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Abstract

We discuss the TransformX framework for
syntax-directed transformations of XML streams.
In this framework, we define stream transforma-
tions as a special form of attributed extended regu-
lar tree grammars where all attributes can be eval-
uated in a single pass over the input, a necessity in
stream processing. In the tradition of tools such as
Yacc, the TransformX parser generator translates
attribute grammars to Java source code, which is
then compiled and evaluated. We motivate our ap-
proach in developing this tool, present the theo-
retical foundations, and study the complexity of
program generation. We further provide details
on our prototype implementation and first experi-
mental results.

Introduction

transformations may be easily specified, for instance us-
ing XQuery [25] or XSLT [26]. The corresponding query
engines typically operate on in-memory tree representa-
tions of the complete input document. Consequently, they
cannot scale to XML streams.

Lately, approaches have been developed to adapt exist-
ing XSLT and XQuery query engines to assumption (1)
by reducing main memory consumption. State-of-the-
art techniques produce incremental output [4], perform a
projection on the input before loading it into main mem-
ory [19], and even evaluate parts of the query in an event-
based approach [15, 16]. In contrast, the scripting lan-
guage STX [11] has been specifically tailored to the trans-
formation of XML streams.

However, the tools mentioned above do not employ
schema information, as available by assumption (3), in
order to assist users in specifying transformations. There
are various schema languages for XML, among the most
widely known are XML Schema and DTDs. The latter

In the database community, the efficient processing ofire a dialect of extended regular tree grammars, which are
XML streams has been identified as a nontrivial researchvell-suited for specifyingttribute grammars

challenge. In this context, we make the following three

assumptions:

on XML streams [3, 10, 12, 13].

1.

3.

nite length.
completely main-memory based.

stream.

. Applications for XML stream processing need to be

Attribute grammars [1] are widely agreed to carry
a strong intuition for specifying syntax-directed transla

XML streams are XML documents of possibly infi- tions: The programmer takes a grammar describing the

input and insertsttribution functiongnside the grammar

productions. Parser generators automatically transtate a
tribute grammars into the complete code for processing
the input. After compilation, the program executes the at-

Schema information is provided with the data tribution functions while the input is being parsed.

Thus, attribute grammars allow users to specify many

Applications for XML stream processing need to deal transformations conveniently, as users merely need to “fill
with assumptions (1) and (2), and ideally exploit the factin the blanks” instead of having to program transforma-
that a schema description is available according to astions from scratch. Further, attribute grammars make
sumption (3).
Recently, a lot of attention has been devoted to thepossibilities for optimization. This is especially intste

efficient evaluation of Boolean or node-selecting queriesng in stream processing, where it is crucial that transfor-

not many frameworks which allow faransformations

of XML streams, and even fewer that follow a syntax-

directed approach.
Setting aside the first assumption, i.e., for XML doc- grammars and introduces the TransformX parser gener-
uments small enough to fit into main memory, powerful ator which automatically translates attributed extended

* This research has been partly funded by the Austrian Fellfiinal

istry for Education, Science, and Culture, and the EurojS=amal Fund
(ESF) under grant 31.963/46-VI1/9/2002.

users aware of the structure of the input, which may reveal

Yet so far, there are mations can be evaluated efficiently w.r.t. main memory

and CPU consumption.
This paper proposes a full-scale framework — called
TransformX- for XML transformations based on attribute

regular tree grammars to Java code. The output of a
TransformX attribute grammar need not be XML. Rather,
TransformX attribute grammars may be regarded as a



comprehensive programming language for XML streamsgoclass Examplel
with all the capabilities of Java: Users may introduce vari-%echo TXWriter output = new TXWriter(System.out);
ables, strings, and arrays, and use their own data strgctur&echo TXBuffer buffer = new TXBuffer();

and methods. This allows for a wide range of applications o,

from filtering and transformation tasks to interaction with ;)

databases (e.g., using JDBC), where we may store parts

of the stream in databases or enrich the stream by joining

streaming and persistent data. pub
For the examples shown in this paper and based

on our own experience, application development with

TransformX attribute grammars becomes a convenient

task and is often preferable to writing programs directly

{ output.write({books”); } bib(pub")
{ output.write((/books”); }
{ output.write({book)”);
output.write((id)"+ i++ +“(/id)"); }
book(({ buffer.write($this);} year).
({ output.write($this);} title).
({ output.write(buffer); buffer.clear();

from scratch, as the following example demonstrates. output write(Sthis)} authorauthor ))

Example 1 Consider the extended regular tree grammar { output.write({/book"); }
G = (Nt, T, P, bib) defining an XML bibliography( has pub = article(yeartitle.author.author")
nonterminaldNt, grammar start symbdiib, terminalsT’,

and productiong’ defined as follows: year = yea(PCDATA
title == title(PCDATA
Nt = {bib, pub year, title, author} author = autho(PCDATA
T = {bib, book article, year title, author PCDATA %%
inti=0;
P : bib == bib(pub)
pub = book(yeartitle.author.author") Figure 1: TransformX attribute grammar of Example 1.
pub = article(yeartitle.authorauthor’) c) Theclass member sectigorovides room for auxil-
year := yeal(PCDATA iary attributes and methods which can then be ac-
tile = title(PCDATA cessed inside attribution functions. In our example,
N we declare an integer-counter “i”.
author ::= authoPCDATA

This simple example shows how the underlying grammar

From an XML stream conforming to this grammar, we conveniently provides us with context information, e.g. as
want to derive a transformed stream consisting of root© which titles are part of books and which are part of arti-
node “books”, followed by all the book subelements. cles. If the same transformation were programmed using a
Each book is given a numerical identifier “id” as its first SAX parser, the code would be scattered with correspond-
child node, and the order of title and year are reversed. ing case distinctions.

Using a TransformX attribute grammar, we spec- Also, the grammar component may reveal potential for
ify which parts of the document are to be transformedoptimization. In this example, it becomes apparent that
by adding attribution functions to productions: In the titles can be written directly to the output without being
tradition of parser generators such as Yacc [18], théduffered first. O
TransformX attribute grammar in Figure 1 consists of
three sections separated %% ": The source code produced by the TransformX parser

a) In thedefinition sectionwe state the name of the 9generator can then be compiled and executed. The re-
generated Java class. Further, we declare an outpgt|ting program will validate the input against the gram-
stream "output” and a string-buffer "buffer”. String- Mar component and evaluate the corresponding attribution

buffers may be written to, their contents copied to thefunctions while the input is being parsed. Thus, writing
output, or clearel applications for XML stream processing with TransformX

b) The rul . tains the attributed attribute grammars is mainly facilitated by “filling in” the
) proedLli:t?gnze\?viﬁn;c:tr;igg:ison ?ur?ctﬂ)#seenglr:srgrgail;\ blanks in a grammar, while the remaining parts of the pro-
. ram are generated automatically.
curly braces. Here, we specify that the XML start 9 g y
and end tags of the root node are renamed to “books”.

Upon seeing a book, the corresponding start and end Contributions The contributions of this paper are
tags are output and the numerical identifier is in-the following.

serted. The year is buffered, yet the title is output e We formally define TransformX attribute grammars.
directly. The buffered year is output before the au-

thors, thus reversing the order of title and year. e We discuss how users can specify Java-based

TransformX attribute grammars, how they may copy
subtrees directly from the input to the output, handle

1We provide more details on these classes in Section 4.2.



main memory buffers, and add their own data struc-then translated to equivalent event-based applications us
tures in practice. ing program composition techniques. The altSAX gram-

e We introduce the TransformX parser generator an({?ar component consists of four generic productions for

studv the time complexity of translating TransformX arsing XML in binary-tree notation. In particular, there
Iy piexity 9 is a single production for all labeled nodes. If nodes with
attribute grammars to Java code.

different labels are to be processed differently, userd nee
e We present a prototype implementation and showto program case distinctions inside attribution functions
first experiments with our framework. In contrast, the attribute grammars in our work and in [14]
are based on extended regular tree grammars which pro-
vide more context information. At the very least, there is
Structure  In the following section, we give a brief at |east one production for each different node label.
overview over the related work. In Section 3, we present Once a TransformX attribute grammar has been spec-
the necessary theoretical background in language theorjfied, the TransformX parser generator is responsible for
The TransformX attribute grammars are introduced injts translation into correct Java code. In certain aspects,
Section 4, while their translation to Java source code b){h|s is similar to existing parser generators for word lan-
the TransformX program generator is studied in Section Sguages [1] (as opposed to regular tree languages): The
In Section 6, we discuss our prototype implementationpok and feel resembles that of the well-known compiler
and experiments with it. We conclude with a summarytoo| Yacc [18], while the processing model is related to
and suggestions on how we might optimize the evaluationhat of LL(1) parser generators which perform a single
of TransformX attribute grammars in future work. pass over the input and do not construct a parse tree in
main memory.

2 Related Work

To our knowledge, the scripting language STX [11] is theWe assume thakgular expressionare constructed from

most related tool for XML stream processing. STX em- . . ;
X a set of atomic symbols using the concatenation operator,
ploys a processing model where stylesheets are evaluated.. N
Union operator, and the Kleene star, denoted and*.

in a single pass over the input, and allows for the specifica-

tion of powerful transformations of XML streams. While )

the syntax of STX resembles XSLT, TransformX attribute _Regular Tree Grammars  For the standard meaning

grammars specify syntax-directed transformations. of grammars and their derivations, we refer to [2] for basic
Attribute grammars have recently been revisited in the?"d 0 [17] for extended grammars.

context of XML, for instance for grammar-directed XML pefinition 1 (ERTG) Let Tag be a set of node labels

publishing [5, 6]. Some of the theory of attribute gram- («395") and letChar be a set of characters distinct from

mars relevant in the context of structured documents hag,e tags. Arextended regular tree gramma a grammar

been studied in [14,20-22]. In [20], regular languages; — (Nt, T, P, s) where

are used asonditionsfor attribute assignment. This ap- 1. Ntis a set of nonterminals

proach seems to be hard to use in practice and infeasible ™ ’

on streams, as an unbounded number of nodes which have2. 7' = Tagu Charis a set of terminals,

3 Preliminaries

already passed may have to be kept in memory. 3. P is a set of productionst ::= t(p) wherent ¢

In contrast, the XML Stream Attribute Grammars Nt, ¢t € T, p is eithere or a regular expression over
(XSAGS) [14] define strictly linear-time one-pass XML alphabeNt, and if¢ € Char, thenp = ¢, and
transformations. XSAGs are as expressive as determinis-4' s € Ntis the grammar start symbol. 0

tic pushdown transducers with a natural stack discipline
that assures that the size of the stack remains strictly ERTGs are a convenient way to specify a class of un-
proportional to the depth of the XML input document, ranked labeled trees. Thus, they present a natural gram-
and which can only accept well-formed XML documents. mar mechanism for XML documents without attribiftes
TransformX attribute grammars also only accept well- We introduce a syntactic macRRCDATAto describe
formed XML documents. Yet here, the attribution func- character content of leaf nodes: IGhar = {cy,...,c,}.
tions are encoded in a Turing-complete programmingAs a shortcut, we define the regular expression macro
language, allowing for more powerful transformations. PCDATA := (¢; U --- U é,)* using new nonterminals
Consequently, TransformX attribute grammars cannot bé,, ..., ¢, and productiong; ::= ¢;(¢) for eachl < i <
guaranteedto scale to streams. Apart from the differ- n. PCDATAcan be used just like a terminal on the right-
ence in expressiveness, TransformX attribute grammarkand sides of grammar productions. For sake of syntactic
are also more flexible w.r.t. where attribution functions simplicity and brevity, we will considePCDATAas a ter-
can be specified in the grammar component (see Remarkrinal as we already did in Example 1.
in Section 4). . 20ur data model of XML without attributes does not restrict épe

In the altSAX framework [22], tree transformations are pjicability of our work, since the attributes of a node cambadeled as
specified as non-circular attribute grammars, which arepecial children which precede all other children.




Definition 2 An XML document iswvell-formediff it con- bib
forms to an ERTGY = (Nt, T, P, s) where for all produc- bolok
tionss ::=t(p), t € Ta g

A well-formed document contains at least one element ~ Year ftile  author  author  author
(the root element) and has XML start and end tags prop-
erly nested within each other. Furthermore, the first sym-

bol in the document must be the start tag of the rOOt\Nant to buffer) when parsing the input_ ThUS, we will as-

Figure 2: Document tree of Example 7.

node. An XML document i$na|.f0rmedif it is not well- .Sume the Stronger notion o‘he_unambiguityor regu|ar
formed. The process of checking whether a document igxpressions () in the definition of TDLL(1) grammars.
well-formed w.r.t a SpeCIfIC ERTG is calladlidation That iS, we will require that—(p) can be unambiguous'y

Given a nonterminaht, let Q(nt) denote the set of parsed with just one Symb0| of lookahead.
terminalst such that the grammar contains a production

nt ::= ¢(pn¢). Given a regular expressign let 7(p) de- o )

note the regular expression in which each nonterminal ~ ©n€-Unambiguity and TDLL(1). By a markingof

in p is replaced by the union of termindl$é(nt). a regular ex/pressmmover alphabeX we denote a regular
expression’ such that each occurrence of an atomic sym-

Example 2 Consider the ERTG from Example 1. For bolinp |s'replaced by the symbol with its position among

regular expressiop = puls” from the right-hand side of the atomic symbols o added as subscript. The reverse

the bib-productionr (p) = (bookU article)*. [ ofa marklng (indicated by #) is obtained by dropping the
subscripts.

Each extended regular tree grammar can be alter- . )
natively considered as an extended context-free wordP€finition 3 ([9]) Let p be a regular expressiop its
grammar (CFG), which is obtained by simply rewriting Marking, and>’ the marked alphabet used pj. Then
eachtag(p) on the right-hand side of a production into ¢ is calledone-ambiguousf there are words., v, w over
(tag)p{/tag). Deterministiccontext-free languages are ' and symbolse,y € X' such thatuzv, uyw € L(p’),
precisely those recognizable by the deterministic push? # . andz# = y#. A regular expression is called
down automata (DPDA, see e.g. [2]). DPDAs run com-0One-unambiguout it is not one-ambiguous. O
fortably on streams requiring only a stack of memory ) )
bounded by the depth of the input tree. Using automataExample 4 Consider the regular expressign = a*.a
we can thus scalably recognize the deterministic contextand its markingy’ = aj.as. Letu = a1, z = as,
free |anguages_ v = €Y = aj, andw = as. Clearly, urv = al.qg

The problem of processing an (extended) attributeaNduyw = a1.a;.a, are both words of.(p'), thusp is
grammar on a document requires an additional, differOne-ambiguous. On the other hand, the equivalent regular
ent restriction on the grammar besides determinism to aleXPression.a™ is one-unambiguous. u
low for deterministic computation: We need to unambigu- )
ously refer to theatomic symbolsn the regular expres- Definition 4 ([17]) A TDLL(1) grammaris an extended
sions to be able to access or assign attributes. In attribut@gular tree grammar wheres) is unambiguous and in
grammars, a straightforward solution [20] is to require forWhich for each regular expressipron the right-hand side

right-hand side regular expressiopshat 7(p) is unam-  Of @ productions (p) is one-unambiguous. O
biguous[7]. . _ _
Example 5 The grammar discussed in Example 1 is a
Example 3 Consider a grammar with productions TDLL(1) grammar. Since the grammar of Example 3 con-
tains a regular expressigrsuch thatr(p) is not even un-
bib := bib((book U book)*) ambiguous, that grammar is not TDLL(1). O
book ::= book()

Example 6 DTDs are TDLL(1) grammars [14,17]. O
book, ::= booke) P Dg [ ]
For TDLL(1) grammars, the parse trees are simply the

The regular expressiofbook U book)" is unambigu- usualdocument treeassociated with XML documents.

ous, butr((book U book)*) = (book U book™* is

not. Therefore, when processing the tags of the chil- .
dren of thebib node, we cannot determine which of the Example 7 The ERTGG from Example 1is a TDLL(1)

) ) . , : .~ grammar. Thus, the XML document
two book-productions (with their possibly different attri ¢
butions when we consider attribute grammars) are to bepib)

applied. O {book) (year/)(title/){authoy)(authoy') (authoy') {/book)
(/bib)
On streams, we cannot look ahead beyond a nontermi- ) ) o
nal (which may stand for a large subtree that we do noParses into the tree depicted in Figure 2. O



1bib

/ N\ 7/ N\ 7 N\
a * a * a * |
I 7/ N\ 2book
a a a |
3
(@) a,aa, aaa € L(a.a*). / \
syear 6"
T /*\ : titl — \
ear itle .
* * * 24 T /9 \
/ N\ | | | 1pauthor 12%
“a a “a a title <N
®) aa € L{(a")") ® | sauthor  yzauthor
aa @) 11author | |
Figure 3: Parse trees for words in regular languages.
14author 1gauthor

Strong One-Unambiguity TDLL(1) grammars al-
low us to use attributed extended regular tree grammars Figure 5: Extended parse tree of Example 9.
on XML streams. However, as we show in the follow-
ing section, the ability to use attribution functioimside  bol 2 € ¥ such thatwaav, uBzw € L(pl) or ua,uf €
the regular expressions on the right-hand sides of produck (pll). O
tions will allow us to write many practical queries in a
much more user-friendly fashion. As a prerequisite, Wegxample 8 Consider the regular expressipn= (a*)*
require foraright-hanq side regular expressidhatr(p)  with bracketing pll = [1-(J2.([3-a.]3)*.]2)*.]1 derived
is strongly one-unambiguous from the parse tree in Figure 4(b).

Let us briefly motivate this notion. Regular expressions p is one-unambiguous, but not strongly one-
provide a natural and intuitive way of assigning parse tree%nambiguous: For the worda € L(p), there are
to words (see [14] for a formal definition). Specifying bracketings [1.[>.[s.a.]s.[5-a]s.]2]1 € L(pl) and
attribution functions inside a regular expressjonorre- 1, 1. 4121, [, [5.a.]5.]2.1 € L(pl), sou = [1.[».[s.a,
sponds to assigning attribution functions to the nodes i, —
the parse trees for words i(p). In the setting of XML
streams, this requires that all such parse trees can be un-

ambiguously constructed with a lookahead of one token. Wh||_e DTDs are only requed.to have_one-
For instance, consider the parse trees for Wordsunamblguous content models [8] (i.e., right-hand side reg-

a,aa,aaa € L(a.a*) in Figure 3(a). These parse trees ular expressions in productions), we believe that most

a,re l;nique, yet the parse tree fon ¢ L((a*)*), as practical DTDS o_nly use strongly one-unambiguous reg-

shown in Figure 3(b), is not. While both regular ex- ular expressmps|r.1the|rproduct|ons [14].

pressions are one-unambiguous,* is alsostronglyone- If & production in a TDLL(1) grammar has a strongly

unambiguous. Let us now give a formal definition. one-unambiguous regular expressjoon its right-hand
Intuitively, by abracketingof a regular expressio, 5|de,_we may incorporate the parse trees for words in

we refer to dabeling of the nodes in the parse treép  L(p) in the document parse tree, as they may also be con-

using distinct indexes. We realize this by assigning thestructed online. We refer to such parse treeex_ieered
indexes in a depth-first left-to-right traversal of the gars Parse treesand introduce the following notation: Let

tree. See Figure 4 for two examples. The bracketifig G=(NT,P, S) be aTDLL(l) grammar. LeP’_ C Phbe
is then obtained by inductively mapping each subexpres‘:’l set of productions with strongly one-unambiguous regu-
sion 7 of p with indexi to [;.7.];. Thus, a bracketing lar expressions on their right-hand sides and’lbe an in-

is a regular expression over the alphabiet) T, where ~PUt document. The® (T’ P’) is an extended parse tree

T ={[];|i€{1,23,...}}. We assume tha andTl for T" which incorporates the parse trees for sibling _nodes
that are words in those regular languadép) wherep is

a right-hand side regular expression in a productioR’'in

forP’ =0, Po(T,P') =T.

J5.13, B8 =3.]2-[2.[3, = @, andv = w =]3.]2.]1. O

are disjoint.

Definition 5 ([14]) Let p be a regular expression and let OPviously,
pl be its bracketing. A regular expressipnis called

strongly one-unambiguoudf there do not exist words Example 9 Consider the ERTGG from Example 1
u,v,w over X U T, wordsa # ( overl, and a sym- and the input documenf’ from Example 7. Let
pP°%k denote the book-production. The extended parse

/1U\ 1T tree Pg(T,{p**°}) is shown in Figure 5, where
2% 4% 2% nodes associated with nonterminals are set in ital-
3'a 5Ib 3'a ics. Here, we assume that the operation “” asso-
ciates to the right and that the productiopub ::=
(@) a* Ub*. (b) (a*)*. article(year.title.author.author‘k)" of G is thus equivalent
Figure 4: Parse trees of regular expressions. to “pub::= article(year. (title. (author.(author))))”. O



Notation for Classes and Types We assume the TaguU Char, and productions i® where each production
usual notions of classes, objects, and types, and further ais of one of the four forms

nt::=t¢(a)

. an attributed regular expression over symbils
(containing at least one attribution function), such
that the following holds: For the regular expres-
sion p obtained froma by removing the attribu-
tions (enclosed in curly braces)p) is stronglyone-
unambiguous. O

tributes and methods in object-oriented programming lan-
guages. In particular, we introduce the following notation nt:= {f$[} t(a)
Let C be a set oftlass namesnd letatt be a set of
names fomttributes A special constanil represents the nti=t(a) {fs} nti={fs} t(a) {fy}
u_nd_eflned \_/alue. Ify,..., 7, are types andi, ... ,_An withnte Nt ¢ € T, fs( € Fy;, fs) € Fy, and ift € Char
distinct attribute names, théd; : ,..., A, : 7,]isa thena = ¢, and if¢ € Tag thena is either
(tuple) type.
We assume an infinite setethof method names. A 1 e
method consists of a name, a signature, and an implemen-2. a regular expression ov8it such thatr(«) is one-
tation (also called body). For a method namea signa- unambiguous, or,
ture ofm is an expression of the form : ¢ x 7 x -+ % 3
Th—1 — T, Wherec is a class name i’ and eaclhr; is
a type.We assume that all classes provide a methwte
which returns a new object of the same type and with the
same value.

4 TransformX Attribute Grammars

We are now in the position to define the syntax and seman- 1hus, given a TDLL(1) grammar, we may add attribu-
tics of TransformX attribute grammars. Having laid thesetion functions to a production depending on its right-hand
foundations, we show how users can specify Java-base¥{de. In cases (1) and (2) of the above definition, attri-
TransformX attribute grammars in practice. bution functions may be inserted only at the beginning
and end of the right-hand side. In case of a strongly one-

unambiguous regular expression on the right-hand side of

] ] a production (3), we may also specify attribution functions
We define TransformX attribute grammars as TDLL(1) insidethe regular expression.

grammars withattribution functionsadded to productions.

The key principle in the following syntax definition is that Remark 1 While the above definition resembles the syn-
attribution functions may only be inserted such that wetax of XSAGs [14], the syntax definition of TransformX
can unambiguously determine which attribution functionsattribute grammars is in fact more general (and the class of
to invoke next when reading a specific token from thetransformations possible with TransformX attribute gram-

4.1 Abstract Definition

XML input stream.

Definition 6 (Syntax) Let 7y,...,7, be types and
Aq, ..., A, bedistinct attribute names. LAtt denote the
tuple type[A; : 7y, ..., Ak : Tk

Letc € C be aclass name. Léf, F5; C methbe
disjoint sets of method names whefig € Iy denotes a
first-visit attribution functiorwith signature

f$[SCX7'1X"'XTk*>Att

and wherefg; € Fy denotes asecond-visit attribution
functionwith signature

fepiexX T X T X T X s X T — Al

The abstract syntax of attributed regular expression
over symbols: can be specified by the EBNF

({7 Fy*})? aregex ({" Fy*}")?
Y | aregex".” aregex|
aregex‘U” aregex| aregex‘*”

aregex :=
aregey =

A TransformX attribute grammais an attributed ex-
tended regular tree gramm@r= (Nt, T, P, s) with non-
terminalsNt, grammar start symbot, terminalsT =

mars is much more powerful, as discussed in Section 2):
With XSAGs, we distinguish between bXSAGs (where
only cases (1) and (2) are allowed) and yXSAGs (where
only cases (1) and (3) are allowed). While the latter are
more convenient to use, they require a grammar compo-
nent stricter than TDLL(1). With TransformX attribute
grammars, we no longer make this distinction. Instead,
we solely consider TDLL(1) grammars and only allow
attributions inside those regular expressions which are
strongly one-unambiguous. O

As the grammar components of TransformX attribute
grammars are TDLL(1), we can validate input documents
one token at a time. In particular, the (extended) parse
trees of input documents may be unambiguously con-
structed online. Yet at no time during the evaluation of
TransformX attribute grammars will it be necessary to ac-
tually maintain the entire (extended) parse trees in main
memory. Rather, it is sufficient to keep the “path” from
the root to the current node in main memory.

In the following, we will be somewhat imprecise and
talk of attribution functions infg and F) when we actu-
ally refer to the method names Iy and Fy; .

LetG = (Nt, T, P, s) be a TransformX attribute gram-
mar and let?’ be the subset of productions with attributed
regular expressions on their right-hand sides. We evaluate



G on an XML input tre€l’ by assigning attribution func- Definition 7 (Semantics) Let m,...,7. be types and

tions from F and Fy) to the nodes in the extended parse A, . .., A;, be distinct attribute names. LAttdenote the

tree P (T, P'), as specified by the grammar. We then re-type[A; : 71,..., Ak : 7%

fer to such parse trees a#iributed parse treeand write Let Fg, F5; € methbe the first- and second-visit

Pe(T) as a shorteut foPg (T, P'). attribution functions respectively. Then we evaluate a
Where the attribute grammar does not explicitly stateTransformX attribute gramma® on an attributed parse

attribution functions, we assume default attribution func treeP¢(T') as follows. In a depth-first left-to-right traver-

tionsfg[ andfgﬁ which are implemented as follows: sal of P¢(T), we compute for each attributé; (with
J i = 1,...,k) and each node, the four assignments
Att fg(mi a1, ., T ar){ (@0)8ins (@08 puer (@)§) 4> ANA(a:)§) ,,, (inductively)
return new{4d; = ay, ..., A = ail; as follows.
) nil ... v is the root node
Att (o an, oo e ag, T b - T B (@3)§.in = (ai)g7 6y - - the first child ofug
return newA; = by, ..., Ay = byl; (ai)gfout ... v is the right sibling ofvg
} a;)er ... v has no children
( 4)11 L $[.out
Example 10 From an abstract point of view, the ‘%/sl.in "= (@i)§) out - --wis the rightmost child of
TransformX attribute grammar of Example 1 may be writ- i n
ten asG’ = (Nt, T, P, s) with attribution functions In the first visit to node, we evaluate
Fy = {8, fai 12, Fap 30 10 Foy = {08 18, 123, [Ar = (@)$10uts -+ Ak = (h)§]0ut] =
and the attributed productions S5 ((@)sgins - (@1)3.n)
. . . and in the second visit to, we compute
bib = {fg} bib(pub’) {fg}
pub = {f5} book(({fs} yean.({fg} title). [A1 = (01)§ outs - -+ Ak = (A1)§) pur] =

(
({f$9[} aUthOKaUthOfk)) {fﬂ?]} f%j] ((a‘l);[.out’ T (a’k);[.out’ (al)g].inv Tt (ak)g]zn)

(with the other productions just as in Example 1). Assumeln casefg) or fq exit the program execution, the evalua-

the input document” from Example 9. In the above at- tjon terminates and the input is rejected. 0

tribute grammar, the book-production (denoggd®" is

the only production with an attributed regular expression Note that a TransformX attribute grammar may reject

on its right-hand side. the input in two different ways, namely if it is not valid
The assignment of attribution functions to the nodeswith respect to the grammar component or if an attribution

of the extended parse trg®; (T, {p°°°}) in Figure 5is  function exits the program execution.

straightforward: For instance, node 1 is assigmgdand

fgﬁ- Node 4 is assigneglg‘[ and the default second-visit 4-2 Java-based TransformX Attribute Grammars

attribution functionfg], while node 5 is assigned both de- In the tradition of parser generators such as Yacc, users
fault attribution functionsfg[ and fg] _ Further,fg[ and fg] d_eflne.Java-_based Transflo_rm).( at_trlbute grammars in a
single input file, as exemplified in Figures 1 and 6. We de-
fer the handling of I/O until after we have described how
TransformX attribute grammars are defined asto read and write basic TransformX attribute grammars.

L-attributed grammars, i.e., attribute grammars whose
attributes are evaluated in a single depth-first left-gvri Specification Let 7,...,7, be types and let
traversal of the document tree [1]. Each nodes By, ..., B, be distinct attribute names. Further, &y
assigned two attribution functionﬁf[ and fg- During be a set of method names. Then a TransformX attribute
the traversal, each nodeis visited twice (the visits are grammar with

referred to by$[ and$)), first from the preceding sibling e class name ¢ C,

or the parent oy (if v has no preceding sibling) and a

are assigned to node 9.

second time on returning from the rightmost child.of ¢ Zpes ;11’ .éln,dﬂtw qu['sjl?zt ) attrlbutj ) ne]lmes

Accordingly, we evaluatgg; in the first visit, andyg in Lo A ANAYPOAT= 1AL 271, - Ak = Tl

the second visit. . attnbu_uon functlons infg andFy), where the bodies
To provide a clear picture of the necessary computa-  ©f attribution functions may refer t8,,..., B, and

tions, we distinguish the states of attribute valbefore methods infayy, SO that users may introduce auxil-

(using the subscript “in”) andfter (using the subscript iary attributes and methods. Further,

“out”) the application of an attribution function. e an attributed TDLL(1) gramma® = (Nt, T, P, s),



is encoded as a Java-based TransformX attribute grammaesiclass SectionProcessor
in a single specification file, consisting of three sections: % {

(a) In thedefinition sectionwe set up the execution envi- class IntAty

i IntAtt(intv) { value =v;}
ronment and declarg, .. ., Ay public IntAtt clone()  { return new IntAtt(value)}
e “%classc” specifies the name of the generated class public int value; }

. %
e Import statements and class definitions are stated "%gtt INtAtt count = new INtAtt(0);
a literal Java block, enclosed in bracés{ ... %}". %start doc
%%

K rd “%att” pr h larations and ini-
o Keyword “%att” precedes the declarations and sec = { $.countvalue+t;/* [° )

tializations ofAq, ..., A;.
sectior(sec U par”)

e The nonterminal from the first production in the rules _
{ int before =$[.count.value; /* fg°*/

section is assumed to be the grammar start symbol.
It may be redefined by the statemeftstart s”. int after =$].count.value;

. . . . if (is_odd(after - before) ) odd++]
(b) Therules sectiorcontains the attributed productions. ( ( ) ;

Consider a first-visit attribution functioffy, € Fy| as- par == paragraple)
signed to a node in the attributed parse tree: doc := documenfsec)
{ real r = odd /$].count.value;/* fg]"c */
Att f$[(7’1 $[.A1, ey TR $[Ak){
...body...

return newA; = $[. Ay, ..., A = $[.Axl; %%
} i 4 ’ 4] private int odd = 0;

private boolean isdd( int x ){ return (x % 2 == 0);}

System.out.printin(“Result="+ r +"%");}

Within the body offg[, we write "$[. 4," to access the cor-
responding input parameter. Likewise, consider a secondrigure 6: TransformX attribute grammar of Example 11.

visit attribution functionfg] € Fy[, assigned te:
In general, the attributes of (1) encode a global state in the

Att £ (r1 S AL, ... 7 S[ Ak, 71 8] AL, 7 S AR parsing process, e.g., how many books have been encoun-
...body... tered in the XML stream so far. In contrast, the attributes
return new[A; = $.A,,..., Ay = $].4,]; of (2) are best employed to transfer information between

} B the first- and second-visit attribution functions assigted

the same node in the attributed parse tree.

The following example illustrates how the two kinds of
attributes are best applied. It also aims at demonstrating
the various syntactical constructs, so it is not necegsaril
the shortest and most elegant encoding.

Within the body offgj], we may access two versions 4f
according to Definition 7, which we distinguish using pre-
fixes$[ and$): “$[.A;” yields the value of4; as computed
by fg[. By “$].A4,", we access the value df; as computed
by the attribution functions assigned to the rightmostcthil Example 11 For documents conforming to the recursive
node ofw. TDLL(1) grammarG = (Nt, T, P, s) with productions

In place of the method names for attribution functions
in Definition 6, we insert the implementations inside the
productions in the definition section. In particular, the sec := sectior(se¢ UPCDATA

bodies are enclosed in curly braces and declared without . )
return statements. we want to compute the percentage of section-nodes with

) ) ) an odd number of section-nodes in their subtrees.
(c) Theclass member sectiaontains the declarations of  consider the document tree in Figure 7, where the sub-
the attribute names®,, ..., B,, together with their types ree rooted at node 2 contains an odd number of section-
71,--.,7n, and the methods with names ijx. nodes (exactly 3), while the subtree rooted at node 6 con-
tains zero and thus an even number of section-nodes.
The Java-based TransformX attribute grammar in Fig-
ure 6 specifies this computation: In the definition section,

doc := documenfsec)

As Yacc users will have noticed, we made an effort to
adopt the familiar Yacc notation as far as possible.

In a TransformX attribute grammar, we distinguish be-
tween two kinds of attributes: 1document

1. The auxiliary attributes (denotdsl, . . ., B,, above) . ~— .
. : »section gSection
declared in the class member section, and

2. the attributes from the actual TransformX attribute ~ 3S€ction  ssection  ssection

grammar, as declared in the definition section (see _
Ay, ..., Ay above). Figure 7: Document tre@® of Example 11.



input node comments All sink streams are derived from abstract clséster
(document 1 f5(0) =0 [ odd=0 as specified by the Java API [24], and thus provide meth-
(section) 2 f5((0) — 1 odswrite, flush andclose Users may add their own im-
(sectior) 3 fi(1) —2 plementations of sink streams. The TransformX frame-
(/sectior) 3 | f122) =2 work already contains two customized classes, as used in
el IR B
Eé ectior)r) : fs) féeé(i%; : 4 o ClassTXWriter, a subclass oDutputStreamWriter
(/section 5 ;}eC([AlA) 4 is intended for copying data to output streams, e.g.,
(/section 2 £5791,4) — 4 | odd =1 to standard output or files.
{section 6 fsi4) — 5 e ClassTXBuffer a subclass dbtringWriter, is used to
{/section 6 f5795,5) — 5 buffer parts of the input in in-memory string buffers.
(/document 1 f§f°(0, 5) — 5 | “Result=0.2%" TXBuffer provides methodlear() for discarding any
buffered contents.
Figure 8: Run of Example 11 Let o be a sink stream and Igfgf[ be a first-visit attri-

bution function assigned to a noden an attributed parse
a new classntAtt holding integer values is defined, and tree. If the implementation of¢; contains the statement
an auxiliary attribute “count” of typentAtt is declared  «, \yrite($this)”, the subtree rooted atwill be copied to
and initialized to zero. o. Yet if a first-visit f§; assigned to a descendant nade

ttl_rlljt?e“cga(:;’? Tfr;:bfrtse%“on' we decl?re an gux'l'fatrﬁ’of v contains the statemend.bmit($this)”, then the sub-
attribute “odd" which states how many section-nodes withy oo 1oqted aty will not be copied.

an odd number of sections in their subtrees have been seen
so far. By declaring “odd” private, we can control the Example 12 Changing the book-production in the
access to this class member. TransformX attribute grammar of Example 1 to

The rules section contains the implementations of
attribution functions f§[ec, f;fc, and fg]c’c: Attribute P
“count” is incremented whenever a tagséction” is
read. Upon reading(/section”, the number of section will output books together with their XML start and
nodes in the subtree below is computed by subtractingnd tags, year and author children, but without title [
“$[.count.value” (the number of section-nodes before pro- ) _ _
cessing the subtree) fron§]‘count.value” (the number of ~ The echo-mechanism may be implemented by intro-
section-nodes after processing the subtree). If the resyfucing additional attributes in the definition section vwhic
is an odd number, then the auxiliary attribute “count” is Signal whether a subtree is to be output or not. Due
updated according|y_ When the C|Osing tag of the rootto Space I’eStriCt_ionS, we refer to [14, 23] for details on
node is read, the total number of nodes (contained ithe implementation of the analogous macE&SHO and
“$].count.value”) is used to compute the result. ECHO.OFF.

As this TransformX attribute grammar does not con-
tain any productions with attributed regular expressions® 1he TransformX Parser Generator

the extended parse tree is the same as the document {rége TransformX parser generator translates TransformX
Consequently, yode 1d'” Figure 7 is assigned the attribuayripyte grammars into the source code of a Java class
tion functionsfg; and fg*. All other nodes are assigned \yhich encapsulates the attribution functions, user-define
the attribution functionggF“and /g7 attributes and auxiliary methods, and performs the trans-
In Figure 8, we trace the execution of the aboveformation of the XML input stream. Compilation of the
TransformX attribute grammar on this input document.source code with the Java compiler yields the executable
The first column shows the current XML tag being read.classfiles. In the following, we discuss the translation to
The second column identifies the current node in thesource code and its time complexity.
depth-first left-to-right traversal of the attributed pars  The evaluation of a TransformX attribute gramndar
tree. In the third column, we state which attribution func- on an input documerif’ is based on a separation of con-
tion is being evaluated, together with the values of itscerns. Accordingly, we define two modules:

input- and output-parameters. N e The validator module validates the XML input
stream against the grammar componertad out-

/O with TransformX Attribute Grammars ~ Typi- puts the sequence qf attribution. functions as encoun-
cal transformations of XML streams will involve reading tered in the depth-first left-to-right traversal of the
parts of the input. So-callesink streamseither intended attributed parse tree.
to create output or to serve as internal buffers, are detlare e The evaluator modulénvokes the attribution func-
and instantiated by theYechag’ statement in the defini- tions as output by the validator. It stores the result
tion section. computed by a first-visit attribution function on a

ub::= { output.write($this);}
book(year.( { output.omit($this);} title).author.author")



stack so that they are accessible to the second-visit Vvoid evaluaté(Fs; U Fg)) f)
attribution function which is assigned to the same {

node in the attributed parse tree. if (pred= 1 andf € Fg)) {
. . Att A := S.top().clong);
Note that the validator and evaluator each maintain ’
S.push( f(A) );

their own stack. This allows for optimizations, as outlined

in our discussion of future work. pred:= 1;

}elseif pred= 1 andf € Fg) {

We assume the usual notion of deterministic pushdown Att A := S.pop();
transducers@PDTs) [2] as deterministic pushdown au- Att B := A.clong);
tomata with output. S.push f(A, B));
o . pred:= 2;
Definition 8 Let G be a TransformX attribute grammar else if bred= 2 and f € F.
with grammar componer®’ and letT be an XML doc- } AttA(-D: S.pop(); Je ki
ument tree. Avalidator V(G) is a DPDT which, if Spusi( f(A) ): ’
T € L(G"), outputs the method names of the attribution pfed-: 1: ’
functions as encountered on the depth-first left-to-right else if bred= 2 and f € F
traversal of the attributed parse treelaf O ; ,itt IB(DL S.pop(); fe i
We construct a validator from a TransformX attribute g‘tt A= S‘EOEO; _
grammarG = (Nt, 7', P, s) in two steps: prggst( g_( B) );
1. For each productiop € P, we construct a deter- ) -
ministic finite-state transducer (DFT) [2}? which }
recognizes the regular language defined by the right- Figure 9: Methockvaluate
hand side op and outputs the corresponding attribu-
tion functions at the same time. between the DFTSs, or rather, the productions they
For productions withe or one-unambiguous regular represent.

expressions on their right-hand side, the construction By simulating the DPDT on an input document, the
of AP is straightforward. Let us briefly consider pro- document is validated against the grammar component of
ductions with attributed regular expressions. G. At the same time, the validator outputs the attribution
Given a regular expressioh let ® be a special end- functions in the correct order. We refer to [23] for details

marker symbol that does not occur i As shown  ©f this construction.

in [14, 2.3]’ if a regular exp_ressiqgﬁufi]s Strongly ON€- " proposition 1 For a TransformX attribute grammag, a
unambiguous, then there is a DEI' () which rec-  —ajigator () can be constructed in im@(|G?).
ognizesL(8.®) and outputs the bracketing of word

w for input w.© € L(B.©). Further, there is an The computationally most expensive step in the con-
O(n?) algorithm that checks whethet is strongly  struction of a validator is the derivation of DFTs from reg-
one-unambiguous and if so, outputd (3). ular expressions. For a one-unambiguous regular expres-

By Definition 6 we know that for an attributed regu- Sionp, such a DFT may be constructed in quadratic time
lar expressiom on the right-hand side of a produc- N the size ofp [9]. As mentioned above, the DFT con-
tion, we obtain a regular expressipver nontermi-  Struction for an attributed regular expressiomequires
nals by ignoring the attribution functions in Fur- ~ cubic time in the size op [14, 23]. Thus, the time com-
ther, 7(p) is strongly one-unambiguous. Obviously, plexity for the construction of (G) is in O(|G|?). In fact,

this also implies the strong one-unambiguitypof the translation is only cubic in the sizes of the regular ex-
pressions in the productions &f, and linear in the size

of G. For typical grammars, we may expect these regular
expressions to be small.

So givena and p, we may adaptdl(p) so that it
outputs the method names of the attribution func-

tions assigned_tm_instead .Of the; bracketing, with Obviously, if a TransformX attribute gramméf does
the default-attribution functions in places where no i

S : iy not contain any attributed regular expressions, then the
attribution functions have been specified by the USeralidator can be constructed in tini&| G|).
2. The transitions of all DFTs iRA? | p € P} are then We assume the common notion of a stack with methods
encoded into the transitions of a single DPDT. het top, pop, andpush
be the current production. When reading a start tag
(t), we store the current state gf? on the DPDT  Definition 9 Let 7y,..., 7 be types, let4,,..., A; be
stack and start the simulation of the DFT which cor- distinct attribute names, and l&tt = [A; : 7y,..., A :
responds to the new production. Consequently, wherrg]. Let G be a TransformX attribute grammar with attri-
reading the matching end tagt), we resume the bution functions inFg and Fy.
simulation of the previous DFHP? by retrieving its An evaluator€ (G) is a class with the following prop-
state from the stack. Thus, we use the stack to switclerties:
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— of memory it takes for the JVM to run. Experiment (1)

p 100~ — 1 demonstrates the minimum time to parse and validate
2 the input, while transformations (2) and (3) require more
§ L] ity I () i N time, as additional processing steps are involved. This
P effect is also visible in the throughput achieved: Trans-
E o e N formation (1) reaches 3.042, while transformations (2)
Y I B -] and (3) reach a throughput of 1.8 and 1.26Y8.

We refrain from benchmarking the TransformX frame-
work against other systems, as in our framework, perfor-

2222 2222 g22¢< mance is entirely in the responsibility of the programmer:
a2 s § a2 §| a2 § Knowledgable programmers can construct the fastest pos-
1) ) A3) sible Java transformations. The TransformX framework

facilitates this task by providing the grammar-based con-
Figure 10: Runtime for datasets of various sizes.  trol over the data stream characteristics.

1. AttributeS is a stack holding tuples of attributes. At- .
tribute pred of type integer signals whether the attri- 7 Conclusion and Future Work

lf)u t:;)rr}r:‘l;%ct(lic;nplrzzt:prgcessed washiy (if pred = We have motivated the benefits of syntax-directed trans-
[ ' formations of XML streams. We have described the
2. Initially, pred = 2 and the stack holds the tuple TransformX attribute grammars and parser generator as
[Ar = nil,..., Ay = nil]. a tool for conveniently developing Java applications for
3. Method evaluateinvokes one attribution function XML stream processing.
[ € Fg U Iy at a time and stores attribute values  Our next step will be to optimize the evaluation of
on the stack so that a second-visit attribution func-TransformX attribute grammars by reducing the number
tion can access the results computed by the first-visibf stack operations performed by the evaluator: The gen-
attribution function that is assigned to the same nodeeral idea is based on the observation that most practical
in the attributed parse tree. The pseudo code for thiSransformX attribute grammars contain only few user-
method is shown in Figure 9. O defined attribution functions. Typically, the majority of
nodes in attributed parse trees is assigned default attribu
As the evaluator follows directly from its definition, tion functions, especially if productions contain atttih
it may be constructed in constant time. So by Proposiyeqular expressions.
tion 1, the TransformX parser generator can translate a gor an attributed parse tré@, we construct a tree mi-
given TransformX attribute gramma¥ to (Java) source o p by removing those nodes which are assigned “non-

code in timeO(|G|*). effective” attribution functions. To name an obvious ex-
. . ample, consider nodes which are assigned both default at-
6 Implementation and Experiments tribution functionsfg; and f¢. In more interesting cases,

We implemented the TransformX framework @+ with the result of applying a first-visit attribution functione®
gccversion 3.2. The generated Java class uses the SAROt need to be stored on the evaluator stack, because it is
parser provided by the Java APl and is compiled and exeRot accessed by succeeding attribution functions. A modi-
cuted withSuris JDK 1.4.1 [24]. fied program analysis taking into account the semantics of
Runtime is averaged over five runs and measured i ransformX attribute grammars may identify such cases.
seconds. It does not include the translation of TransformX If the evaluator invokes the attribution functions en-
attribute grammars, as these values were negligible. ~ countered in the traversal @?, but only stores the re-
Our test data is an XML bibliography conforming to sults on the stack for those attribution functions also en-
the ERTG of Example 1 with an equal number of bookscountered in the traversal d®’, fewer stack operations
and articles. We conducted the following experiments: are performed. This improves runtime and may even re-
1. Validate the input against the ERTG, i.e., evaluatedUce€ main memory consumption, while the transforma-
a TransformX attribute grammar with only default tion of the XML stream remains equivalent. In first exper-

attribution functions iments, this optimization improves the runtime of trans-

formation (3) in Section 6 by 15%. We plan to further

2. output the complete input, and explore this approach in our future work.
3. evaluate the TransformX attribute grammar specified
in Figure 1.
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