StreamGlobe: P2P Stream Sharing

Processing and Sharing Data Streams in Grid-Based P2P Infrastructures
Richard Kuntschke, Tobias Scholl, Bernhard Stegmaier, Alfons Kemper, and Angelika Reiser
Lehrstuhl Informatik III: Datenbanksysteme
Technische Universität München – Fakultät für Informatik

Network Basics:
- Grid-based P2P network
- Super-Peer Backbone
- Super-Peers: Powerful stationary servers
- Thin-Peers: Less powerful, possibly mobile peers/sensors

Deficiencies of traditional approach:
- Redundant transmission of data streams
- Redundant execution of stream transforming operators
- Transmission of unnecessary data
 - Increased network traffic
 - Increased peer load

StreamGlobe Basics:
- StreamGlobe: Data Stream Management System (DSMS)
- Super-Peers process and route data streams
- Thin-Peers publish and subscribe to data streams

Benefits of StreamGlobe approach:
- Stream sharing avoids redundant stream transmission
- Sharing computational results avoids redundant computation
- Early filtering and aggregation avoid unnecessary transmission
 - Reduced network traffic
 - Reduced peer load

Traditional Approach without Stream Sharing

StreamGlobe Approach using Stream Sharing

Peer Architecture Overview

Optimization using Data Stream Sharing

Optimization Techniques:
- In-network query processing
 - Distribute query processing operators in the network (query shipping)
 - Early filtering and aggregation
- Multi-query optimization
 - Share processing results (i.e., data streams)

Optimizer:
- Cost-based optimizer
- Various cost functions possible

Optimization Benefits:
- Reduced network traffic
- Reduced computational load on peers
- Load balancing
- Increased flexibility
- Parallelization
- Reduced latency

OGSA (GT3)

Metadata Management

StreamGlobe Interface

Optimization

Query Engine

(W)XQuery

Subscriptions

Data Streams

register

Published & Subscribe in a P2P Network

http://www-db.in.tum.de/research/projects/StreamGlobe