” handler is executed if an opening tag labeleda is
encountered in the stream of$x. The subsequent elements

1In particular, the order of elements is preserved.

of the data stream are labeled as a substream$y and used
to evaluate the subexpressionα (which may in turn be a
process-stream statement or traditional XQuery). The lat-
ter “on-first ” handler is executed if no more elements
labeleds with s ∈ S will be encountered in the stream be-
ing currently processed and triggers the evaluation ofα. In
general, an arbitrary query cannot be evaluated purely on-
the-fly without buffering, e.g., if the sequence of elements
in the query is different from that in the input data stream.
Hence, a FluX query consists of a purely streaming part us-
ing our novel syntax and of embedded traditional XQuery,
which is evaluated on previously buffered parts of the data
stream. The main challenge is to rewrite an XQuery into a
corresponding FluX query which evaluates this query using
as many of the event-based methods as possible and thereby
minimizing buffer usage. In [19], an algorithm which uti-
lizes order constraints on the elements imposed by the DTD
of the data stream is presented to achieve this goal.

Rewriting XQuery into FluX is based on generating
a safe FluX query. That is, an XQuery subexpression
of a FluX query operating on buffered data must only
reference—e.g., by path expressions or other variables—
parts of the data stream which will not be encountered any
more after this expression has been evaluated. Thus, the
query engine can easily populate buffers with the needed
parts of the data stream and provide these buffers for the
execution of the buffer-based parts of the FluX query. The
second query of our example scenario using the given DTD
would be rewritten into FluX as follows.

{ps stream("firefighters")
on reading as $m return

{ps $m:
on-first past() return <gas>;
on id as $id return {$id};
on x as $x return {$x};
on y as $y return {$y};
on CO2 as $CO2 return {$CO2};
on SO2 as $SO2 return {$SO2};
on-first past(*) return </gas>; } }

This FluX query is purely event-based (outputting the val-
ues of the substreams in the “on” handlers can be done on-
the-fly) and hence needs no buffering at all. “on-first
past(*) ” is a shortcut for the setS containing all possi-
ble labels in this substream and is therefore executed af-
ter all other elements have been written. More details
on FluX together with an experimental evaluation can be
found in [19].

Summarizing, FluX enables query evaluation on data
streams with very low memory consumption and thus pro-
vides for a scalable evaluation of subscription rules. How-
ever, some subscription rules might possibly need un-
bounded buffering, e.g., subscriptions containing joins or
special aggregates. In such cases, unbounded buffering
is precluded by requiring users to specify window con-
straints. These allow for a scalable execution on infinite
data streams.

5 Implementation Status
As of the writing of this paper, we have implemented
the basic infrastructure of StreamGlobe, building on the
Globus Toolkit, and we are able to establish an overlay P2P
network between peers. We have also completed a proto-
type implementation of the FluX streaming query engine
for evaluating subscription rules. This query engine is cur-
rently being integrated into the StreamGlobe system. At
the moment, the optimization techniques of Section 4 are
developed and implemented. A first prototype system of
StreamGlobe including all the basic features presented in
this paper will be operational by the end of the year.

6 Conclusion and Future Work
In this paper, we have described the ongoing development
of our StreamGlobe system. StreamGlobe is focused on
meeting the challenges that arise in processing data streams
in an ad-hoc P2P network scenario. It differs from other
data stream systems in not only efficiently locating and
querying data streams, but also optimizing the data flow
in the network using expressive in-network query process-
ing techniques. This is basically achieved by pushing op-
erators for query processing into the network. Continuous
reoptimization leads to an adaptive and self-optimizing sys-
tem which enables users to carry out powerful information
processing and retrieval. StreamGlobe builds on and ex-
tends the Globus Toolkit, a reference implementation of the
Open Grid Services Architecture (OGSA) for grid comput-
ing, and serves as a research platform for our future work.

Future research will cover further topics in query pro-
cessing on streaming data, optimization methods for dis-
tributed data stream processing, load balancing and quality-
of-service aspects [4] in a distributed data stream manage-
ment system. In detail, this will include augmenting the
FluX query engine to support windowing operators like ag-
gregations and joins. It will also comprise improving the
optimization component by taking into account reorgani-
sation issues to keep the system effective as well as syn-
chronization aspects, e.g. for distributed join processing on
various streaming inputs. Furthermore, we will continue to
examine routing approaches for our hierarchical network
organisation and conduct advanced research concerning the
combination of multiple query processing operators, predi-
cate comparisons in the context of query clustering, and the
minimization of memory requirements during query eval-
uation. Eventually, support for content-based query sub-
scriptions will be added to StreamGlobe.

Acknowledgments. Franz Ḧauslschmid and Angelika
Reiser provided helpful comments on earlier revisions of
this paper. Christoph Koch, Stefanie Scherzinger, and
Nicole Schweikardt realized together with one of the au-
thors the FluX [19] query engine.

References

[1] K. Aberer, P. Cudŕe-Mauroux, A. Datta, Z. Despotovic,
M. Hauswirth, M. Punceva, and R. Schmidt. P-Grid: a self-

organizing structured P2P system.ACM SIGMOD Record,
32(3):29–33, Sept. 2003.

[2] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, R. Mot-
wani, I. Nishizawa, U. Srivastava, D. Thomas, R. Varma,
and J. Widom. STREAM: The Stanford Stream Data Man-
ager. IEEE Data Engineering Bulletin, 26(1):19–26, Mar.
2003.

[3] R. Braumandl, M. Keidl, A. Kemper, D. Kossmann,
A. Kreutz, S. Seltzsam, and K. Stocker. ObjectGlobe: Ubiq-
uitous query processing on the Internet.The VLDB Journal,
10(1):48–71, Aug. 2001.

[4] R. Braumandl, A. Kemper, and D. Kossmann. Quality of
Service in an Information Economy.ACM Transactions on
Internet Technology, 3(4):291–333, Nov. 2003.

[5] I. Brunkhorst, H. Dhraief, A. Kemper, W. Nejdl, and
C. Wiesner. Distributed Queries and Query Optimization
in Schema-Based P2P-Systems. InProc. of the Intl. Work-
shop On Databases, Information Systems and Peer-to-Peer
Computing, Berlin, Germany, Sept. 2003.

[6] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee,
G. Seidman, M. Stonebraker, N. Tatbul, and S. B. Zdonik.
Monitoring Streams - A New Class of Data Management
Applications. InProc. of the Intl. Conf. on Very Large Data
Bases, pages 215–226, Hong Kong, China, Aug. 2002.

[7] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.
Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy,
S. Madden, V. Raman, F. Reiss, and M. A. Shah. Tele-
graphCQ: Continuous Dataflow Processing for an Uncertain
World. InProc. of the Conf. on Innovative Data Systems Re-
search, Asilomar, CA, USA, Jan. 2003.

[8] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A
Scalable Continuous Query System for Internet Databases.
In Proc. of the ACM SIGMOD Intl. Conf. on Management of
Data, pages 379–390, Dallas, TX, USA, May 2000.

[9] L. Chen, K. Reddy, and G. Agrawal. GATES: A Grid-Based
Middleware for Processing Distributed Data Streams. In
Proc. of the IEEE Intl. Symp. on High-Performance Dis-
tributed Computing, Honolulu, HI, USA, June 2004. To
appear.

[10] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney,
U. Çetintemel, Y. Xing, and S. B. Zdonik. Scalable Dis-
tributed Stream Processing. InProc. of the Conf. on Innova-
tive Data Systems Research, Asilomar, CA, USA, Jan. 2003.

[11] D. Florescu, C. Hillery, D. Kossmann, P. Lucas, F. Ric-
cardi, T. Westmann, M. J. Carey, A. Sundararajan, and
G. Agrawal. The BEA/XQRL Streaming XQuery Proces-
sor. InProc. of the Intl. Conf. on Very Large Data Bases,
pages 997–1008, Berlin, Germany, Sept. 2003.

[12] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The
Physiology of the Grid: An Open Grid Services Archi-
tecture for Distributed Systems Integration, June 2002.
http://www.globus.org/research/papers/ogsa.pdf.

[13] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the
Grid: Enabling Scalable Virtual Organizations.The Intl.
Journal of Supercomputer Applications and High Perfor-
mance Computing, 15(3):200–222, Aug. 2001.

[14] The Globus Alliance. http://www.globus.org.
[15] Q. Huang, C. Lu, and G.-C. Roman. Spatiotemporal Mul-

ticast in Sensor Networks. InProc. of the Intl. Conf. on
Embedded Networked Sensor Systems, pages 205–217, Los
Angeles, CA, USA, Nov. 2003.

[16] M. Keidl, A. Kreutz, A. Kemper, and D. Kossmann. A
Publish & Subscribe Architecture for Distributed Metadata
Management. InProc. of the IEEE Intl. Conf. on Data En-
gineering, pages 309–320, San José, CA, USA, Feb. 2002.

[17] A. Kemper and B. Stegmaier. Evaluating Bestmatch-Joins
on Streaming Data. Technical Report MIP-0204, Universität
Passau, 2002.

[18] C. Koch and S. Scherzinger. Attribute Grammars for Scal-
able Query Processing on XML Streams. InProc. of the Intl.
Workshop on Database Programming Languages, pages
233–256, Potsdam, Germany, Sept. 2003.

[19] C. Koch, S. Scherzinger, N. Schweikardt, and B. Stegmaier.
Schema-based Scheduling of Event Processors and Buffer
Minimization on Structured Data Streams. InProc. of the
Intl. Conf. on Very Large Data Bases, Toronto, Canada,
Aug. 2004. To appear.

[20] J. Krämer and B. Seeger. PIPES - A Public Infrastructure
for Processing and Exploring Streams. InProc. of the ACM
SIGMOD Intl. Conf. on Management of Data, pages 925–
926, Paris, France, June 2004.

[21] A. Y. Levy, A. O. Mendelzon, Y. Sagiv, and D. Srivas-
tava. Answering Queries Using Views. InProc. of the
ACM SIGACT-SIGMOD-SIGART Symp. on Principles of
Database Systems, pages 95–104, San José, CA, USA, May
1995.

[22] S. Madden, M. A. Shah, J. M. Hellerstein, and V. Raman.
Continuously Adaptive Continuous Queries over Streams.
In Proc. of the ACM SIGMOD Intl. Conf. on Management
of Data, pages 49–60, Madison, WI, USA, June 2002.

[23] H. Mistry, P. Roy, S. Sudarshan, and K. Ramamritham. Ma-
terialized View Selection and Maintenance Using Multi-
Query Optimization. InProc. of the ACM SIGMOD Intl.
Conf. on Management of Data, pages 307–318, Santa Bar-
bara, CA, USA, May 2001.

[24] OGSA-DAI. http://www.ogsadai.org.uk.
[25] M. T. Schlosser, M. Sintek, S. Decker, and W. Nejdl. Hy-

perCuP – Hypercubes, Ontologies, and Efficient Search
on Peer-to-Peer Networks. InProc. of the Intl. Workshop
on Agents and Peer-to-Peer Computing, pages 112–124,
Bologna, Italy, July 2002.

[26] T. K. Sellis. Multiple-Query Optimization.ACM Trans. on
Database Systems, 13(1):23–52, Mar. 1988.

[27] I. Tatarinov and A. Halevy. Efficient Query Reformulation
in Peer Data Management Systems. InProc. of the ACM
SIGMOD Intl. Conf. on Management of Data, pages 539–
550, Paris, France, June 2004.

[28] B. Yang and H. Garcia-Molina. Designing a Super-Peer Net-
work. In Proc. of the IEEE Intl. Conf. on Data Engineering,
pages 49–60, Bangalore, India, Mar. 2003.

[29] Y. Yang, K. Karlapalem, and Q. Li. Algorithms for Ma-
terialized View Design in Data Warehousing Environment.
In Proc. of the Intl. Conf. on Very Large Data Bases, pages
136–145, Athens, Greece, Aug. 1997.

[30] Y. Yao and J. Gehrke. The Cougar Approach to In-Network
Query Processing in Sensor Networks.ACM SIGMOD
Record, 31(3):9–18, Sept. 2002.

[31] Y. Yao and J. Gehrke. Query Processing for Sensor Net-
works. In Proc. of the Conf. on Innovative Data Systems
Research, Asilomar, CA, USA, Jan. 2003.

