
Performance Tuning for SAP R/3

Copyright 1997 IEEE. Personal use of this material is

permitted. However, permission to reprint/republish

this material for advertising or promotional purposes

or for creating new collective works for resale or

redistribution to servers or lists, or to reuse any

copyrighted component of this work in other works

must be obtained from the IEEE.

Bulletin of the IEEE Computer Society Technical

Committee on Data Engineering

Alfons Kemper Donald Kossmann Bernhard Zeller
University of Passau, Germany

http://www.db.fmi.uni-passau.de

1 Introduction

SAP R/3 is the most successful product for enterprise resource planning (ERP). It is used by most
Fortune 500 companies and comprises modules for human resource management, accounting, logistics,
etc. Like many other application systems, SAP R/3 is based on a commercial relational database system
which is used to store all R/3 related data; e.g., a company’s sales information. When installing R/3, it
is possible to choose among several commercial systems; e.g., Adabas D, IBM UDB, Informix Adaptive
Server, Microsoft SQL Server, or Oracle 8.

Obviously, very good performance is crucial for users of SAP R/3. In many companies, transactions
of thousands of users must be processed concurrently by SAP R/3 and the underlying database system.
In addition, the size of the database can become very large. Today, the largest SAP R/3 databases have
about 1.5 terabytes; in a few years, these databases are likely to grow several times that size as a result
of new R/3 releases and developments; e.g., component architecture or SAP’s business information
warehouse. Unfortunately, tuning the performance of an SAP R/3 system is very difficult because
both the R/3 application system and the underlying database system must be tuned. Furthermore,
the performance of an R/3 system can suffer because parts of R/3 were designed and implemented in the
early eighties at a time when commercial database systems and their interfaces were immature. Finally,
SAP R/3 is an open system that allows customers and third-party vendors to integrate specialized
modules which are not part of the R/3 standard. Such modules can severely hurt the performance of
the whole system, if they are poorly implemented.

The purpose of this paper is to give an overview of various performance aspects of SAP R/3. This
paper describes tuning options and experiences for transaction processing (OLTP) and query processing

1



(OLAP) and shows how an R/3 system can be monitored and benchmarked. The paper is structured
as follows: Section 2 gives an overview of the architecture of R/3. Sections 3 and 4 address performance
issues for OLTP and OLAP workloads. Section 5 describes monitoring of SAP R/3 and benchmarks
developed for R/3. Section 6 contains a summary.

2 Overview of SAP R/3

SAP R/3 is the market leader for integrated business administration systems. It integrates all business
processes of a company and provides modules for finance, human resources, material management,
etc. SAP R/3 is based on a (second party) relational database system which serves as an integration
platform for all components of SAP R/3. The database system manages the SAP database which
stores all business data of a company (e.g., customer and supplier information, orders, . . . ), all of
SAP R/3-internal control data, an SAP R/3 data dictionary, and the code of all application programs.
Virtually no data are stored outside this SAP database, thereby avoiding the use of a file system.

Describing the whole system in detail is beyond the scope of this paper. In the following, we will
focus on the properties of SAP R/3 which are most relevant for performance tuning. In particular, we
focus on the SAP R/3 interface to the relational database system back-end.

2.1 Architecture of SAP R/3

SAP R/3 [WHSH96, BEG96, Sch99, DHKK97] is based on a three-tier client/server-architecture with
the following layers (see Figure 1):

1. The presentation layer. It provides a graphical user interface (GUI) usually running on PCs that
are connected with the application servers via a local (LAN) or a wide-area network (WAN).

2. The application layer. It comprises the business administration “know-how” of the system. It
processes pre-defined and user-defined application programs such as OLTP and the implemen-
tation of decision support queries. Application servers are usually connected via a local area
network (LAN) with the database server.

3. The database layer. It is implemented on top of a (second party) commercial database product
that stores all data of the system, as described above.

In a small company that uses SAP R/3, the application servers and the database system could be
installed on the same middle-range machine and users would enter business transactions or issue decision
support queries using their PCs. Such a configuration, however, is not practical for large companies
with a very high volume of data and transactions. In such companies, all application servers and the
database system would be installed on separate dedicated machines. To this end, SAP R/3 has been
ported to a large variety of hardware and operating system platforms, and it is also operational on a
number of commercial RDBMSs.

2.2 Data Model and Schema of SAP R/3

SAP R/3 is a comprehensive and highly generic business application system that was designed for
companies of various organizational structures and different lines of business (e.g., production, retailing,
. . . ). This genericity and comprehensiveness resulted in a very large company data model with over
13.000 database tables. To manage the meta data (e.g., types and interrelationships) of these tables,
SAP R/3 maintains its own data dictionary which is (like all other data) stored in SAP’s relational
database and which can be used by SAP application programs.

2



relational database system
(back-end server)

6

?

LAN6?

application server 1

6?

application server 2
6?6?

. . .

. . .

LAN or WAN
6? 6? 6?

presentation 3presentation 2presentation 1

Figure 1: Three-Tier Client/Server-Architecture of SAP R/3

relational database system
(back-end server)

6
?

local buffers

database
interface

�-data
dictionary

ABAP/4 interpreter
Native SQL Open SQL

6

?

application-
data SAP-SQL

6

?

D
B

-d
at

a

SQ
L

qu
er

ie
s

SAP R/3

Figure 2: Database Interface of ABAP/4

2.3 ABAP/4

Applications of the SAP R/3 system are coded in the programming language ABAP/4 (Advanced
Business Application Programming Language) [MW97]. Except for a small kernel, actually the entire
R/3 system is coded in ABAP/4. ABAP/4 is a so-called Fourth Generation Language (4GL) whose
origins can be found in report/application generator languages. For this reason, ABAP/4 programs
are often called reports. In the course of the R/3 evolution, ABAP/4 was augmented with procedural
constructs in order to facilitate the coding of more complex business application programs. For example,
ABAP/4 contains language constructs to program so-called “Dynpros” which are dialog programs with
a graphical user interface including the logic for validating and processing user entries. Recently, SAP
has extended its ABAP programming language with object-oriented features, sometimes referred to as
ABAP Objects.

ABAP/4 is an interpreted language, which makes it very easy to integrate new ABAP/4 application
programs into the system. Like ordinary data, all ABAP/4 application programs are managed by the
R/3 data dictionary and the program code is stored in the SAP database. Also, SAP R/3 includes a
software development workbench for developing new application code.

As sketched in Figure 2, ABAP/4 provides commands that allow to access the database via two

3



different interfaces: Native SQL and Open SQL. The Native SQL interface can be addressed by so-
called EXEC SQL commands. It allows the user to access the SAP database directly without using
the SAP-internal data dictionary. The advantage is, that the database system-specific properties and
services (e.g., non-standard SQL statements like optimizer hints or specialized operators like cube)
can be fully exploited and additional overhead by SAP R/3 is avoided. However, using the Native
SQL interface incurs some severe drawbacks: (1) The EXEC SQL commands may be database system-
specific which renders non-portable ABAP/4 programs. (2) By circumventing the SAP-internal data
dictionary, EXEC SQL commands cannot access encapsulated relations (containing encoded/clustered
data that can only be interpreted using the transformations maintained in the data dictionary). (3)
Native SQL reports are potentially unsafe because Native SQL directly reads database relations, and
the implementor of a Native SQL report might overlook intrinsic business process interpretations which
are otherwise carried out implicitly by SAP R/3’s application programs; that is, bypassing SAP R/3’s
data dictionary requires expert knowledge about the rules and dependencies of the system.

Safe and portable ABAP/4 reports can be written by relying exclusively on ABAP/4’s Open SQL
commands. Consequently, with very few exceptions the entire R/3 system shipped by SAP is pro-
grammed using Open SQL.

Transaction Processing in SAP

SAP uses the term Logical Unit of Work (LUW) for transactions. Basically, an SAP LUW has the
same ACID properties as database system transactions: an SAP LUW can span several dialog steps
and an SAP LUW is either executed completely or not at all (i.e., atomicity). However, SAP LUWs
are not mapped 1:1 to database transactions; rather a more complex SAP LUW may involve several
database transactions. To synchronize LUWs SAP implemented its own locking scheme which is
managed by a (centralized) enqueue server which runs in one of the application servers. Basically,
SAP also implemented its own TP monitor consisting of a message handler and request queue in every
application server. In comparison: PeopleSoft uses third-party TP monitors such as Tuxedo.

Figure 3 illustrates the processing of user dialog steps by the application server. When a user logs in,
a message handler finds the application server with the smallest load (load balancing). This application
server handles all of the requests of that user session. A user session consists of several transactions
(LUWs), and every transaction consists of several dialog steps. Every application server has one
dispatcher process and several work processes. The dispatcher queues requests until a work process is
available to carry out the dialog step. For this, the relevant data is “rolled into” the private buffer and
the ABAP program is interpreted. Thus, every user session is handled by a single application server,
but dialog steps of the same LUW may be handled by different work processes. There is, however, an
exception for transactions that involve large objects: They are assigned to exclusive work processes to
avoid the cost of rolling data in and out.

Figure 4 summarizes the two-phase processing of an SAP transaction (LUW): Log records for
updates—rather than issuing actual database updates—are generated during the processing of the
dialog steps. These log records are translated into update requests which are propagated to the RDBMS
in the posting phase. SAP locks are requested during the online phase and released after the posting
phase is complete (2-phase locking). But note that these are SAP specific locks; the corresponding data
is not locked in the database which makes it, in theory, possible to access and update the data via other,
e.g., non-SAP, database application programs accessing directly the underlying RDBMS tables. Like
dialog steps, posting steps are possibly handled by different work processes (potentially in parallel).

There are several reasons why SAP installed its own transaction processing scheme on top of the
database transaction management: Typical RDBMSs do not allow transactions that cross process
boundaries. This is necessary in SAP because the dialog steps of an LUW can be handled by different

4



Work
Process

Work
Process

. . .

private
buffers

private
buffers

Dispatcher

Shared Memory Buffers

Queue

Figure 3: Architecture of the Application Server

D1 D2 D3

dialog steps

P1 P2 P3 P4

posting steps

online phase posting phase

lock requests lock release

Figure 4: 2-Phase Processing of SAP Transactions

5



work processes. Aborts of user dialogs are quite frequent (e.g., out of stock) and are carried out before
posting—as a result, no roll-back at the RDBMS, the bottleneck, is required for such user-initiated
aborts. SAP carries out locking in the granularity of “business objects” which are defined in the SAP
dictionary. A business object typically comprises many tuples of different relations.

3 Transaction Processing in SAP R/3

3.1 Application Servers and Work Processes

Obviously, one crucial decision is to determine the hardware used for the application server machines
and the database backend server. This decision impacts greatly how many concurrent users can be
supported. The following is a brief overview of possible hardware configurations [BEG96, KKM98]:

1. tiny (1 user): the whole system is installed on a laptop; the golf club of one of SAP’s founders, for
example, is organized in this way. Such installations are particularly useful for teaching purposes.

2. small (10 users): application and database server run on one mid-range machine

3. medium (100 users): a few mid-range machines are used to run the application servers and a
separate machine is used for the database server; the machines are connected by an Ethernet

4. large (1000 users): several machines are used for the application servers and a high-end (multi-
processor) machine is used for the database server; the machines are connected by a very high-
speed LAN.

Another decision concerns the number of work processes established at each application server. Clearly,
the CPU of an application server machine will be under-utilized if too few work processes are estab-
lished; on the other hand, many CPU cycles will be wasted due to context switches if too many work
processes are established. Furthermore, the number of work processes impacts the use of main memory
(Section 3.2). A good rule of thumb is to have one work process for five to ten users.

3.2 Main-memory Management

An SAP R/3 application server divides the available main memory into several segments. First of all,
the memory is divided into shared memory which can be accessed by all working processes and into
local memory for each individual working process. The shared memory is further subdivided into the
R/3 extended memory, the R/3 paging area, and the R/3 buffer/cache. The local memory of a working
process is subdivided into local roll memory, the R/3 heap, and memory for local data (e.g., application
code). The size of each of these segments can (and must) be set by an R/3 system administrator. It
should be noted that SAP R/3 main memory management is of course implemented on top of the
virtual memory management of the operating system.

In order to demonstrate the importance of a right configuration, we will show how the roll memory,
the R/3 extended memory, and the R/3 heap memory are used during transaction processing. A
transaction is composed of several dialog steps; each dialog step may be processed by a different
working process. To process a dialog step, a working process copies all the data of the transaction
generated by previous dialog steps from the R/3 extended memory into its roll memory, carries out
the dialog step, and copies the updated data back into the R/3 extended memory. If the data of a
transaction grows larger than the size of the roll memory, then the working process carries out the
dialog step directly in the R/3 extended memory; in this case, only pointers to the data are copied into
the roll memory. As a result, the size of the roll memory determines whether work processes operate

6



using private (local) or shared memory. In fact, starting with Release 4.0 SAP recommends to set the
size of the roll memory to 1 in order to force the system to carry out all dialog steps directly in the
R/3 extended memory because shared memory access has become cheap and a great deal of copying
data can be saved this way.

In situations in which the R/3 extended memory is exhausted and cannot hold all data of all active
transactions, the data of a transaction is copied into the R/3 heap. In the R/3 heap, data can only be
read and updated by the same working process that wrote the data into the heap. As a result, all dialog
steps of a transaction must be processed by the same work process once the data of the transaction has
been written to the R/3 heap. Configuring the size of the R/3 extended memory, therefore, impacts
the dispatching of dialog steps.

From this discussion it should have become clear that tuning the main memory allocation is very
difficult for the R/3 application servers. (Buffer allocation for the database server is difficult, too, – for
different reasons – and must be carried out in addition to the main memory management of the R/3
application servers.) A list of recommendations is given in [Sch99]. Furthermore, R/3 ships with a tool
called quick size that helps R/3 administrators. Interestingly, Microsoft provides a special feature in
the Windows NT operating system to help the administrator. The idea is to dynamically adapt the
size of the R/3 extended memory so that the administrator need not set this parameter explicitly and
need not consider the tradeoffs between executing dialog steps in the R/3 extended memory and the
R/3 heap. This initiative is called zero main memory administration.

3.3 Caching

In order to reduce the load on the database server, a potential bottleneck, all R/3 application servers
make use of caching. Any kind of data including application code, constraints, schema information,
and user data such as Customer information, can be cached in the buffers of an application server. Hit
rates of 90% and even higher are not unusual for OLTP workloads in practice. The decision of what
and how to cache can again be made by the R/3 system administrator. For example, the administrator
can determine that Sales information which is bulky and frequently updated should not be cached,
whereas information about Regions should be cached because such data is small and rarely updated.
The administrator can also determine whether whole tables or individual records of a table should be
cached (i.e., the granularity of caching). For all (13004) tables that are part of the standard vanilla
R/3 schema, R/3 provides default settings. For new, user-defined tables, no caching is the default.

4 Query Processing in SAP

4.1 SAP’s Query Language Features

As shown in Figure 2, the SAP R/3 system provides the two query interfaces Native SQL and Open
SQL. Since almost all built-in applications access the database via the Open SQL interface we will
concentrate on its query facilities. The two basic query constructs of the Open SQL interface are the
SELECT . . . ENDSELECT and the SELECT SINGLE statements:

SELECT 〈attribute list〉
FROM 〈table〉
WHERE 〈predicate〉
. . . process current tuple
ENDSELECT.

SELECT SINGLE 〈attribute list〉
FROM 〈table〉
WHERE 〈unique predicate〉
. . . process the only tuple

7



The basic SELECT command accepts any kind of predicate in its WHERE-clause. The SELECT
SINGLE command, on the other hand, requires predicates on unique fields of a table so that at most
one tuple qualifies and is returned for further processing.

Up to recent R/3 releases, both SELECT commands were restricted to a single SAP table or view.
That is, unless a (join-)view was defined, it was not possible to implicitly describe a join, as is possible
in SQL by referencing several relations in the FROM-clause. Join views could only be formulated over
transparent tables (i.e., non-encoded tables that can be interpreted by the RDBMS without the SAP
data dictionary) and only along primary key/foreign key relationships.

To evaluate a general join within the Open SQL interface, the implementor had to code an ABAP/4
program with nested SELECT. . .ENDSELECT or SELECT SINGLE loops. This is demonstrated in
the following program fragment:

SELECT 〈attribute list〉
FROM 〈outer table〉
WHERE 〈simple predicate〉.

SELECT 〈attribute list〉
FROM 〈inner table〉
WHERE 〈join predicate〉.
. . . processing of the current inner (and outer) tuple
ENDSELECT.

. . . processing of the current outer tuple
ENDSELECT.

Such a program evaluates the join of the tables, without making use of the join methods of the
underlying database system. In essence, it corresponds to an (index) nested loops join with the addi-
tional overhead of “crossing” the interface between database system and ABAP/4 program for every
tuple of the outer relation in order to find the matching tuples of the inner relation.

Furthermore, groupings and aggregations could not be incorporated into the Open SQL SELECT
statements of older SAP R/3 releases. As a consequence, all groupings and aggregations had to be
performed by the SAP system, thereby possibly transferring huge amounts of data from the RDBMS
to the SAP application server.

Recently, SAP has incorporated joins, groupings, and simple aggregations into the Open SQL SE-
LECT statements. These operations can now be delegated to the underlying RDBMS and benefit from
the RDBMS’s advanced join and groupby algorithms. However, one has to keep in mind that it requires
reprogramming the many (thousands of) built-in applications before this takes effect. Delegating these
operations to the RDBMS will, of course, “strain” the underlying database server (in particular the
query optimizer and the query engine) even more than current SAP installations already do.

4.2 SAP Query Optimization Features

To optimize query processing, SAP R/3 implements two techniques which take effect if the Open
SQL interface is used: (1) Cursor caching which reduces the overhead of calls to the RDBMS by
using the same cursor for, say, all the queries that retrieve the matching tuples of the inner relation
in a nested SELECT statement. Cursor caching is possible because most database systems allow
parameterized queries and provide a cursor REOPEN command in their API. (2) Caching data in
SAP R/3 application servers in order to avoid calls to the RDBMS altogether (cf. Figure 2). For
caching, the typical tradeoffs between read and update frequency apply; in addition, SAP R/3 does
not fully guarantee cache coherency in a distributed environment as updates are only propagated
periodically.

8



Cursor Caching In order to enable cursor caching, SAP is transforming queries containing literals
(constants) into parameterized queries—in anticipation that the same query with a different parameter
will be issued again in the near future. As an example, consider the following query:

SELECT . . .
FROM VBAP
WHERE KWMENG < 9999
ENDSELECT.

 

SELECT . . .
FROM VBAP
WHERE KWMENG < ?

That is, the query on the left is translated into a parameterized query, and “?” denotes the query
parameter. Due to this translation, the optimizer of the RDBMS cannot estimate the selectivity of
the predicate of the translated query and thus blindly generates a plan. In some cases, the optimizer
chooses bad access plans—due to the fact, that the selectivity could not be estimated correctly.

Caching If a relation is cached in the application server the Open SQL interface is exploiting this.
SAP differentiates between several caching levels for a particular relation:

• complete buffering: The entire table is cached and any SELECT on this table can (and will) be
performed by the application server on the cached copy.

• single-tuple and generic buffering: Only those tuples are cached whose key attributes have the
specified values. For single tuple caching, all key attributes are specified; for generic caching only
a subset of the key attributes is specified. Queries can only be evaluated on the cached copy if
the WHERE clause specifies a superset of the attributes that determine the caching.

As pointed out before, the SAP system “comes with” pre-configured caching rules for all its built-in
tables which may, however, need to be adapted for particular workloads.

In addition to the implicit caching, ABAP/4 allows the materialization of query results in internal
(i.e., temporary) tables in order to use this data for further processing. For example, it is possible to
materialize the inner relation of an Open SQL nested-loops join report and avoid repeated calls to the
RDBMS this way. Using such a materialized table, SAP provides a language construct called

. . . FOR ALL ENTRIES IN 〈materialized table〉 . . .

to obtain the matching tuples of another table—i.e., to obtain the semijoin result. For this purpose, the
SAP query processor generates a corresponding WHERE clause containing a disjunct for every tuple of
the materialized table. This way, users can implement their own join routines; for example, they could
implement a semijoin-supported sort/merge join executed in the application server—thereby taking
load off the database system.

4.3 Tuning SAP Queries

SAP provides tracing tools for analyzing potential performance bottlenecks resulting from poor query
evaluation plans. Having identified an ABAP program with poor query execution performance several
“repairs” may be appropriate:

• Reprogram the application using the advanced query features that allow to delegate complex
operations to the underlying database server.

• If the RDBMS server is particularly loaded it is possible to perform more of the data processing
in the application server, e.g., sorts, groupings, etc.

9



• Reprogram the application to use the Native SQL interface as opposed to the Open SQL interface.
Database-specific features such as user hints and specialized operators can only be exploited via
this interface. The SAP built-in applications usually don’t use this interface because, among
other reasons, it violates portability between database vendors.

• Define new indexes on the underlying database tables. This may, however hurt the “mission-
critical” OLTP performance.

• Materialize intermediate results in the application server and reuse these snapshots in query
evaluation.

• Update statistics of the underlying database to ensure that the query optimizer has precise
numbers.

• Sometimes SAP users may find it necessary to suppress statistics in order to “trick” the optimizer
into generating a desired plan that it wouldn’t choose otherwise. Note that from the Open SQL
interface it is not possible to pass optimizer hints to the RDBMS.

• Another trick is to temporarily turn the database system optimizer to a different optimization
level (as is possible with some RDBMS products).

4.4 BW: SAP’s Data Warehouse

Optimizing the SAP system for query performance may be hurting the OLTP performance—which,
in most SAP installations, is more critical than the OLAP performance as the OLTP operations are
needed for the companies’ operational business. To avoid this, SAP users with OLAP requirements can
use SAP’s recently developed data warehouse product, called Business Information Warehouse (BW),
in conjunction with the R/3 system. Using the BW the OLAP-relevant data is extracted from the
operational R/3 OLTP system and stored in pre-defined star schemes [CD97], called InfoCubes in SAP
terminology.

The key features of the BW Server are (cf. Figure 5):

• Like MicroStrategy, it runs on a variety of third party RDBMSs.

• The BW provides open Business Application Programming Interfaces (BAPIs) for

– data loading: to accommodate the extraction of data from non-SAP systems besides R/3
systems.

– OLAP processing: e.g., for third party visualization tools.

• The SAP BW provides a pre-configured meta data repository consisting of InfoCubes catalog,
report catalog, information source catalog, etc.

• Many pre-defined InfoCubes for common business applications exist, e.g., market segment anal-
yses, profitability analyses, stock inventory analyses, corporate indicator systems.

• To obtain the data (and subsequently the incremental updates) from R/3 OLTP systems prede-
fined extraction routines are delivered.

10



BW Server

Repository

Data Store

Meta Data

Business Explorer

Report Catalog Browser

Reporting and Analysis
for Microsoft Excel

Reporting and
Analysis

OLTP 
Reporting

Production Data
Extractor

Non R/3 Production 
Data Extractor

Meta Data Manager Data Manager InfoCubes

Staging Engine

BAPI

R/3 OLTP Applications Non R/3 OLTP Applications

OLAP Processor

BAPI

Figure 5: Architecture of SAP’s Data Warehouse

5 Monitoring and Performance Evaluation

In the previous two sections we described different options for transaction and query processing in SAP
R/3. In this section, we describe tools that can be used to monitor and assess the performance of SAP
R/3 installations.

5.1 Monitoring

SAP R/3 ships with a very powerful monitoring tool. This tool measures, for instance, the lengths of
the queues at every application server, the cache hit ratio, the running time of database operations and
of ABAP/4 operations, the number of transactions that are committed and rolled back, the response
time of dialog steps, and the CPU, disk, memory, and network utilization. All these performance
statistics are stored in the relational database. In addition, alerters inform system administrators if
the system performs poorly. Furthermore, SAP offers a special early watch service. If a company buys
this service, then SAP specialists periodically assess the performance statistics of the company’s R/3
installation and provide suggestions for performance improvements [BEG96].

5.2 SSQJ Tool

In order to detect performance problems, SAP has also developed a tool called SSQJ. This tool stores
the code and running times of queries that have caused performance problems in at least one R/3
installation in the past. The queries recorded by SSQJ include simple select queries involving different
kinds of indices as well as complex multi-way join queries; for example, the queries of the TPC-D
benchmark for SAP R/3 are maintained by SSQJ (Section 5.3). Currently, this tool is mostly used
by database vendors in order to test new releases. Before a new release of an RDBMS is shipped,
the vendor runs all the queries stored in SSQJ and SSQJ indicates which queries showed good or bad
performance compared to the running times obtained using an older release. SSQJ could also be used

11



to assess the R/3 installation of a customer; that is, before working with the new R/3 installation,
a customer could run all queries stored in SSQJ and see whether any queries show particularly poor
performance. To date, however, we know of no customers that have used the SSQJ tool to assess their
installation.

5.3 Benchmarks

A number of benchmarks have been proposed for SAP R/3. The main characteristic of these bench-
marks is that the whole system is tested; i.e., rather than testing the RDBMS in isolation, the bench-
marks test the execution of typical R/3 operations (dialog steps and queries) that involve processing by
the application and database servers. The most prominent benchmark is the SD benchmark for mea-
suring the performance of processing sales and distribution transactions. Many hardware and database
vendors have published results of this benchmark. SAP collects and certifies these benchmark results
and publishes them, e.g., on the Web. In previous work, we adapted the TPC-D benchmark [TPC95] for
SAP R/3 and published results in [DHKK97]. As stated earlier, the queries of the TPC-D benchmark
are also part of SAP’s SSQJ tool.

6 Summary

In this paper we gave an overview of various performance aspects of SAP R/3. After overviewing SAP
R/3’s three-tier architecture, we described tuning options and experiences for transaction processing
(OLTP) and query processing (OLAP) and briefly surveyed the monitoring and benchmarking tools
for an R/3 system.

References

[BEG96] R. Buck-Emden and J. Galimow. SAP R/3 System, A Client/Server Technology. Addison-Wesley,
Reading, MA, USA, 1996.

[CD97] S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technology. ACM SIGMOD
Record, 26(1):65–74, Mar 1997.

[DHKK97] J. Doppelhammer, T. Höppler, A. Kemper, and D. Kossmann. Database performance in the real
world: TPC-D and SAP R/3. In Proc. of the ACM SIGMOD Conf. on Management of Data, pages
123–134, Tucson, AZ, USA, May 1997.

[KKM98] A. Kemper, D. Kossmann, and F. Matthes. SAP R/3: a database application system. Tutorial
handouts for the ACM SIGMOD Conference, Seattle, WA, USA, June 1998. http://www.db.fmi.uni-
passau.de/publications/tutorials/.

[Sch99] Thomas Schneider. SAP R/3-Performanceoptimierung. Addison-Wesley, Reading, MA, USA, 1999.

[MW97] B. Matzke and A. Weinland. ABAP/4 - Programming the SAP R/3 System. Addison-Wesley,
Reading, MA, USA, 1997.

[TPC95] Transaction Processing Performance Council TPC. TPC benchmark D (decision support).
Standard Specification 1.0, Transaction Processing Performance Council (TPC), May 1995.
http://www.tpc.org/.

[WHSH96] L. Will, C. Hienger, F. Straßenburg, and R. Himmer. R/3-Administration. Addison-Wesley, Reading,
MA, USA, 1996.

12


	Introduction
	Overview of SAP R/3
	Architecture of SAP R/3
	Data Model and Schema of SAP R/3
	ABAP/4

	Transaction Processing in SAP R/3
	Application Servers and Work Processes
	Main-memory Management
	Caching

	Query Processing in SAP
	SAP's Query Language Features
	SAP Query Optimization Features
	Tuning SAP Queries
	BW: SAP's Data Warehouse

	Monitoring and Performance Evaluation
	Monitoring
	SSQJ Tool
	Benchmarks

	Summary

