StreamGlobe:
Adaptive Anfragebearbeitung und Optimierung auf Datenströmen

B. Stegmaier und **R. Kuntschke**

TU München – Fakultät für Informatik
Lehrstuhl III: Datenbanksysteme

http://www-db.in.tum.de/research/projects/StreamGlobe
Outline

- Motivation

- StreamGlobe
 - The StreamGlobe Approach
 - Architecture Overview

- Current and Future Research

- Conclusion
Exemplary Initial Situation

- **Network**
 - Consists of peers
 - Given or grown topology

- **Data Sources**
 - Provide XML data stream
 - Possibly infinite streams (e.g., sensor measurements)

- **User requests**
 - Continuous queries
 - Query language XQuery
 - Registered at a peer
General Traditional Approach

1. Register requests
2. Lookup data sources
3. Establish data transfer
 → Peers may connect arbitrarily
4. Process / Execute requests
5. Routing of streams
General Traditional Approach (ctd.)

- **Drawbacks**
 1. Transmission of useless data
 2. Redundant transmissions
 3. Multiple request evaluation

⇒ Network congestion and processing overhead
Why StreamGlobe?

- Other Systems / previous work
 E.g. Cougar, TelegraphCQ, Multicast techniques:
 - Focus on specific aspects (e.g., query optimization)
 - Tailored to specific domains

- StreamGlobe
 - Contribution is combination of techniques:
 In-network query processing combined with routing
 - Constitutes a generic infrastructure
 - Independent of domain
 - Efficient data stream transformation and distribution
Outline

- Motivation

- StreamGlobe
 - The StreamGlobe Approach
 - Architecture Overview

- Current and Future Research

- Conclusion
The StreamGlobe Approach

Intelligent Routing
- Push query execution into network
- Multicast routing techniques
 - Data Stream Clustering
- Multi-query optimization

⇒ Reduce network traffic
⇒ Reduce processing cost
⇒ Load balancing
Basic Concepts

- P2P Network Topology
 - No arbitrary communication
 → Communication via *transfer paths*
 - No fixed P2P topology

- Classification of peers
 - Thin-Peers
 - Super-Peers
 ⇒ Constitution of a super-peer backbone

- Hierarchical organization
 → *Speaker-peer* responsible for certain subnet
StreamGlobe Peer Architecture

- Based upon *Open Grid Services Architecture (OGSA)*
- Integration similar to OGSA-DAI or OGSA-DQP
- Layers as grid-services
- Availability according to peer capabilities
- Message exchange via RPC and notifications
- Data stream transfer via direct TCP connections

Diagram:
- StreamGlobe Interface
- Optimization
- Query Engine
- Metadata Management
- Globus Toolkit
- XQuery
- Subscriptions
- XML
- Data Streams
StreamGlobe Interface

- Registration of XML data streams
 - Possibilities
 - As individual data stream
 - As part of a virtual data stream
 - Specification of schema with XML Schema

- Registration of subscription rules
 - At a special peer (user device)
 - Specified using XQuery
Metadata Management

- Managed information
 - Network topology
 - Registered subscriptions and data streams
 - Statistics of data streams

- Based upon service-data elements of Globus Toolkit

- Maintenance
 - E.g. peers joining/leaving, change of subscriptions, etc.
 - Using notification mechanisms of Globus Toolkit
Optimization

Goals
1. Register arbitrary subscriptions at any peer
2. Reduce network traffic
3. Optimize evaluation of many subscriptions

Achievement
- Pushing query execution into the network
 → (1), (2) and (3)
- Multi-query optimization
 → (3)
- Early filtering of data streams resp. evaluation of subscriptions
 → (2)
- Data stream clustering
 → (2)
Multi-Query Optimization

- Performed by speaker-peer
- Analyze subscriptions and streams
 - Common subqueries
 - Re-usability of streams
 - Based on properties of subscriptions / streams
- Computes
 - Filters and queries
 - Data stream clustering
 - Execution locations
Query Execution

- Basic concepts
 - Streaming evaluation and push-based techniques
 - Preclude unbounded buffering by requiring window constraints
 - Extensibility by means of mobile code

- Evaluation of subscriptions with FluX
 - Designed for streaming processing of XQuery
 - Event-based extension to XQuery
 - Usage of schema information for buffer minimization
Outline

- Motivation

- StreamGlobe
 - The StreamGlobe Approach
 - Architecture Overview

- Current and Future Research

- Conclusion
Current and Future Research

■ Current Research
 - Optimization techniques
 - Extension of FluX

■ Future Research
 - Quality-of-Service management
 - Explicit load balancing
 - Load shedding techniques
 - Construction of overlay network
 ...

9. Mai 2006
Conclusion

StreamGlobe

- Exploiting in-network query processing capabilities
- In combination with data stream clustering

→ Minimization of network traffic

- Query execution with FluX
 → Efficient and scalable execution of subscriptions
- Multi-query optimization
 → Parallelization and load balancing in the network
Related Work

- Braumandl, Kemper, Kossmann. “Quality of Service in an Information Economy”. TOIT 2003
- Chandrasekaran, Cooper, Deshpande, Franklin, Hellerstein, Hong, Krishnamurthy, Madden, Raman, Reiss, Shah. “TelegraphCQ: Continuous Dataflow Processing for an Uncertain World”. CIDR 2003
- Krämer, Seeger. “Pipes – A Public Infrastructure for Processing and Exploring Streams”. SIGMOD 2004