
Syntax-directed Transformations of XML Streams

Stefanie Scherzinger∗,† Alfons Kemper‡

† Technische Universität Wien, Vienna, Austria,scherzinger@wit.tuwien.ac.at
‡ Technische Universität München, Munich, Germany,alfons.kemper@in.tum.de

Abstract

We discuss the TransformX framework for
syntax-directed transformations of XML streams.
In this framework, we define stream transforma-
tions as a special form of attributed extended regu-
lar tree grammars where all attributes can be eval-
uated in a single pass over the input, a necessity in
stream processing. In the tradition of tools such as
Yacc, the TransformX parser generator translates
attribute grammars to Java source code, which is
then compiled and evaluated. We motivate our ap-
proach in developing this tool, present the theo-
retical foundations, and study the complexity of
program generation. We further provide details
on our prototype implementation and first experi-
mental results.

1 Introduction
In the database community, the efficient processing of
XML streams has been identified as a nontrivial research
challenge. In this context, we make the following three
assumptions:

1. XML streams are XML documents of possibly infi-
nite length.

2. Applications for XML stream processing need to be
completely main-memory based.

3. Schema information is provided with the data
stream.

Applications for XML stream processing need to deal
with assumptions (1) and (2), and ideally exploit the fact
that a schema description is available according to as-
sumption (3).

Recently, a lot of attention has been devoted to the
efficient evaluation of Boolean or node-selecting queries
on XML streams [3, 10, 12, 13]. Yet so far, there are
not many frameworks which allow fortransformations
of XML streams, and even fewer that follow a syntax-
directed approach.

Setting aside the first assumption, i.e., for XML doc-
uments small enough to fit into main memory, powerful

∗ This research has been partly funded by the Austrian FederalMin-
istry for Education, Science, and Culture, and the EuropeanSocial Fund
(ESF) under grant 31.963/46-VII/9/2002.

transformations may be easily specified, for instance us-
ing XQuery [25] or XSLT [26]. The corresponding query
engines typically operate on in-memory tree representa-
tions of the complete input document. Consequently, they
cannot scale to XML streams.

Lately, approaches have been developed to adapt exist-
ing XSLT and XQuery query engines to assumption (1)
by reducing main memory consumption. State-of-the-
art techniques produce incremental output [4], perform a
projection on the input before loading it into main mem-
ory [19], and even evaluate parts of the query in an event-
based approach [15, 16]. In contrast, the scripting lan-
guage STX [11] has been specifically tailored to the trans-
formation of XML streams.

However, the tools mentioned above do not employ
schema information, as available by assumption (3), in
order to assist users in specifying transformations. There
are various schema languages for XML, among the most
widely known are XML Schema and DTDs. The latter
are a dialect of extended regular tree grammars, which are
well-suited for specifyingattribute grammars.

Attribute grammars [1] are widely agreed to carry
a strong intuition for specifying syntax-directed transla-
tions: The programmer takes a grammar describing the
input and insertsattribution functionsinside the grammar
productions. Parser generators automatically translate at-
tribute grammars into the complete code for processing
the input. After compilation, the program executes the at-
tribution functions while the input is being parsed.

Thus, attribute grammars allow users to specify many
transformations conveniently, as users merely need to “fill
in the blanks” instead of having to program transforma-
tions from scratch. Further, attribute grammars make
users aware of the structure of the input, which may reveal
possibilities for optimization. This is especially interest-
ing in stream processing, where it is crucial that transfor-
mations can be evaluated efficiently w.r.t. main memory
and CPU consumption.

This paper proposes a full-scale framework – called
TransformX– for XML transformations based on attribute
grammars and introduces the TransformX parser gener-
ator which automatically translates attributed extended
regular tree grammars to Java code. The output of a
TransformX attribute grammar need not be XML. Rather,
TransformX attribute grammars may be regarded as a

1

comprehensive programming language for XML streams,
with all the capabilities of Java: Users may introduce vari-
ables, strings, and arrays, and use their own data structures
and methods. This allows for a wide range of applications,
from filtering and transformation tasks to interaction with
databases (e.g., using JDBC), where we may store parts
of the stream in databases or enrich the stream by joining
streaming and persistent data.

For the examples shown in this paper and based
on our own experience, application development with
TransformX attribute grammars becomes a convenient
task and is often preferable to writing programs directly
from scratch, as the following example demonstrates.

Example 1 Consider the extended regular tree grammar
G = (Nt, T, P, bib) defining an XML bibliography.G has
nonterminalsNt, grammar start symbolbib, terminalsT ,
and productionsP defined as follows:

Nt = {bib, pub, year, title, author}

T = {bib, book, article, year, title, author, PCDATA}

P : bib ::= bib
(

pub∗
)

pub ::= book
(

year.title.author.author∗
)

pub ::= article
(

year.title.author.author∗
)

year ::= year
(

PCDATA
)

title ::= title
(

PCDATA
)

author ::= author
(

PCDATA
)

From an XML stream conforming to this grammar, we
want to derive a transformed stream consisting of root
node “books”, followed by all the book subelements.
Each book is given a numerical identifier “id” as its first
child node, and the order of title and year are reversed.

Using a TransformX attribute grammar, we spec-
ify which parts of the document are to be transformed
by adding attribution functions to productions: In the
tradition of parser generators such as Yacc [18], the
TransformX attribute grammar in Figure 1 consists of
three sections separated by “%% ”:

a) In thedefinition section, we state the name of the
generated Java class. Further, we declare an output
stream ”output” and a string-buffer ”buffer”. String-
buffers may be written to, their contents copied to the
output, or cleared1.

b) The rules sectioncontains the attributed grammar
productions with attribution functions enclosed in
curly braces. Here, we specify that the XML start
and end tags of the root node are renamed to “books”.

Upon seeing a book, the corresponding start and end
tags are output and the numerical identifier is in-
serted. The year is buffered, yet the title is output
directly. The buffered year is output before the au-
thors, thus reversing the order of title and year.

1We provide more details on these classes in Section 4.2.

%classExample1
%echoTXWriter output = new TXWriter(System.out);
%echoTXBuffer buffer = new TXBuffer();

%%
bib ::= { output.write(“〈books〉”); } bib

�
pub∗

�
{ output.write(“〈/books〉”); }

pub ::= { output.write(“〈book〉”);

output.write(“〈id〉”+ i++ +“ 〈/id〉”); }

book
�
({ buffer.write($this);} year).

({ output.write($this);} title).

({ output.write(buffer); buffer.clear();

output.write($this);} author.author∗)
�

{ output.write(“〈/book〉”); }

pub ::= article
�
year.title.author.author∗

�
year ::= year

�
PCDATA

�
title ::= title

�
PCDATA

�
author ::= author

�
PCDATA

�
%%
int i = 0;

Figure 1: TransformX attribute grammar of Example 1.

c) Theclass member sectionprovides room for auxil-
iary attributes and methods which can then be ac-
cessed inside attribution functions. In our example,
we declare an integer-counter “i”.

This simple example shows how the underlying grammar
conveniently provides us with context information, e.g. as
to which titles are part of books and which are part of arti-
cles. If the same transformation were programmed using a
SAX parser, the code would be scattered with correspond-
ing case distinctions.

Also, the grammar component may reveal potential for
optimization. In this example, it becomes apparent that
titles can be written directly to the output without being
buffered first. �

The source code produced by the TransformX parser
generator can then be compiled and executed. The re-
sulting program will validate the input against the gram-
mar component and evaluate the corresponding attribution
functions while the input is being parsed. Thus, writing
applications for XML stream processing with TransformX
attribute grammars is mainly facilitated by “filling in” the
blanks in a grammar, while the remaining parts of the pro-
gram are generated automatically.

Contributions The contributions of this paper are
the following.

• We formally define TransformX attribute grammars.

• We discuss how users can specify Java-based
TransformX attribute grammars, how they may copy
subtrees directly from the input to the output, handle

2

main memory buffers, and add their own data struc-
tures in practice.

• We introduce the TransformX parser generator and
study the time complexity of translating TransformX
attribute grammars to Java code.

• We present a prototype implementation and show
first experiments with our framework.

Structure In the following section, we give a brief
overview over the related work. In Section 3, we present
the necessary theoretical background in language theory.
The TransformX attribute grammars are introduced in
Section 4, while their translation to Java source code by
the TransformX program generator is studied in Section 5.
In Section 6, we discuss our prototype implementation
and experiments with it. We conclude with a summary
and suggestions on how we might optimize the evaluation
of TransformX attribute grammars in future work.

2 Related Work

To our knowledge, the scripting language STX [11] is the
most related tool for XML stream processing. STX em-
ploys a processing model where stylesheets are evaluated
in a single pass over the input, and allows for the specifica-
tion of powerful transformations of XML streams. While
the syntax of STX resembles XSLT, TransformX attribute
grammars specify syntax-directed transformations.

Attribute grammars have recently been revisited in the
context of XML, for instance for grammar-directed XML
publishing [5, 6]. Some of the theory of attribute gram-
mars relevant in the context of structured documents has
been studied in [14, 20–22]. In [20], regular languages
are used asconditionsfor attribute assignment. This ap-
proach seems to be hard to use in practice and infeasible
on streams, as an unbounded number of nodes which have
already passed may have to be kept in memory.

In contrast, the XML Stream Attribute Grammars
(XSAGs) [14] define strictly linear-time one-pass XML
transformations. XSAGs are as expressive as determinis-
tic pushdown transducers with a natural stack discipline
that assures that the size of the stack remains strictly
proportional to the depth of the XML input document,
and which can only accept well-formed XML documents.
TransformX attribute grammars also only accept well-
formed XML documents. Yet here, the attribution func-
tions are encoded in a Turing-complete programming
language, allowing for more powerful transformations.
Consequently, TransformX attribute grammars cannot be
guaranteedto scale to streams. Apart from the differ-
ence in expressiveness, TransformX attribute grammars
are also more flexible w.r.t. where attribution functions
can be specified in the grammar component (see Remark 1
in Section 4).

In the altSAX framework [22], tree transformations are
specified as non-circular attribute grammars, which are

then translated to equivalent event-based applications us-
ing program composition techniques. The altSAX gram-
mar component consists of four generic productions for
parsing XML in binary-tree notation. In particular, there
is a single production for all labeled nodes. If nodes with
different labels are to be processed differently, users need
to program case distinctions inside attribution functions.
In contrast, the attribute grammars in our work and in [14]
are based on extended regular tree grammars which pro-
vide more context information. At the very least, there is
at least one production for each different node label.

Once a TransformX attribute grammar has been spec-
ified, the TransformX parser generator is responsible for
its translation into correct Java code. In certain aspects,
this is similar to existing parser generators for word lan-
guages [1] (as opposed to regular tree languages): The
look and feel resembles that of the well-known compiler
tool Yacc [18], while the processing model is related to
that of LL(1) parser generators which perform a single
pass over the input and do not construct a parse tree in
main memory.

3 Preliminaries
We assume thatregular expressionsare constructed from
a set of atomic symbols using the concatenation operator,
union operator, and the Kleene star, denoted., ∪, and∗.

Regular Tree Grammars For the standard meaning
of grammars and their derivations, we refer to [2] for basic
and to [17] for extended grammars.

Definition 1 (ERTG) Let Tag be a set of node labels
(“tags”) and letChar be a set of characters distinct from
the tags. Anextended regular tree grammaris a grammar
G = (Nt, T, P, s) where

1. Nt is a set of nonterminals,

2. T = Tag∪ Char is a set of terminals,

3. P is a set of productionsnt ::= t(ρ) wherent ∈
Nt, t ∈ T , ρ is eitherǫ or a regular expression over
alphabetNt, and if t ∈ Char, thenρ = ǫ, and

4. s ∈ Nt is the grammar start symbol. �

ERTGs are a convenient way to specify a class of un-
ranked labeled trees. Thus, they present a natural gram-
mar mechanism for XML documents without attributes2.

We introduce a syntactic macroPCDATAto describe
character content of leaf nodes: LetChar = {c1, . . . , cn}.
As a shortcut, we define the regular expression macro
PCDATA := (ĉ1 ∪ · · · ∪ ĉn)∗ using new nonterminals
ĉ1, . . . , ĉn and productionŝci ::= ci(ǫ) for each1 ≤ i ≤
n. PCDATAcan be used just like a terminal on the right-
hand sides of grammar productions. For sake of syntactic
simplicity and brevity, we will considerPCDATAas a ter-
minal as we already did in Example 1.

2Our data model of XML without attributes does not restrict theap-
plicability of our work, since the attributes of a node can bemodeled as
special children which precede all other children.

3

Definition 2 An XML document iswell-formediff it con-
forms to an ERTGG = (Nt, T, P, s) where for all produc-
tionss ::= t(ρ), t ∈ Tag. �

A well-formed document contains at least one element
(the root element) and has XML start and end tags prop-
erly nested within each other. Furthermore, the first sym-
bol in the document must be the start tag of the root
node. An XML document ismalformedif it is not well-
formed. The process of checking whether a document is
well-formed w.r.t a specific ERTG is calledvalidation.

Given a nonterminalnt, let θ(nt) denote the set of
terminalst such that the grammar contains a production
nt ::= t(ρnt,t). Given a regular expressionρ, let τ(ρ) de-
note the regular expression in which each nonterminalnt
in ρ is replaced by the union of terminals

⋃

θ(nt).

Example 2 Consider the ERTG from Example 1. For
regular expressionρ = pub∗ from the right-hand side of
the bib-production,τ(ρ) = (book∪ article)∗. �

Each extended regular tree grammar can be alter-
natively considered as an extended context-free word
grammar (CFG), which is obtained by simply rewriting
eachtag(ρ) on the right-hand side of a production into
〈tag〉ρ〈/tag〉. Deterministiccontext-free languages are
precisely those recognizable by the deterministic push-
down automata (DPDA, see e.g. [2]). DPDAs run com-
fortably on streams requiring only a stack of memory
bounded by the depth of the input tree. Using automata,
we can thus scalably recognize the deterministic context-
free languages.

The problem of processing an (extended) attribute
grammar on a document requires an additional, differ-
ent restriction on the grammar besides determinism to al-
low for deterministic computation: We need to unambigu-
ously refer to theatomic symbolsin the regular expres-
sions to be able to access or assign attributes. In attribute
grammars, a straightforward solution [20] is to require for
right-hand side regular expressionsρ that τ(ρ) is unam-
biguous[7].

Example 3 Consider a grammar with productions

bib ::= bib((book1 ∪ book2)
∗)

book1 ::= book(ǫ)

book2 ::= book(ǫ)

The regular expression(book1 ∪ book2)∗ is unambigu-
ous, but τ((book1 ∪ book2)∗) = (book ∪ book)∗ is
not. Therefore, when processing the tags of the chil-
dren of thebib node, we cannot determine which of the
two book-productions (with their possibly different attri-
butions when we consider attribute grammars) are to be
applied. �

On streams, we cannot look ahead beyond a nontermi-
nal (which may stand for a large subtree that we do not

bib

book

year title author author author

Figure 2: Document tree of Example 7.

want to buffer) when parsing the input. Thus, we will as-
sume the stronger notion ofone-unambiguityfor regular
expressionsτ(ρ) in the definition of TDLL(1) grammars.
That is, we will require thatτ(ρ) can be unambiguously
parsed with just one symbol of lookahead.

One-Unambiguity and TDLL(1). By a markingof
a regular expressionρ over alphabetΣ we denote a regular
expressionρ′ such that each occurrence of an atomic sym-
bol in ρ is replaced by the symbol with its position among
the atomic symbols ofρ added as subscript. The reverse
of a marking (indicated by #) is obtained by dropping the
subscripts.

Definition 3 ([9]) Let ρ be a regular expression,ρ′ its
marking, andΣ′ the marked alphabet used byρ′. Then
ρ is calledone-ambiguousiff there are wordsu, v, w over
Σ′ and symbolsx, y ∈ Σ′ such thatuxv, uyw ∈ L(ρ′),
x 6= y, andx# = y#. A regular expression is called
one-unambiguousif it is not one-ambiguous. �

Example 4 Consider the regular expressionρ = a∗.a
and its markingρ′ = a∗

1.a2. Let u = a1, x = a2,
v = ǫ, y = a1, andw = a2. Clearly, uxv = a1.a2

anduyw = a1.a1.a2 are both words ofL(ρ′), thusρ is
one-ambiguous. On the other hand, the equivalent regular
expressiona.a∗ is one-unambiguous. �

Definition 4 ([17]) A TDLL(1) grammaris an extended
regular tree grammar whereτ(s) is unambiguous and in
which for each regular expressionρ on the right-hand side
of a production,τ(ρ) is one-unambiguous. �

Example 5 The grammar discussed in Example 1 is a
TDLL(1) grammar. Since the grammar of Example 3 con-
tains a regular expressionρ such thatτ(ρ) is not even un-
ambiguous, that grammar is not TDLL(1). �

Example 6 DTDs are TDLL(1) grammars [14,17]. �

For TDLL(1) grammars, the parse trees are simply the
usualdocument treesassociated with XML documents.

Example 7 The ERTGG from Example 1 is a TDLL(1)
grammar. Thus, the XML document

〈bib〉
〈book〉 〈year/〉〈title/〉〈author/〉〈author/〉〈author/〉 〈/book〉

〈/bib〉

parses into the tree depicted in Figure 2. �

4

·

a ∗

·

a ∗

a

·

a ∗

a a

(a) a, aa, aaa ∈ L
�
a.a∗

�
.

∗

∗

a a

∗

∗

a

∗

a

(b) aa ∈ L
�
(a∗)∗

�
.

Figure 3: Parse trees for words in regular languages.

Strong One-Unambiguity TDLL(1) grammars al-
low us to use attributed extended regular tree grammars
on XML streams. However, as we show in the follow-
ing section, the ability to use attribution functionsinside
the regular expressions on the right-hand sides of produc-
tions will allow us to write many practical queries in a
much more user-friendly fashion. As a prerequisite, we
require for a right-hand side regular expressionρ thatτ(ρ)
is strongly one-unambiguous.

Let us briefly motivate this notion. Regular expressions
provide a natural and intuitive way of assigning parse trees
to words (see [14] for a formal definition). Specifying
attribution functions inside a regular expressionρ corre-
sponds to assigning attribution functions to the nodes in
the parse trees for words inL(ρ). In the setting of XML
streams, this requires that all such parse trees can be un-
ambiguously constructed with a lookahead of one token.

For instance, consider the parse trees for words
a, aa, aaa ∈ L(a.a∗) in Figure 3(a). These parse trees
are unique, yet the parse tree foraa ∈ L

(

(a∗)∗
)

, as
shown in Figure 3(b), is not. While both regular ex-
pressions are one-unambiguous,a.a∗ is alsostronglyone-
unambiguous. Let us now give a formal definition.

Intuitively, by abracketingof a regular expressionρ,
we refer to alabeling of the nodes in the parse treeof ρ
using distinct indexes. We realize this by assigning the
indexes in a depth-first left-to-right traversal of the parse
tree. See Figure 4 for two examples. The bracketingρ[]

is then obtained by inductively mapping each subexpres-
sion π of ρ with index i to [i.π.]i. Thus, a bracketing
is a regular expression over the alphabetΣ ∪ Γ, where
Γ = {[i,]i | i ∈ {1, 2, 3, . . . }}. We assume thatΣ andΓ
are disjoint.

Definition 5 ([14]) Let ρ be a regular expression and let
ρ[] be its bracketing. A regular expressionρ is called
strongly one-unambiguousiff there do not exist words
u, v, w over Σ ∪ Γ, wordsα 6= β over Γ, and a sym-

1∪

2∗

3a

4∗

5b

(a) a∗ ∪ b∗.

1∗

2∗

3a

(b) (a∗)∗.

Figure 4: Parse trees of regular expressions.

1bib

2book

3·

4year

5year

6·

7title

8title

9·

10author

11author

12∗

13author

14author

15author

16author

Figure 5: Extended parse tree of Example 9.

bol x ∈ Σ such thatuαxv, uβxw ∈ L(ρ[]) or uα, uβ ∈
L(ρ[]). �

Example 8 Consider the regular expressionρ = (a∗)∗

with bracketingρ[] = [1.([2.([3.a.]3)
∗.]2)

∗.]1 derived
from the parse tree in Figure 4(b).

ρ is one-unambiguous, but not strongly one-
unambiguous: For the wordaa ∈ L(ρ), there are
bracketings [1.[2.[3.a.]3.[3.a.]3.]2.]1 ∈ L(ρ[]) and
[1.[2.[3.a.]3.]2.[2.[3.a.]3.]2.]1 ∈ L(ρ[]), sou = [1.[2.[3.a,
α =]3.[3, β =]3.]2.[2.[3, x = a, andv = w =]3.]2.]1. �

While DTDs are only required to have one-
unambiguous content models [8] (i.e., right-hand side reg-
ular expressions in productions), we believe that most
practical DTDs only use strongly one-unambiguous reg-
ular expressions in their productions [14].

If a production in a TDLL(1) grammar has a strongly
one-unambiguous regular expressionρ on its right-hand
side, we may incorporate the parse trees for words in
L(ρ) in the document parse tree, as they may also be con-
structed online. We refer to such parse trees asextended
parse treesand introduce the following notation: Let
G = (Nt, T, P, s) be a TDLL(1) grammar. LetP ′ ⊆ P be
a set of productions with strongly one-unambiguous regu-
lar expressions on their right-hand sides and letT be an in-
put document. ThenPG(T, P ′) is an extended parse tree
for T which incorporates the parse trees for sibling nodes
that are words in those regular languagesL(ρ) whereρ is
a right-hand side regular expression in a production inP ′.
Obviously, forP ′ = ∅, PG(T, P ′) = T .

Example 9 Consider the ERTGG from Example 1
and the input documentT from Example 7. Let
pbook denote the book-production. The extended parse
tree PG(T, {pbook}) is shown in Figure 5, where
nodes associated with nonterminals are set in ital-
ics. Here, we assume that the operation “.” asso-
ciates to the right and that the production “pub ::=
article

(

year.title.author.author∗
)

” of G is thus equivalent
to “pub ::= article

(

year.(title.(author.(author∗)))
)

”. �

5

Notation for Classes and Types We assume the
usual notions of classes, objects, and types, and further at-
tributes and methods in object-oriented programming lan-
guages. In particular, we introduce the following notation.

Let C be a set ofclass namesand letatt be a set of
names forattributes. A special constantnil represents the
undefined value. Ifτ1, . . . , τn are types andA1, . . . , An

distinct attribute names, then[A1 : τ1, . . . , An : τn] is a
(tuple) type.

We assume an infinite setmethof method names. A
method consists of a name, a signature, and an implemen-
tation (also called body). For a method namem, a signa-
ture ofm is an expression of the formm : c × τ1 × · · · ×
τn−1 → τn wherec is a class name inC and eachτi is
a type.We assume that all classes provide a methodclone
which returns a new object of the same type and with the
same value.

4 TransformX Attribute Grammars
We are now in the position to define the syntax and seman-
tics of TransformX attribute grammars. Having laid these
foundations, we show how users can specify Java-based
TransformX attribute grammars in practice.

4.1 Abstract Definition

We define TransformX attribute grammars as TDLL(1)
grammars withattribution functionsadded to productions.
The key principle in the following syntax definition is that
attribution functions may only be inserted such that we
can unambiguously determine which attribution functions
to invoke next when reading a specific token from the
XML input stream.

Definition 6 (Syntax) Let τ1, . . . , τk be types and
A1, . . . , Ak be distinct attribute names. LetAtt denote the
tuple type[A1 : τ1, . . . , Ak : τk].

Let c ∈ C be a class name. LetF$[, F$] ⊆ methbe
disjoint sets of method names wheref$[∈ F$[denotes a
first-visit attribution functionwith signature

f$[: c × τ1 × · · · × τk → Att

and wheref$] ∈ F$] denotes asecond-visit attribution
functionwith signature

f$] : c × τ1 × . . . τk × τ1 × · · · × τk → Att.

The abstract syntax of anattributed regular expression
over symbolsΣ can be specified by the EBNF

aregex ::= (“{” F$[“}”)? aregex0 (“{” F$] “}”)?

aregex0 ::= Σ | aregex“.” aregex|

aregex“∪” aregex| aregex“∗”

A TransformX attribute grammaris an attributed ex-
tended regular tree grammarG = (Nt, T, P, s) with non-
terminalsNt, grammar start symbols, terminalsT =

Tag∪ Char, and productions inP where each production
is of one of the four forms

nt ::= t(α) nt ::= {f$[} t(α)

nt ::= t(α) {f$]} nt ::= {f$[} t(α) {f$]}

with nt ∈ Nt, t ∈ T , f$[∈ F$[, f$] ∈ F$], and if t ∈ Char
thenα = ǫ , and if t ∈ Tag, thenα is either

1. ǫ,

2. a regular expression overNt such thatτ(α) is one-
unambiguous, or,

3. an attributed regular expression over symbolsNt
(containing at least one attribution function), such
that the following holds: For the regular expres-
sion ρ obtained fromα by removing the attribu-
tions (enclosed in curly braces),τ(ρ) is stronglyone-
unambiguous. �

Thus, given a TDLL(1) grammar, we may add attribu-
tion functions to a production depending on its right-hand
side. In cases (1) and (2) of the above definition, attri-
bution functions may be inserted only at the beginning
and end of the right-hand side. In case of a strongly one-
unambiguous regular expression on the right-hand side of
a production (3), we may also specify attribution functions
insidethe regular expression.

Remark 1 While the above definition resembles the syn-
tax of XSAGs [14], the syntax definition of TransformX
attribute grammars is in fact more general (and the class of
transformations possible with TransformX attribute gram-
mars is much more powerful, as discussed in Section 2):
With XSAGs, we distinguish between bXSAGs (where
only cases (1) and (2) are allowed) and yXSAGs (where
only cases (1) and (3) are allowed). While the latter are
more convenient to use, they require a grammar compo-
nent stricter than TDLL(1). With TransformX attribute
grammars, we no longer make this distinction. Instead,
we solely consider TDLL(1) grammars and only allow
attributions inside those regular expressions which are
strongly one-unambiguous. �

As the grammar components of TransformX attribute
grammars are TDLL(1), we can validate input documents
one token at a time. In particular, the (extended) parse
trees of input documents may be unambiguously con-
structed online. Yet at no time during the evaluation of
TransformX attribute grammars will it be necessary to ac-
tually maintain the entire (extended) parse trees in main
memory. Rather, it is sufficient to keep the “path” from
the root to the current node in main memory.

In the following, we will be somewhat imprecise and
talk of attribution functions inF$[andF$] when we actu-
ally refer to the method names inF$[andF$].

Let G = (Nt, T, P, s) be a TransformX attribute gram-
mar and letP ′ be the subset of productions with attributed
regular expressions on their right-hand sides. We evaluate

6

G on an XML input treeT by assigning attribution func-
tions fromF$[andF$] to the nodes in the extended parse
treePG(T, P ′), as specified by the grammar. We then re-
fer to such parse trees asattributed parse treesand write
PG(T) as a shortcut forPG(T, P ′).

Where the attribute grammar does not explicitly state
attribution functions, we assume default attribution func-
tionsfd

$[andfd
$] which are implemented as follows:

Att fd
$[(τ1 a1, . . . , τk ak){

return new[A1 = a1, . . . , Ak = ak];
}

Att fd
$](τ1 a1, . . . , τk ak, τ1 b1, . . . , τk bk){

return new[A1 = b1, . . . , Ak = bk];
}

Example 10 From an abstract point of view, the
TransformX attribute grammar of Example 1 may be writ-
ten asG = (Nt, T, P, s) with attribution functions

F$[= {fd
$[, f

1
$[, f

2
$[, f

4
$[, f

7
$[, f

9
$[}, F$] = {fd

$], f
1
$], f

2
$]},

and the attributed productions

bib ::= {f1
$[} bib

(

pub∗
)

{f1
$]}

pub ::= {f2
$[} book

(

({f4
$[} year).({f7

$[} title).

({f9
$[} author.author∗)

)

{f2
$]}

(with the other productions just as in Example 1). Assume
the input documentT from Example 9. In the above at-
tribute grammar, the book-production (denotedpbook) is
the only production with an attributed regular expression
on its right-hand side.

The assignment of attribution functions to the nodes
of the extended parse treePG(T, {pbook}) in Figure 5 is
straightforward: For instance, node 1 is assignedf1

$[and

f1
$]. Node 4 is assignedf4

$[and the default second-visit

attribution functionfd
$], while node 5 is assigned both de-

fault attribution functionsfd
$[andfd

$]. Further,f9
$[andfd

$]

are assigned to node 9. �

TransformX attribute grammars are defined as
L-attributed grammars, i.e., attribute grammars whose
attributes are evaluated in a single depth-first left-to-right
traversal of the document tree [1]. Each nodev is
assigned two attribution functionsfv

$[and fv
$]. During

the traversal, each nodev is visited twice (the visits are
referred to by$[and$]), first from the preceding sibling
or the parent ofv (if v has no preceding sibling) and a
second time on returning from the rightmost child ofv.
Accordingly, we evaluatefv

$[in the first visit, andfv
$] in

the second visit.
To provide a clear picture of the necessary computa-

tions, we distinguish the states of attribute valuesbefore
(using the subscript “in”) andafter (using the subscript
“out”) the application of an attribution function.

Definition 7 (Semantics) Let τ1, . . . , τk be types and
A1, . . . , Ak be distinct attribute names. LetAtt denote the
type[A1 : τ1, . . . , Ak : τk].

Let F$[, F$] ⊆ meth be the first- and second-visit
attribution functions respectively. Then we evaluate a
TransformX attribute grammarG on an attributed parse
treePG(T) as follows. In a depth-first left-to-right traver-
sal of PG(T), we compute for each attributeAi (with
i = 1, . . . , k) and each nodev, the four assignments
(ai)

v
$[.in, (ai)

v
$[.out

, (ai)
v
$].in, and(ai)

v
$].out

(inductively)
as follows.

(ai)
v
$[.in :=







nil . . . v is the root node
(ai)

v0

$[.out
. . . v is the first child ofv0

(ai)
v0

$].out
. . . v is the right sibling ofv0

(ai)
v
$].in :=

{

(ai)
v
$[.out

. . . v has no children

(ai)
w
$].out

. . . w is the rightmost child ofv

In the first visit to nodev, we evaluate

[A1 = (a1)
v
$[.out, . . . , Ak = (ak)v

$[.out] =

fv
$[

(

(a1)
v
$[.in, . . . , (ak)v

$[.in

)

and in the second visit tov, we compute

[A1 = (a1)
v
$].out, . . . , Ak = (ak)v

$].out] =

fv
$]

(

(a1)
v
$[.out, . . . , (ak)v

$[.out, (a1)
v
$].in, . . . , (ak)v

$].in

)

In casefv
$[or fv

$] exit the program execution, the evalua-
tion terminates and the input is rejected. �

Note that a TransformX attribute grammar may reject
the input in two different ways, namely if it is not valid
with respect to the grammar component or if an attribution
function exits the program execution.

4.2 Java-based TransformX Attribute Grammars

In the tradition of parser generators such as Yacc, users
define Java-based TransformX attribute grammars in a
single input file, as exemplified in Figures 1 and 6. We de-
fer the handling of I/O until after we have described how
to read and write basic TransformX attribute grammars.

Specification Let τ̄1, . . . , τ̄n be types and let
B1, . . . , Bn be distinct attribute names. Further, letFaux

be a set of method names. Then a TransformX attribute
grammar with

• class namec ∈ C,

• types τ1, . . . , τk, distinct attribute names
A1, . . . , Ak, and typeAtt = [A1 : τ1, . . . , Ak : τk],

• attribution functions inF$[andF$], where the bodies
of attribution functions may refer toB1, . . . , Bn and
methods inFaux, so that users may introduce auxil-
iary attributes and methods. Further,

• an attributed TDLL(1) grammarG = (Nt, T, P, s),

7

is encoded as a Java-based TransformX attribute grammar
in a single specification file, consisting of three sections:

(a) In thedefinition section, we set up the execution envi-
ronment and declareA1, . . . , Ak:

• “%classc” specifies the name of the generated class

• Import statements and class definitions are stated in
a literal Java block, enclosed in braces “%{ . . . %}”.

• Keyword “%att ” precedes the declarations and ini-
tializations ofA1, . . . , Ak.

• The nonterminal from the first production in the rules
section is assumed to be the grammar start symbol.
It may be redefined by the statement “%start s”.

(b) Therules sectioncontains the attributed productions.
Consider a first-visit attribution functionfv

$[∈ F$[as-
signed to a nodev in the attributed parse tree:

Att f$[(τ1 $[.A1, . . . , τk $[.Ak){
. . .body. . .
return new[A1 = $[.A1, . . . , Ak = $[.Ak];

}

Within the body offv
$[, we write ”$[.Ai” to access the cor-

responding input parameter. Likewise, consider a second-
visit attribution functionfv

$] ∈ F$[, assigned tov:

Att fv
$](τ1 $[.A1, . . . , τk $[.Ak, τ1 $].A1, . . . , τk $].Ak){

. . .body. . .
return new[A1 = $].A1, . . . , Ak = $].Ak];

}

Within the body offv
$], we may access two versions ofAi

according to Definition 7, which we distinguish using pre-
fixes$[and$]: “$[.Ai” yields the value ofAi as computed
by fv

$[. By “$].Ai”, we access the value ofAi as computed
by the attribution functions assigned to the rightmost child
node ofv.

In place of the method names for attribution functions
in Definition 6, we insert the implementations inside the
productions in the definition section. In particular, the
bodies are enclosed in curly braces and declared without
return statements.

(c) Theclass member sectioncontains the declarations of
the attribute namesB1, . . . , Bn together with their types
τ̄1, . . . , τ̄n, and the methods with names inFaux.

As Yacc users will have noticed, we made an effort to
adopt the familiar Yacc notation as far as possible.

In a TransformX attribute grammar, we distinguish be-
tween two kinds of attributes:

1. The auxiliary attributes (denotedB1, . . . , Bn above)
declared in the class member section, and

2. the attributes from the actual TransformX attribute
grammar, as declared in the definition section (see
A1, . . . , Ak above).

%classSectionProcessor
%{

class IntAtt{
IntAtt(int v) { value = v;}
public IntAtt clone() { return new IntAtt(value);}
public int value; }

%}
%att IntAtt count = new IntAtt(0);
%start doc
%%

sec ::= { $[.count.value++; /* f sec
$[*/ }

section
�
sec∗ ∪ par∗

�
{ int before =$[.count.value; /* f sec

$] */

int after =$].count.value;

if (is odd(after - before)) odd++;}

par ::= paragraph
�
ǫ
�

doc ::= document
�
sec∗

�
{ real r = odd /$].count.value;/* fdoc

$] */

System.out.println(“Result=” + r +”%”);}

%%
private int odd = 0;
private boolean isodd(int x){ return (x % 2 == 0);}

Figure 6: TransformX attribute grammar of Example 11.

In general, the attributes of (1) encode a global state in the
parsing process, e.g., how many books have been encoun-
tered in the XML stream so far. In contrast, the attributes
of (2) are best employed to transfer information between
the first- and second-visit attribution functions assignedto
the same node in the attributed parse tree.

The following example illustrates how the two kinds of
attributes are best applied. It also aims at demonstrating
the various syntactical constructs, so it is not necessarily
the shortest and most elegant encoding.

Example 11 For documents conforming to the recursive
TDLL(1) grammarG = (Nt, T, P, s) with productions

doc ::= document
(

sec∗
)

sec ::= section
(

sec∗ ∪ PCDATA
)

we want to compute the percentage of section-nodes with
an odd number of section-nodes in their subtrees.

Consider the document tree in Figure 7, where the sub-
tree rooted at node 2 contains an odd number of section-
nodes (exactly 3), while the subtree rooted at node 6 con-
tains zero and thus an even number of section-nodes.

The Java-based TransformX attribute grammar in Fig-
ure 6 specifies this computation: In the definition section,

1document

2section

3section 4section 5section

6section

Figure 7: Document treeT of Example 11.

8

input node comments
〈document〉 1 fd

$[(0) → 0 odd = 0
〈section〉 2 f sec

$[(0) → 1
〈section〉 3 f sec

$[(1) → 2
〈/section〉 3 f sec

$] (2, 2) → 2
〈section〉 4 f sec

$[(2) → 3
〈/section〉 4 f sec

$] (3, 3) → 3
〈section〉 5 f sec

$[(3) → 4
〈/section〉 5 f sec

$] (4, 4) → 4
〈/section〉 2 f sec

$] (1, 4) → 4 odd = 1
〈section〉 6 f sec

$[(4) → 5
〈/section〉 6 f sec

$] (5, 5) → 5

〈/document〉 1 fdoc
$] (0, 5) → 5 “Result = 0.2%”

Figure 8: Run of Example 11

a new classIntAtt holding integer values is defined, and
an auxiliary attribute “count” of typeIntAtt is declared
and initialized to zero.

In the class member section, we declare an auxiliary
attribute “odd” which states how many section-nodes with
an odd number of sections in their subtrees have been seen
so far. By declaring “odd” private, we can control the
access to this class member.

The rules section contains the implementations of
attribution functions f sec

$[, f sec
$] , and fdoc

$] : Attribute
“count” is incremented whenever a tag “〈section〉” is
read. Upon reading “〈/section〉”, the number of section
nodes in the subtree below is computed by subtracting
“$[.count.value” (the number of section-nodes before pro-
cessing the subtree) from “$].count.value” (the number of
section-nodes after processing the subtree). If the result
is an odd number, then the auxiliary attribute “count” is
updated accordingly. When the closing tag of the root
node is read, the total number of nodes (contained in
“$].count.value”) is used to compute the result.

As this TransformX attribute grammar does not con-
tain any productions with attributed regular expressions,
the extended parse tree is the same as the document tree.
Consequently, node 1 in Figure 7 is assigned the attribu-
tion functionsfd

$[andfdoc
$] . All other nodes are assigned

the attribution functionsf sec
$[andf sec

$] .
In Figure 8, we trace the execution of the above

TransformX attribute grammar on this input document.
The first column shows the current XML tag being read.
The second column identifies the current node in the
depth-first left-to-right traversal of the attributed parse
tree. In the third column, we state which attribution func-
tion is being evaluated, together with the values of its
input- and output-parameters. �

I/O with TransformX Attribute Grammars Typi-
cal transformations of XML streams will involve reading
parts of the input. So-calledsink streams, either intended
to create output or to serve as internal buffers, are declared
and instantiated by the “%echo” statement in the defini-
tion section.

All sink streams are derived from abstract classWriter
as specified by the Java API [24], and thus provide meth-
odswrite, flush, andclose. Users may add their own im-
plementations of sink streams. The TransformX frame-
work already contains two customized classes, as used in
Example 1:

• ClassTXWriter, a subclass ofOutputStreamWriter,
is intended for copying data to output streams, e.g.,
to standard output or files.

• ClassTXBuffer, a subclass ofStringWriter, is used to
buffer parts of the input in in-memory string buffers.
TXBuffer provides methodclear()for discarding any
buffered contents.

Let o be a sink stream and letfv
$[be a first-visit attri-

bution function assigned to a nodev in an attributed parse
tree. If the implementation offv

$[contains the statement
“o.write($this)”, the subtree rooted atv will be copied to
o. Yet if a first-visitfw

$[assigned to a descendant nodew

of v contains the statement “o.omit($this)”, then the sub-
tree rooted atw will not be copied.

Example 12 Changing the book-production in the
TransformX attribute grammar of Example 1 to

pub ::= { output.write($this);}
book

�
year.({ output.omit($this);} title).author.author∗

�
will output books together with their XML start and
end tags, year and author children, but without title.�

The echo-mechanism may be implemented by intro-
ducing additional attributes in the definition section which
signal whether a subtree is to be output or not. Due
to space restrictions, we refer to [14, 23] for details on
the implementation of the analogous macrosECHO and
ECHO OFF.

5 The TransformX Parser Generator
The TransformX parser generator translates TransformX
attribute grammars into the source code of a Java class
which encapsulates the attribution functions, user-defined
attributes and auxiliary methods, and performs the trans-
formation of the XML input stream. Compilation of the
source code with the Java compiler yields the executable
classfiles. In the following, we discuss the translation to
source code and its time complexity.

The evaluation of a TransformX attribute grammarG
on an input documentT is based on a separation of con-
cerns. Accordingly, we define two modules:

• The validator module validates the XML input
stream against the grammar component ofG and out-
puts the sequence of attribution functions as encoun-
tered in the depth-first left-to-right traversal of the
attributed parse tree.

• The evaluator moduleinvokes the attribution func-
tions as output by the validator. It stores the result
computed by a first-visit attribution function on a

9

stack so that they are accessible to the second-visit
attribution function which is assigned to the same
node in the attributed parse tree.

Note that the validator and evaluator each maintain
their own stack. This allows for optimizations, as outlined
in our discussion of future work.

We assume the usual notion of deterministic pushdown
transducers (DPDTs) [2] as deterministic pushdown au-
tomata with output.

Definition 8 Let G be a TransformX attribute grammar
with grammar componentG′ and letT be an XML doc-
ument tree. Avalidator V(G) is a DPDT which, if
T ∈ L(G′), outputs the method names of the attribution
functions as encountered on the depth-first left-to-right
traversal of the attributed parse tree ofT . �

We construct a validator from a TransformX attribute
grammarG = (Nt, T, P, s) in two steps:

1. For each productionp ∈ P , we construct a deter-
ministic finite-state transducer (DFT) [2]Ap which
recognizes the regular language defined by the right-
hand side ofp and outputs the corresponding attribu-
tion functions at the same time.

For productions withǫ or one-unambiguous regular
expressions on their right-hand side, the construction
of Ap is straightforward. Let us briefly consider pro-
ductions with attributed regular expressions.

Given a regular expressionβ, let⊙ be a special end-
marker symbol that does not occur inβ. As shown
in [14, 23], if a regular expressionβ is strongly one-
unambiguous, then there is a DFTA[](β) which rec-
ognizesL(β.⊙) and outputs the bracketing of word
w for input w.⊙ ∈ L(β.⊙). Further, there is an
O(n3) algorithm that checks whetherβ is strongly
one-unambiguous and if so, outputsA[](β).

By Definition 6 we know that for an attributed regu-
lar expressionα on the right-hand side of a produc-
tion, we obtain a regular expressionρ over nontermi-
nals by ignoring the attribution functions inα. Fur-
ther,τ(ρ) is strongly one-unambiguous. Obviously,
this also implies the strong one-unambiguity ofρ.

So givenα and ρ, we may adaptA[](ρ) so that it
outputs the method names of the attribution func-
tions assigned toα instead of the bracketing, with
the default-attribution functions in places where no
attribution functions have been specified by the user.

2. The transitions of all DFTs in{Ap | p ∈ P} are then
encoded into the transitions of a single DPDT. Letp
be the current production. When reading a start tag
〈t〉, we store the current state ofAp on the DPDT
stack and start the simulation of the DFT which cor-
responds to the new production. Consequently, when
reading the matching end tag〈/t〉, we resume the
simulation of the previous DFTAp by retrieving its
state from the stack. Thus, we use the stack to switch

void evaluate
(

(F$[∪ F$]) f
)

{
if (pred= 1 andf ∈ F$[) {

Att A := S.top().clone();
S.push(f(A));
pred := 1;

} else if (pred= 1 andf ∈ F$]) {
Att A := S.pop();
Att B := A.clone();
S.push(f(A,B));
pred := 2;

} else if (pred= 2 andf ∈ F$[) {
Att A := S.pop();
S.push(f(A));
pred := 1;

} else if (pred= 2 andf ∈ F$]) {
Att B := S.pop();
Att A := S.pop();
S.push(f(A,B));
pred := 2;

}
}

Figure 9: Methodevaluate.

between the DFTs, or rather, the productions they
represent.

By simulating the DPDT on an input document, the
document is validated against the grammar component of
G. At the same time, the validator outputs the attribution
functions in the correct order. We refer to [23] for details
of this construction.

Proposition 1 For a TransformX attribute grammarG, a
validatorV(G) can be constructed in timeO(|G|3).

The computationally most expensive step in the con-
struction of a validator is the derivation of DFTs from reg-
ular expressions. For a one-unambiguous regular expres-
sionρ, such a DFT may be constructed in quadratic time
in the size ofρ [9]. As mentioned above, the DFT con-
struction for an attributed regular expressionρ requires
cubic time in the size ofρ [14, 23]. Thus, the time com-
plexity for the construction ofV(G) is in O(|G|3). In fact,
the translation is only cubic in the sizes of the regular ex-
pressions in the productions ofG, and linear in the size
of G. For typical grammars, we may expect these regular
expressions to be small.

Obviously, if a TransformX attribute grammarG does
not contain any attributed regular expressions, then the
validator can be constructed in timeO(|G|2).

We assume the common notion of a stack with methods
top, pop, andpush.

Definition 9 Let τ1, . . . , τk be types, letA1, . . . , Ak be
distinct attribute names, and letAtt = [A1 : τ1, . . . , Ak :
τk]. Let G be a TransformX attribute grammar with attri-
bution functions inF$[andF$].

An evaluatorE(G) is a class with the following prop-
erties:

10

0

25

50

75

100

31
M

B

61
M

B

91
M

B

12
2

M
B

31
M

B

61
M

B

91
M

B

12
2

M
B

31
M

B

61
M

B

91
M

B

12
2

M
B

(1) (2) (3)

tim
e

in
se

co
nd

s

Figure 10: Runtime for datasets of various sizes.

1. AttributeS is a stack holding tuples of attributes. At-
tributepredof type integer signals whether the attri-
bution function last processed was inF$[(if pred =
1), or in F$[(if pred= 2).

2. Initially, pred = 2 and the stack holds the tuple
[A1 = nil, . . . , Ak = nil].

3. Method evaluate invokes one attribution function
f ∈ F$[∪ F$] at a time and stores attribute values
on the stack so that a second-visit attribution func-
tion can access the results computed by the first-visit
attribution function that is assigned to the same node
in the attributed parse tree. The pseudo code for this
method is shown in Figure 9. �

As the evaluator follows directly from its definition,
it may be constructed in constant time. So by Proposi-
tion 1, the TransformX parser generator can translate a
given TransformX attribute grammarG to (Java) source
code in timeO(|G|3).

6 Implementation and Experiments
We implemented the TransformX framework inC++ with
gcc version 3.2. The generated Java class uses the SAX
parser provided by the Java API and is compiled and exe-
cuted withSun’s JDK 1.4.1 [24].

Runtime is averaged over five runs and measured in
seconds. It does not include the translation of TransformX
attribute grammars, as these values were negligible.

Our test data is an XML bibliography conforming to
the ERTG of Example 1 with an equal number of books
and articles. We conducted the following experiments:

1. Validate the input against the ERTG, i.e., evaluate
a TransformX attribute grammar with only default
attribution functions,

2. output the complete input, and

3. evaluate the TransformX attribute grammar specified
in Figure 1.

We execute these transformations on documents of dif-
ferent sizes. The results are shown in Figure 10. For
all three transformations, the main memory consumption
remains constant at 12 MB, which is about the amount

of memory it takes for the JVM to run. Experiment (1)
demonstrates the minimum time to parse and validate
the input, while transformations (2) and (3) require more
time, as additional processing steps are involved. This
effect is also visible in the throughput achieved: Trans-
formation (1) reaches 3.05MB

sec, while transformations (2)
and (3) reach a throughput of 1.09MB

sec and 1.26MB
sec.

We refrain from benchmarking the TransformX frame-
work against other systems, as in our framework, perfor-
mance is entirely in the responsibility of the programmer:
Knowledgable programmers can construct the fastest pos-
sible Java transformations. The TransformX framework
facilitates this task by providing the grammar-based con-
trol over the data stream characteristics.

7 Conclusion and Future Work

We have motivated the benefits of syntax-directed trans-
formations of XML streams. We have described the
TransformX attribute grammars and parser generator as
a tool for conveniently developing Java applications for
XML stream processing.

Our next step will be to optimize the evaluation of
TransformX attribute grammars by reducing the number
of stack operations performed by the evaluator: The gen-
eral idea is based on the observation that most practical
TransformX attribute grammars contain only few user-
defined attribution functions. Typically, the majority of
nodes in attributed parse trees is assigned default attribu-
tion functions, especially if productions contain attributed
regular expressions.

For an attributed parse treeP , we construct a tree mi-
norP ′ by removing those nodes which are assigned “non-
effective” attribution functions. To name an obvious ex-
ample, consider nodes which are assigned both default at-
tribution functionsfd

$[andfd
$]. In more interesting cases,

the result of applying a first-visit attribution function does
not need to be stored on the evaluator stack, because it is
not accessed by succeeding attribution functions. A modi-
fied program analysis taking into account the semantics of
TransformX attribute grammars may identify such cases.

If the evaluator invokes the attribution functions en-
countered in the traversal ofP , but only stores the re-
sults on the stack for those attribution functions also en-
countered in the traversal ofP ′, fewer stack operations
are performed. This improves runtime and may even re-
duce main memory consumption, while the transforma-
tion of the XML stream remains equivalent. In first exper-
iments, this optimization improves the runtime of trans-
formation (3) in Section 6 by 15%. We plan to further
explore this approach in our future work.

Acknowledgments

We thank Christoph Koch, Susumu Nishimura, Bern-
hard Stegmaier, and the anonymous reviewers of PLAN-X
2005 for their many helpful suggestions.

11

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman.Compilers –
Principles, Techniques, and Tools. Addison-Wesley,
1986.

[2] A. V. Aho and J. D. Ullman.The Theory of Parsing,
Translation, and Compiling. I: Parsing. Prentice-
Hall, 1972.

[3] M. Altinel and M. Franklin. “Efficient Filtering of
XML Documents for Selective Dissemination of In-
formation”. InProc. VLDB 2000, pages 53–64.

[4] Apache XML Project. “Xalan-Java Version 2.0”.
http://xml.apache.org/xalan-j.

[5] M. Benedikt, C. Y. Chan, W. Fan, J. Freire, and
R. Rastogi. “Capturing both Types and Constraints
in Data Integration”. InProc. SIGMOD 2003, pages
277–288, 2003.

[6] P. Bohannon, P. Buneman, B. Choi, and W. Fan.
“Incremental Evaluation of Schema-Directed XML
Publishing”. InProc. SIGMOD 2004, pages 503–
514, 2004.

[7] R. Book, S. Even, S. Greibach, and G. Ott. “Am-
biguity in Graphs and Expressions”.IEEE Transac-
tions on Computers, 20(2):149–153, Feb. 1971.

[8] T. Bray, J. Paoli, and C. Sperberg-McQueen. “Ex-
tensible Markup Language (XML) 1.0”. Technical
report, W3C, Feb. 1998.

[9] A. Brüggemann-Klein and D. Wood. “One-
Unambiguous Regular Languages”.Information
and Computation, 142(2):182–206, 1998.

[10] C. Y. Chan, P. Felber, M. N. Garofalakis, and R. Ras-
togi. “Efficient Filtering of XML Documents with
XPath Expressions”. InProc. ICDE 2002, pages
235–244, 2002.

[11] P. Cimprich, O. Becker, C. Nentwich, H. Jiroušek,
M. Batsis, P. Brown, and M. Kay. “Stream-
ing Transformations for XML (STX)”, 2003.
http://stx.sourceforge.net/documents/.

[12] T. J. Green, G. Miklau, M. Onizuka, and D. Suciu.
“Processing XML Streams with Deterministic Au-
tomata”. InProc. ICDT’03, pages 173–189, 2003.

[13] A. Gupta and D. Suciu. “Stream Processing of
XPath Queries with Predicates”. InProc. SIGMOD
2003, pages 419–430, 2003.

[14] C. Koch and S. Scherzinger. “Attribute Grammars
for Scalable Query Processing on XML Streams”.
In Proc. DBPL 2003, pages 233–256, 2003.

[15] C. Koch, S. Scherzinger, N. Schweikardt, and
B. Stegmaier. “FluXQuery: An Optimizing XQuery
Processor for Streaming XML Data”. InProc. VLDB
2004, pages 1309–1312, 2004. Demonstration.

[16] C. Koch, S. Scherzinger, N. Schweikardt, and
B. Stegmaier. “Schema-based Scheduling of Event
Processors and Buffer Minimization for Queries on
Structured Data Streams”. InProc. VLDB 2004,
pages 228–239, 2004.

[17] D. Lee, M. Mani, and M. Murata. “Rea-
soning about XML Schema Languages using

Formal Language Theory”. Technical Report
RJ 10197 Log 95071, IBM Research, 2000.
http://citeseer.ist.psu.edu/lee00reasoning.html.

[18] J. R. Levine, T. Mason, and D. Brown.lex & yacc.
O’Reilly & Associates, Inc., 1992. Second Edition.

[19] A. Marian and J. Siḿeon. “Projecting XML Docu-
ments”. InProc. VLDB 2003, pages 213–224, 2003.

[20] F. Neven. “Extensions of Attribute Grammars for
Structured Document Queries”. InProc. DBPL
1999, pages 99–116, 1999.

[21] F. Neven and J. van den Bussche. “Expressiveness
of Structured Document Query Languages Based
on Attribute Grammars”. Journal of the ACM,
49(1):56–100, Jan. 2002.

[22] S. Nishimura and K. Nakano. “XML Stream Trans-
former Generation Through Program Composition
and Dependency Analysis”.Science of Computer
Programming, 54(2–3):257–290, 2005.

[23] S. Scherzinger. “Scalable Query Pro-
cessing on XML Streams”. Diploma
thesis, University of Passau, 2004.
http://wit.at/people/scherzinger/thesis.pdf.

[24] Sun Microsystems. “JavaTM 2 Platform Standard
Edition v1.4.1”. http://java.sun.com/.

[25] World Wide Web Consortium. “XML Query
(XQuery)”. http://www.w3c.org/XML/query/.

[26] World Wide Web Consortium. “XSL Transforma-
tions (XSLT)”. http://www.w3.org/TR/xslt/.

12

