
Efficient Bulk Deletes in Relational Databases

A. Gärtner1 A. Kemper1 D. Kossmann2 B. Zeller1

1 Universität Passau
94030 Passau, Germany

〈lastname〉@db.fmi.uni-passau.de

2 Technische Universit¨at München
81667 München, Germany

kossmann@in.tum.de

Abstract

Many applications require that large amounts of data are
deleted from the database – typically, such bulk deletes are
carried out periodically and involve old or out-of-date data.
If the data is not partitioned in such a way that bulk deletes
can be carried out by simply deleting whole partitions, then
most current database products execute such bulk delete op-
erations very poorly. The reason is that every record is
deleted from each index individually. This paper proposes
and evaluates a new class of techniques to support bulk delete
operations more efficiently. These techniques outperform the
”record-at-a-time” approach implemented in many database
products by about one order of magnitude.

1. Introduction
Sometimes we are confronted with more data than we can

really use, and it might be wisest to forget and to destroy most
of it. (Donald Knuth, The Art of Computer Programming)

For many companies, the cost to administrate their databases
has increased dramatically in the last couple of years. This
trend can be observed even though most database systems
have become easier to use and database system administra-
tors have gained more and more experience in using the sys-
tems. The reason for this cost explosion is that the sizes of
databases grow at a dramatic rate. In 1999, only a few SAP
R/3 databases were larger than one terabyte. It is estimated
that this number will rise dramatically within the next two
years.

The obvious way to limit the size of a database is to make
use of archiving. That is, data which are not needed for every-
day operations are demoted from the database (disks) to ter-
tiary storage (tapes). This way the database can carry out its
every-day operations efficiently and the data remains avail-
able for possible reuse. Archiving for this purpose is used, for
instance, in the SAP R/3 installation of the German Telekom.
In a more general context, archiving is studied as part of the
SAP Terabyte project in cooperation with the University of
Passau.

Archiving is a two step process. In the first step, the data
to be archived are extracted from the database and written to
tape. This first step involves the execution of (fairly complex)
queries such as ”find all orders which were processed more
than three months ago”. Query processing has been studied
in a number of previous projects (e.g., [3]) and is not the
subject of this work. In the second step, the extracted data
are deleted from the database. How to efficiently delete such
masses of data is the subject of this work.

In addition to archiving, there are several other applica-
tions that involve bulk deletes. For example, bulk deletes
occur frequently in a data warehouse that keeps awindowof,
say, all the sales information of the last six months. The tech-
niques presented in this paper can also be applied to speed
upUPDATEstatements; for instance, increasing the salary of
above-average Employees involves carrying out a bulk delete
(and bulk insert) on theEmp.salaryindex.

1.1. The State of the Art

Bulk deletes can be implemented very efficiently if the
data is partitioned accordingly. For example, if we know
that we are going to delete all sales information from the first
quarter in September, all sales information from the second
quarter in December, and so on, then we can store the sales
information of each quarter in a separate partition. In this
case, the bulk deletes can be implemented very efficiently by
simply discarding a whole partition (including all the indices
of that partition). Partitioning a database for this purpose is
supported by most database products; e.g., Oracle [11]. How-
ever, partitioning only helps if the bulk deletes are planned
before the data is actually created and a table can only be
partitioned along one dimension. That is, partitioning will
not help if, say, some bulk deletes are carried out according
to theorder dateand some bulk deletes are carried out ac-
cording to theship date. Furthermore, partitioning does not
help if there are additional restrictions; e.g., ”delete old or-
ders but only if they have been fully processed”. If the data
is not partitioned right, then the traditional way of deleting
tuples perform very poorly on bulk deletes.

To see how the delete operations are carried out tradition-

0

50

100

150

200

1 5 10 15

T
im

e
(m

in
)

Deleted tuples (% of tuples)

 2 h 50 min

 1 h 16 min

traditional
drop & create

Figure 1. Bulk deletes using a commercial
RDBMS: 500 MB table, 3 indices, vary number
of deleted tuples

ally if the data is not partitioned accordingly, let us look at
the following simple SQL statement in order to delete tuples
from tableR. R.A is the key of tableR andD.A contains
the keys of all records ofR that are to be deleted. For in-
stance, tableD could be created as part of the first step of an
archiving process. We will use this example throughout this
paper, but of course the techniques devised in this work can
be applied to any (bulk)DELETEstatement and to any kind
of application.

DELETE FROM R WHERE R.A IN (SELECT D.A FROM D)

Traditionally, this statement is carried out by scanning
through tableR, testing the predicate for each record of table
R, and then deleting each tuple ofR for which the predicate
holds. Most importantly, whenever a record is deleted from
tableR, it is immediately removed from all indices (B-trees)
of tableR. As a consequence, for every record, each B-tree
is traversed individually from the root to the relevant leaf re-
sulting in overall very high costs.

Figure 1 shows the results of performance experiments
that we carried out using one of the major relational database
products. We ran our example statement from above using
synthetic instances of tablesR andD. TableR had 1.000.000
records of 512 bytes before theDELETEstatement was car-
ried out. We varied the size of tableD such that 1%, 5%,
10%, or 15% of the records of tableR were deleted. There
were three indices on tableR: one primary index and two
secondary indices. The hardware was a SUN UltraSPARC
1 Creator 170E with 256 MB memory and a 4.55 GB Sea-
gate Barracuda 4XL disk, which spins at 7200 rpm. Looking
at thetraditional graph, we observe that the running time of
theDELETEstatement increases sharply the more records of
R are deleted. It takes almost three hours to delete 150.000
records (i.e., 15%) even for this tiny database.

Figure 1 also shows the running time to delete records
from tableR using an alternative approach (referred to as
drop & create). In this approach, we first dropped the sec-
ondary indices ofR and re-created them after theDELETE

statement was executed. Due to the high cost to re-create the
indices, this approach has a very high running time, too, but
in fact, this approach outperforms thetraditional approach
significantly if more than 5% of the records of tableR are
deleted.

The goal of this work is to devise new ways to carry out
bulk delete operations that significantly outperform the tradi-
tional ways of database systems to carry outDELETEstate-
ments. The two key ideas are to take a more holistic approach
to optimize suchDELETEstatements and to delete records
from indices in a batch rather than a record at a time.

1.2. Related Work

To the best of our knowledge, an algorithm for the imple-
mentation of bulk deletes—aside from partitioned tables—
has not been published yet. However, there has been work on
the analysis and implementation of delete operations from
indices and a number of other related issues. Probably the
best known algorithm to delete records from aB+-tree was
proposed by Jannink [7] and an improvement to this algo-
rithm was proposed by Olivie and Maelbrancke [13]. Shasha
and Johnson studied the overall performance ofB+-trees in
the presence of deletes and inserts [8]: their conclusion is
that leaf pages should not be merged after deletions. Bulk
loading, the dual of bulk deletes, was studied in a number of
papers. Seeger et al., for instance, propose an algorithm to
bulkload generalized search trees [22]. Furthermore, Wiener
and Naughton show how object-oriented databases can be
loaded efficiently [24, 25]; they propose to carry out ajoin
between the table of all OIDs and the table of all objects in or-
der to initialize inter-object references in the object-oriented
database. Deleting records from tables and the management
of free space is described in [6, 14].

There also has been a line of work on creating and reor-
ganizing indices while other (update, insert, delete) opera-
tions are carried out without blocking those operations; e.g.,
[17, 26, 21]. We will discuss that work and show how it can
be applied in our context in Section 3.

1.3. Overview

The remainder of this paper is organized as follows. Sec-
tion 2 presents new algorithms to carry out bulk deletes. This
section describes the overall idea to process deletes in a set-
oriented way rather than a record-at-a-time and it gives sev-
eral examples. Section 3 discusses concurrency control and
recovery issues in the context of bulk deletion. Section 4
contains the results of performance experiments that show
that our new approach to carry out bulk deletes significantly
outperforms traditional ways in various different situations.
Section 5 contains conclusions and our plans for future work.

2. Algorithms for Bulk Deletes

In this section, we will show how bulk deletes can be pro-
cessed efficiently by a relational database system. We will
first present the general idea and then discuss several exam-
ples. Throughout this work, we will assume that B+-trees are
the only kind of indices supported and, thus, we will focus on
showing how bulk deletes can be carried out in the presence
of B+-trees. We will study bulk deletes for other kinds of
index structures (e.g., hash tables, grid files, and R trees) as
part of future work.

2.1. Overall Approach

Processing aDELETEstatement involves deleting records
from the base table as well as from all indices of that ta-
ble. Furthermore, referential integrity constraints from other
tables must be tested. In a traditional system, the whole
DELETEprocess ishorizontal: whenever a tuple is deleted
from the base table, it is immediately deleted from all indices
before the next record is deleted. In other words, records are
deleted one-at-a-time and from each index individually.

In order to implement bulk deletes more efficiently, we
propose to carry out bulk deletesvertically. That is, we pro-
pose to delete all records from the base table first, to delete
all records from the first index next, and so on. The most
important advantage of such a vertical way to process bulk
deletes is that thephysicalstructure of the base table and in-
dices can be taken into account. For instance, it is possible to
sort the records before deleting them from an index in order
to avoid random disk I/O. In addition, as we will see, a num-
ber of additional optimizations become possible if the records
are deleted from the indices using such a vertical approach.
Furthermore and for the same reasons, integrity constraints
can be processed more efficiently using a vertical approach.
Since the same mechanisms are applicable for processing in-
tegrity constraints with the help of indices as for the deletion
of records from indices, we will ignore the processing of in-
tegrity constraints in the remainder of this paper.

To delete a set of records from a base table or an index, we
introduce a new (logical)bulk delete operator, represented by
a↓� symbol. The bulk delete operator takes two inputs: (1) a
table or index, and (2) a list of records containing the keys or
RIDs (row identifiers)1 of the records that are to be deleted.
The bulk delete operator carries out two steps. In the first
step, the records that are to be deleted are located in the base
table (or index) and removed from the table (or index). In the
second step, the table (or index) is reorganized; for instance,
empty pages are reclaimed or two nodes of a B+-tree can be
merged (Section 2.3). The output of the↓� operator is a list
of deleted records; this way the output of one↓� operator can

1A RID can be thought of as a pointer to a record of a base table. Typ-
ically, such aRID is composed of a file or volume number, page number,
and a slot number. However, to keep the examples readable theRIDs in our
examples consist only of a page number X and a slot number Y, e.g., 4.2.

serve as the input of another↓� and we generateplanswith
several↓� operators - one for each index and one for the base
table - in order to execute bulk deletes.

From this discussion it should have become clear that the
↓ � operator is closely related to the relationaljoin opera-
tor. In fact, the↓� operator carries out apointer based join
[19, 1] in order to find the records of the base table or index
which should be deleted. Accordingly, the↓� operator can
be implemented in many different ways and the best choice
is made by the query optimizer depending on the size of the
table/index, the number of records to be deleted, and the size
of the main memory buffer pool. In all, the optimizer faces
the following decisions:

1. ↓ �method: just like the ordinary relational join, the
↓� operator can be carried out using many different tech-
niques including nested-loops, merging, and hashing. How-
ever, it should be noted, that not every join method is appli-
cable because records must be deleted from one of the ”join”
arguments: for instance, an adapted version of the grace or
hybrid hash join which would partition the table/index is not
viable. Only those join algorithms are applicable that oper-
ate on the original data pages (”in place”) of the base relation
or leaf node pages of the indices—not on copies generated
during partitioning or sorting. This restriction is obviously
necessary for deleting the tuples (or index entries) from their
home pages.

2. ↓� order: the optimizer must decide which indices to
consider first and at what point the records should be deleted
from the base table. As we will see, the optimizer must also
decide which of the two inputs of a↓� operator is to be con-
sidered as theinner andouter. Again not every join order is
applicable for the above mentioned reason.

3. primary ↓� predicate: an index can be seen as a list of
〈key, RID〉 records. Given a list of keys andRIDs of records
to delete, the entries of the index can be looked up either by
their key (and theirRID to distinguish duplicate keys) or by
their RID. Looking up entries in an index by theirRIDs
might sound counterintuitive, but as we will see, sometimes
this approach makes indeed sense in order to implement bulk
deletes. Also, the choice of the primary↓� predicate (key or
RID) can impact the choice of the↓�method and order.

Being aware of all these options, it is quite straightfor-
ward to extend an existing optimizer to make these deci-
sions; for example, a query optimizer based on dynamic
programming [4, 12] can easily be extended for this purpose.
We will present and discuss the tradeoffs of three viable plans
in the next subsection.

2.2. Examples

To demonstrate alternative ways to execute bulk deletes,
we will go back to the example of the introduction. Table
R from which records are supposed to be deleted is shown
in Figure 2. Among others, tableR has three attributesA,

.

.

RID A B C

1.1
1.2

2.1
2.2

3.1
3.2

4.2
4.1

p

1
7

e

i

e
l

10
5

7
1

8
3

r

i
f

h
n

i
o

Index on C

linked
leaf
pages

Index on A

Index on B

Table

g

z

e

g

Figure 2. Example for a relation R with 3 indices

B, and C and three indicesIA, IB , and IC on these at-
tributes. As mentioned earlier, we assume that all indices
are B+-trees [23] in which all〈 key, RID〉-entries are in
the leaf pages. The inner nodes of theB+-tree contain only
reference keys for navigation purposes—no real data values.
Furthermore, we assume a B-link-tree organization [10]; in
a B-link-tree, the leaf nodes are chained in order to facili-
tate sequential scanning at the leaf node level. Records in ta-
ble R are uniquely identified (and located) via aRID value
which contains the page ID and the slot number of the record
within that page. In addition, we assume that a second re-
lation, calledD, exists;D stores theA-values of all records
that are supposed to be deleted fromR. In summary, we have
the following storage structures:

• R(~RID, A, B, C, ...)
~RID indicates, that the relationR is clustered (i.e.,

sorted) onRID values.

• D(A)

• IA(~A, RID)
~A indicates that the leaf pages of the index are clustered
onA.

• IB(~B, RID)

• IC(~C, RID)

We will also use the query from the introduction, but the
discussion is relevant for any kind of bulk delete statement.
(Any kind of SQL sub-query could be used as part of the
DELETEstatement.)

DELETE FROM R WHERE R.A IN (SELECT D.A FROM D)

Using our new bulk delete operator�↓ such aDELETEop-
eration corresponds to the following logical plan:D �↓ IA

�↓R �↓ IB �↓ IC . In the following, we will discuss alter-
native ways to execute thisDELETEplan efficiently: the first
approach is based on sorting, the other approaches make use
of hashing and partitioning. As mentioned in Section 2.1,
many more possibilities are conceivable (e.g., considering

merge
C, RID

merge
B, RID

merge
RIDIB (~B, RID) IC (~C, RID)

merge
A

D(A) IA (~A, RID)

R (~RID, A, B, C, ...)

sortB

ΠB,RID ΠC,RID

sortC

sortRID

ΠRID

sortA

Figure 3. Using sorting and merging
different↓� orders) and the choice which option to use must
be made by the query optimizer. We will also discuss special
cases such as clustered indices and unique indices. Com-
pound indices on several attributes can be treated just like
indices on a single attribute. However, we will ignore in-
tegrity constraints in the following examples; as mentioned
in the previous subsection, integrity constraints can also be
processed more efficiently using a vertical approach. We pro-
pose to check integrity constraints in such a vertical way as
early as possible and before deleting records from the table
and the indices so that no work needs to be undone if an in-
tegrity constraint fails.

2.2.1. Bulk Deletes by Sorting and Merging

Figure 3 shows how sorting can be used to implement bulk
deletes. The arrow in the�↓ operator points to the table or
index from which records are deleted (left or right). In this
example, the table or index is always theinner which is indi-
cated by the use of a�↓ symbol; for layout reasons, however,
the bulk delete from indexIB is shown with a↓� symbol
althoughIB is the inner of this bulk delete operation. The
two top-level�↓ operators produce no output (indicated by
�
>); the output of the other�↓ operators is piped into other
relational operators (i.e., projections in Figure 3). The plan
of Figure 3 is based on sorting and merging in order to im-
plement bulk deletes. That is, in every step the list of keys
(or RIDs) of the records that are to be deleted is sorted ac-
cording to the clustering of the table or index. The tables and
indices on which the bulk deletion is carried out and which
are typically much larger than the list of keys need not be
sorted. Also, we can apply projections before each sort in
order to minimize the volume of data that needs to be sorted.
Carrying out bulk deletes in this way is usually much better
than the traditional (horizontal) approach to carry out deletes
because sorting avoids random disk I/O to locate and delete
the records; in other words, we use sorting in order to ad-
just the list that specifies the records to delete to the physical
layout of the table and indices. Essentially, this plan is often
attractive just as sort/merge joins are often more attractive

IB (~B, RID)

hash
RID

IC (~C, RID)

RID
hash

RID
hash

IA (~A, RID)D(A)

ΠRID

R (~RID, A, B, C, ...)

sortA

input
probe

input
build

merge
A

Figure 4. Using hashing
than nested-loop joins. Again, it is also important to keep in
mind that only the (small) lists of keys andRIDs need to be
sorted.

The plan of Figure 3 is not a tree, it is a graph. The result
of the bulk delete operation with tableR is split and piped
into two different query trees in order to carry out bulk deletes
for the indicesIB andIC . That is, the result of the “join” of
D, IA andR is a common subexpression for the subsequent
bulk delete operations on the other indices. Splitting output
streams in a query plan has also been used in different con-
texts; i.e., in [2]. Here, it makes it possible to process the
bulk deletes onIB andIC independently and in parallel.
In the following, we will discuss special cases that impact the
way bulk deletes are carried out:

Clustered IndexIA

If IA is a clustered index, then we need not sort the list of
RIDs because the result of the first�↓ operation (i.e., delet-
ing records fromIA) is already sorted byRID in Figure 3.
In this case, the sort/merge approach to carry out bulk deletes
becomes even more attractive. This is analogous tointerest-
ing orderswhich make sort/merge joins more attractive in
regular join processing [5].

Clustered IndexIB (or IC)
Analogously, ifIB (or IC) is a clustered index, then we can
save thesortB (or sortC) operators in the plan of Figure 3
because an order onRID implies an order onB (or C) in
this case.

Unique Indices
For the plan of Figure 3 this constraint has no direct ef-
fect. However, it does have an effect on concurrent up-
date/insert transactions which need to consult the index to
enforce the uniqueness constraint. Such transactions cannot
proceed while the unique index is off-line. We will revisit
this issues in Section 3.

2.2.2. Bulk Deletes by Hashing

As an alternative to sorting, hashing can be used in order to
detect which records should be deleted. Hashing is particu-
larly attractive if the list of keys andRIDs that specify which
records should be deleted fits into main memory; in fact, it is

merge
RID

hash
RID

merge
A

IC (~C, RID)

ΠC,RIDΠB,RID

IB (~B, RID)

partition B 1

partition B 2

partition C 1
range range

range

hash
RID

hash
RID

partition B 3
range

partition C 2
range

range
partition C 3

input

build input

probe
hash
RID

hash
RID

hash
RID

IA (~A, RID)D (A)

R (~RID, A, B, C, ...)

ΠRID

sortA

sortRID

build input

probe
input

Figure 5. Using hashing and range partitioning

only necessary that theRIDs (without any keys) fit into main
memory. Figure 4 shows how hashing can be used to carry
out bulk deletes.

As in the plan of Figure 3, sorting is used in order to delete
the records from indexIA and to find theRIDs of all records
that should be deleted. ThisRID list is then piped into three
hash-based↓� operators that are used to delete the records
from tableR and indicesIB andIC . More precisely, a main-
memory hash table is constructed from theRID-list and the
leaf pages of the indices and all pages of tableR are scanned
and the RIDs of each record is probed with the hash table in
order to see whether the record should be deleted. Probing
can be done independently and in parallel for each index and
table R, but on a single-processor machine the same hash
table can be used. This approach corresponds to theclassic
hash joinof [18] and is particularly attractive if the hash table
really fits into physical main memory.

If the RID list is very large and the size of the hash table
exceeds the size of the available main memory, then range
partitioning can be applied. Figure 5 shows an example that
demonstrates how range partitioning and hashing can be used
to implement the bulk deletes for indicesIB andIC . For the
range partitioning phase, the key values ofB andC of all
records that should be deleted need to be known so that range
partitioning can only be applied after the bulk delete for table
R has been carried out. The idea is to partition theRID-list
into partitions that fit into main memory and then carry out
the bulk delete for each partition individually using the main-
memory hash-based approach described above. In Figure 5,
three partitions are created for each bulk delete.IB andIC

can be range partitioned without any cost because indexIB

is clustered (ordered) byB andIC is clustered byC.
It is of course possible to mix hash-based and sort-based↓�
operators in many more ways in a single plan. For instance
in the plan depicted in Figure 5, sorting and merging (instead
of hashing) could be used to process tableR.

2.3. Reorganization

One important advantage of our approach to carry out bulk
deletes is that theB+-trees can be reorganized with very lit-
tle extra cost. In all three plans described in the previous
section, the leaf pages are scanned from the beginning to the

progress of reorganisation

reorganisation units

move entries

base nodes

empty pages

Figure 6. Reorganization of a B+-tree during
bulk deletion

end; therefore, leaf pages can becompacted, compressedand
merged with neighbor pages (i.e., clustered) during the bulk
delete. The inner nodes of theB+-tree can be updated (and
reorganized)after or while the leaf pages are processed. One
way to update and reorganize the inner-nodes afterwards is
to process each layer individually (a full-fledged B-link tree
organization is necessary for this approach). An alternative
is to update the inner-nodes on the fly by adapting the algo-
rithm presented in [26] as shown in Figure 6. The idea is to
identify one inner-node as a base node; typically, such a base
node will be chosen in such a way that the sub-tree rooted
by the base node fits into the available main memory buffers.
First, bulk deletion and reorganization for the leaves of this
sub-tree is carried out and the inner-nodes of this sub-tree are
updated. Then the next base node (i.e., the right sibling of
the previous base node) is chosen and the leaves and inner-
nodes of that sub-tree are processed. At the end, if necessary,
the nodes of the “base-node” level and of higher levels of the
tree are reorganized in the same fashion. Since tableR is
also scanned from the beginning to the end in all our exam-
ple plans, tableR could also be reorganized while processing
the bulk deletion for tableR. Reorganizing tableR, however,
involves updating the entries of all indices because theRIDs
of (almost) all records ofR change. In the plan of Figure 3,
for instance, we would have to update most entries of index
IA after the bulk deletes for tableR have been carried out if
tableR is reorganized as part of the bulk delete; as a result,
indexIA would be processed twice.

Note that the procedure sketched in Figure 6 may generate
some ”holes” in the storage area of the leaf nodes. In order
to retain (or generate) a contiguous storage area for the entire
set of leaf nodes it is also possible to shift all entries ”to the
left”—beyond base node delimiters.

3. Concurrency Control and Recovery Issues

In this section we will briefly address concurrency control
methods that have to be applied if the bulk deletion process
runs concurrently with other transactions accessing and mod-
ifying the same relation and its indices. We will also briefly
outline the recovery methods to guarantee the fault tolerance
and restartability of a bulk deletion process.

3.1. Concurrency Control Issues

So far we have described the bulk deletion process without
consideration of other, concurrent transactions accessing the
same relation and/or indices. That is, we assumed that the
bulk deletion process has obtained exclusive access on the
entire relationR as well as on its indices. Even though our
bulk deletion approach is very efficient—typically up to an
order of magnitude faster than the traditional approach as we
will show in the performance experiments of Section 4—it
may still be beneficial to allow concurrent transactions while
bulk deletion is still in progress.

However, we see no benefits in allowing concurrent trans-
actions while the bulk deletion processes the base tableR:
bulk deletion is employed if a vast number of tuples is re-
moved fromR. Therefore, database systems employing lock
escalation would switch to an exclusive lock on the base ta-
ble, anyway. Other database systems will set a very large
number of locks leading to a very severe number of conflicts
(deadlocks) with other transactions. Therefore, our bulk dele-
tion process locks tableR exclusively and switches all in-
dices onR off-line.

As soon as table R and all unique indices are processed
(and the bulk deletion is committed) the lock onR is re-
leased and the unique indices are brought on-line in order
to allow other concurrent read and update transactions onR.
However, the indices without a unique constraint remain off-
line while the bulk deletion process propagates the deletions
to the index structures. This increased concurrency is facil-
itated by our vertical processing technique that propagates
deletes to the table and the indices separately. This vertical
approach allows us also to process the indices with a unique-
ness constraint first. Processing the unique indices first is
necessary to ensure that the uniqueness constraint isn’t vio-
lated. Trying to ensure the uniqueness constraint while the
unique index is off-line can lead to inconsistencies because
no locking is possible. Furthermore it is difficult to decide at
the time an insertion is made whether a conflict exists or not
because a potentially conflicting entry may be deleted by the
bulk deletion later on. However, we will study if the restric-
tion of processing the unique indices first can be relaxed or
not as part of our future work.

Of course, the off-line indices cannot be used as access
paths or for predicate locking before the deletes have been in-
stalled. Update transactions modifying base relationR have
to do extra work in order to guarantee the consistency of in-
dices after the whole bulk delete is finished. Two approaches
are possible, which are derived from Mohan and Narang’s
work on online index creation [17]:

• Side-file: Update transactions log their changes toR in
side-files which are propagated to the indices.

• Direct propagation / no side-file: The updates are di-
rectly installed in the indices while bulk deletion pro-
cessing is still active.

3.1.1. Side-File

When a side-file is used the remaining indicesIB and IC

aren’t changeable directly by any other transaction. In this
case, all changes made to this indices by a updater transaction
are logged in side-files (one for each index). When the bulk
deletion has processed an index the side-file is applied to the
index but still the index is off-line and still other transactions
can append the side-file. When nearly the whole side-file is
processed, the bulk deletion quiesces all updates to the index,
processes the last entries of the side-file and brings the index
on-line again. This approach is also described in [20].

The side-file approach has the advantage that no latches
on index pages during bulk deletion are necessary (except
for unique indices, see below) and it is easy to implement.

3.1.2. No Side-File / Direct Propagation

When no side-file is used the changes are propagated directly
to the off-line indices. Therefore the bulk deleter as well as
the updater transactions have to set latches on the index pages
in order to avoid conflicts. However, latching the pages is not
enough. To avoid conflicts between updater transactions and
the bulk delete transaction an inserted entry〈 k,RID 〉 has
to be marked as undeletable. This will prevent the following
race condition: the bulk deleter may have the corresponding
RID in its delete-set. ThisRID may have been re-used by
the database management system for an insert.

However, an undeletable entry can be removed as part of
rollback processing for the transaction that inserted it.

3.1.3. Index Processing Order

There exist many possible orders in which the indices can
be processed due to the vertical approach of our new bulk
delete algorithm. Therefore indices which are critical for the
performance of applications can be processed first while the
processing of non-critical indices can be delayed. Especially
the unique indices can be processed first.

3.2. Checkpoints and Recovery

We propose to make use of checkpoints to minimize the
loss of work during a system failure. A checkpoint could be
established at any time by flushing all pages to stable storage
with a LSN equal or less to the actual one. Additionally the
last processedRID or key-value respectively can be stored
in the log. This will speed up recovery because the storage
structures are clustered regarding toRIDs and key-values,
respectively. So the already processed values can easily be
recognized. Also the results of the join variants described in
Section 2 should be materialized to stable storage. Check-
points are especially advisable when the processing of one
structure (R, IA, IB, or IC) is finished.

To take full advantage of checkpointing and to save the
work done even after a system failure we propose to finish

the bulk deletion instead of rolling it back as done during tra-
ditional recovery [15, 16]. Further attention is needed when
side-files are used. If the bulk deletion is finished during
recovery the side-files are appended. The side-files are ap-
plied to the indices when the bulk deleter has finished. This
is necessary because the changes logged in the side-files were
made by transactions that were triggered after the commit of
the bulk deletion and have therefore to be made durable after
the bulk deletion changes to avoid inconsistencies.

4. Performance Experiments and Results

In this section, we present the results of performance ex-
periments that show that ourvertical approach to implement
bulk deletes outperforms the traditionalhorizontalapproach
if a significant portion of a table is deleted. We will only
present results that were obtained using sorting and merg-
ing to implement the↓� operator. The tradeoffs between
hashing and sorting for bulk deletes are the same as for reg-
ular joins [5], and the differences in performance are much
smaller than the differences between the horizontal and ver-
tical approach.

4.1. Benchmark Environment

To study the performance of bulk deletes, we used a pro-
totype database system implemented on top of a UNIX file
system. The implementation of theB+-trees is based on the
code developed by Jan Jannink [7] so that the deletes in the
traditional, horizontal approach were carried out as best as
possible using Jannink’s algorithm. However, we adapted
theB+-tree so that the nodes in each level are linked (B-link
tree [10]) because this organization was necessary in order to
implement our horizontal bulk delete approaches (Section 2).
The whole prototype was implemented in the C++ language.

Our prototype is installed on a SUN Ultra 10 worksta-
tion with a 333 MHz SPARC processor and a 9.1 GB Sea-
gate Medialist Pro hard disk. The operating system is Solaris
2.7. The size of the main memory is 128 MB; however, if
not reported otherwise, our prototype uses only 10 MB of
main memory The traditional algorithm uses this main mem-
ory as input/output buffers in order to read chunks of several
pages from disk (i.e., chained I/O) or to cache pages of in-
dices and/or base tables. The bulk deletion algorithm uses
this main memory not only for caching but also to carry out
sorting. The page size for tables and indices is 4096 bytes and
we use Solaris’ direct I/O feature in order to avoid caching
effects of the operating system.

The database consisted of one tableR with eleven at-
tributesA,B,...,K. In all experiments, tableR has initially
1.000.000 tuples, each of size 512 bytes. The first 10 at-
tributes are random integers and the last attribute (i.e.,K)
is a string field containing garbage data for padding. Each
attribute is free of duplicates because Jannink’sB+-tree im-
plementation does not support duplicates. However, the exis-

0

20

40

60

80

100

120

140

160

5 10 15 20

T
im

e
(m

in
)

Deleted tupels (% of tupels)

sorted/trad
not sorted/trad

bulk delete

Figure 7. Running time [min], vary deletes, 1
unclustered index, 5 MB memory

tence of duplicates does not impact much the tradeoffs of our
new bulk delete techniques.

If not stated otherwise, we only have one index on table
R: IA, an index on attributeA. The height ofIA is three and
the inner nodes contain up to 512 entries. Also, we generate
a tableD with randomA values and use the sameDELETE
statement that we have been using in all examples throughout
this paper; i.e.:

DELETE FROM R WHERE R.A IN (SELECT D.A FROM D)

We executed thisDELETEstatement in isolation (i.e., no con-
currency control effects) and measured its running time. We
vary the size of tableD so that 5% to 20% of the records of
tableR are deleted. Accordingly, the size of tableD varies
from about 200 KB to 800 KB, and tableD can always be
sorted in one pass in main memory. In some experiments,
we also vary the number of indices and the size of the main
memory buffers. Furthermore, we study scenarios in which
IA is clustered (i.e., tableR is sorted according to attribute
A) and situations in whichIA is not clustered.

Typically the height of all indices is three and the height
of the indices does not change even if 20% of the records are
deleted. As proposed in [9], we only reorganize and garbage
collect an index page if it is totally empty (We do not apply
the techniques proposed in Section 2.3). In all experiments,
almost no reorganization is carried out because of the random
distribution of the keys of the records that are deleted.

4.2. Experiment 1: Vary Number of Deleted Records

Figure 7 shows the running times of our sort-based (verti-
cal) bulk delete approach compared to traditional (horizontal)
approaches to carry out bulk deletes. Our sort-based bulk
delete approach carries out a sort/merge-based bulk delete
operation with indexIA first and then a sort/merge-based
bulk delete operation with tableR (Figure 2). The tradi-
tional approaches probe indexIA in order to find all records
to delete, and then for each match immediately delete the
corresponding record from tableR and indexIA. We studied
two versions of the traditional approach: (a) tableD is sorted
before the deletes are carried out (referred to assorted/trad)

0

50

100

150

200

250

300

350

400

1 2 3

T
im

e
(m

in
)

Number of indexes

sorted/trad
not sorted/trad

drop/create
bulk delete

Figure 8. Running time [min], vary indices,
uncl. indices, 5 MB memory, 15% deletes

and (b) tableD is not sorted (referred to asnot sorted/trad).
Obviously, thesorted/tradversion performs much better be-
cause it avoids random I/O while probing indexIA for each
key stored in tableD; this version roughly corresponds to the
way the database product studied in the introduction carries
out bulk deletes. Thedrop & createmethod proposed in the
introduction is not studied becauseIA is the only index in
this experiment andIA is vital to carry out the bulk delete
operation using any approach.

Figure 7 shows clearly the importance to implement bulk
deletes using one of our special horizontal approaches. Even
the sorted/trad approach is clearly outperformed by our
sort/merge-based horizontal approach. The differences be-
come larger, the more records are deleted. If 20% of the
records are deleted, our horizontal approach outperforms the
not sorted/tradapproach by almost one order of magnitude:
half an hour compared to more than two hours.

4.3. Experiment 2: Vary Number of Indices

Figure 8 shows the running times of the alternative ap-
proaches if we vary the number of indices. In this series
of experiments, always 15% of the records are deleted from
tableR. We observe that our horizontal approach to carry
out bulk deletes becomes more important, the more indices
exist. In the extreme case of this experiment (three in-
dices), our horizontal approach takes only about half an hour
whereas the traditional approaches take more than two hours
(sorted/trad) and more than three hours (not sorted/trad), re-
spectively. (These numbers are comparable to the results de-
scribed in the introduction which were obtained using a com-
mercial relational database system; see Figure 1.) IfIA is not
the only index, then thedrop & createapproach makes sense,
but as shown in Figure 8, thedrop & createapproach per-
forms even worse than the traditional (vertical) approaches,
here. (Apparently, creating indices is slower in our prototype
than in the commercial database system used for the experi-
ments of Figure 1.)

0

50

100

150

200

2 6 10

T
im

e
(m

in
)

Main Memory (MB)

sorted/trad
not sorted/trad

bulk delete

Figure 9. Running time [min], vary memory, 1
uncl. index, 15% deletes

4.4. Experiment 3: Vary the Height of the Index

We also tested the performance to carry out bulk deletes
with different index heights (Table 1). To construct a version
of index IA with a larger height, we (artificially) increased
the size of the keys in the inner nodes ofIA by allocating
more space within a node for each key. More specifically, we
store 100 keys per node in order to create an indexIA with
height four; normally, we store up to 512 keys per node and
indexIA has height three. As shown in Table 1, the running
time of our bulk delete approach is almost independent of
the height of the index. The running times of the traditional
approaches, however, increase sharply with the height (size)
of an index. Recall that the whole index must be traversed
from the root to the corresponding leaf in order to delete a
record using a traditional approach; instead our approach to
implement bulk deletes directly operates on the leaf pages of
an index.
Remember that the bulk delete algorithm sorts the delete set
D before deleting the entries in the index and in this case the
sorting can be done in main memory. Therefore sortingD
before evoking the bulk delete algorithm has no significant
impact on the running time of the bulk delete statement using
our new bulk delete algorithm.

Table 1. Running time [min], 1 uncl. index, 15%
deletes, 5 MB memory

index height 3 index height 4
(min) (min)

sorted/bulk 24,87 26,79
not sorted/bulk 24,87 26,79
sorted/trad 64,65 80,65
not sorted/trad 102,05 136,09

4.5. Experiment 4: Vary Size of Available Memory

Figure 9 shows the running times of the alternative ap-
proaches varying the size of the available main memory used
for sorting and to cache pages of indexIA and tableR. We
observe that our new approach performs just as well if only
very little main memory (2 MB) is available: all sorting can

0

50

100

150

200

6 8 10 12 14 16 18 20

T
im

e
(m

in
)

Percentage of deleted tupels

sorted/trad/clust
sorted/trad/unclust

not sorted/trad/clust
bulk delete

Figure 10. Running time [min], clust. index, 1
index, 5 MB memory, 15% deletes

be carried out in one pass in main memory because only small
lists of RIDs and keys need to be sorted, and the merging
with tableR or indexIA requires only very little main mem-
ory, too. On the other hand, the traditional approaches are
more sensitive to the size of the main memory. In particu-
lar, the performance of thenot sorted/tradapproach depends
strongly on the amount of available main memory: pages of
the index and the base table are possibly used several times
and the more memory is available, the more pages of the in-
dex and of the base table can be cached.

4.6. Experiment 5: Clustered Index

Figure 10 shows the running times if indexIA is clustered;
i.e., tableR is sorted by attributeA. As a baseline, Figure 10
also shows the runing times of thesorted/tradapproach if
IA is not clustered. (These results are identical with those
shown in Figure 7.) If indexIA is clustered and no other
indices exist, this is the best possible case for the traditional
approaches. In this case, thesorted/tradapproach even out-
performs our (vertical) approach to implement bulk deletes
because no advantage can be achieved by sorting and by car-
rying out the deletes in a vertical way. The analogon is that
index nested-loop joins perform very well if the index is clus-
tered and the outer table is sorted accordingly. However, even
in this extreme case and although it does not take advantage
of the fact that the index is clustered and sorting is unneces-
sary, our bulk delete approach performs almost as well as the
sorted/tradapproach. Thenot sorted/tradapproach benefits
from the clustering of the index, but it shows overall very
poor performance because of its high cost to probe the index
in order to find the records to delete.

5. Conclusions and Future Work

In this paper, we proposed new algorithms for deleting
masses of data in relational databases whenB+-trees are
used for indexing. First, we described the traditional imple-
mentation of deletes; the traditional implementation is to take
a horizontalrecord-at-a-time approach. Then we introduced
a new and more holistic approach which deletes records from

tables and indices in a set-oriented way. We presented alter-
native ways to delete records in such a set-oriented way and
showed that the bulk deletes can be optimized in similar ways
as complex join queries: the join method, the join order, and
the primary join predicates can be chosen depending on the
size of the table, the number of records to delete and prop-
erties of the indices (e.g., uniqueness and clustering). The
traditional, record-at-a-time way to execute bulk deletes cor-
responds to a plan in which nested-loops are used as a method
for all joins and records are deleted from the base table first
and then from the indices. We carried out performance exper-
iments that showed that a plan which is based on sorting and
merging and which uses a different join order outperforms
the traditional way by up to almost one order of magnitude.

This work was restricted toB+-trees; in our prototype,
other kinds of indices are updated in the traditional way. In
future work, we plan to generalize our approach and study al-
gorithms to delete records in bulk from other index structures
such as hash tables, R-trees, or grid files.

Acknowledgements
This work was partially supported by the German Re-

search Council DFG under contract Ke401/7-1 and by SAP
as part of the Terabyte project.

References
[1] R. Braumandl, J. Claussen, A. Kemper, and D. Kossmann.

Functional join processing.The VLDB Journal, 8(3-4):156–
177, 2000. Invited Contribution to the Special Issue “Best of
VLDB 98”.

[2] J. Claussen, A. Kemper, G. Moerkotte, K. Peithner, and
M. Steinbrunn. Optimization and evaluation of disjunctive
queries. IEEE Trans. Knowledge and Data Engineering,
12(2):238–260, 2000.

[3] G. Graefe. Query evaluation techniques for large databases.
ACM Computing Surveys, 25(2):73–170, 1993.

[4] G. Graefe and D. DeWitt. The EXODUS optimizer generator.
In Proc. of the ACM SIGMOD Conf. on Management of Data,
pages 160–172, San Francisco, CA, USA, May 1987.

[5] G. Graefe, A. Linville, and L. Shapiro. Sort versus hash
revisited. IEEE Trans. Knowledge and Data Engineering,
6(1):120–135, Mar. 1994.

[6] J. Gray and A. Reuter.Transaction Processing: Concepts and
Techniques. Morgan Kaufmann Publishers, San Mateo, CA,
USA, 1993.

[7] J. Jannink. Implementing deletion in B+-trees.ACM Sigmod
Record, 24(1):33–38, Mar. 1995.

[8] T. Johnson and D. Shasha. Utilization of B-trees with in-
serts, deletes and modifies. InProc. ACM SIGMOD/SIGACT
Conf. on Princ. of Database Syst. (PODS), pages 235–246,
Philadelphia, Pennsylvania, Mar. 1989.

[9] T. Johnson and D. Shasha. B-trees with inserts and deletes:
Why free-at-empty is better than merge-at-half.Journal of
Computer and System Sciences, 47(1):45–76, Aug. 1993.

[10] P. Lehman and S. Yao. Efficient locking for concurrent opera-
tions on B-trees.ACM Trans. on Database Systems, 6(4):650–
670, 1981.

[11] L. Leverenz, R. Mateosian, and S. Bobrowski.Oracle8 Server
– Concepts Manual. Oracle Corporation, Redwood Shores,
CA, USA, 1997.

[12] G. Lohman. Grammar-like functional rules for representing
query optimization alternatives. InProc. of the ACM SIG-
MOD Conf. on Management of Data, pages 18–27, Chicago,
IL, USA, May 1988.

[13] R. Maelbrancke and H. Olivie. Optimizing Jan Jannink’s
implementation of B+-tree deletion.ACM Sigmod Record,
24(3):5–7, Sept. 1995.

[14] M. McAuliffe, M. Carey, and M. Solomon. Towards effec-
tive and efficient free space management. InProc. of the
ACM SIGMOD Conf. on Management of Data, pages 389–
400, Montreal, Canada, June 1996.

[15] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz. ARIES: A transaction recovery method support-
ing fine-granularity locking and partial rollbacks using write-
ahead logging.ACM Trans. on Database Systems, 17(1):94–
162, Mar. 1992.

[16] C. Mohan and F. Levine. ARIES/IM: An efficient and high
concurrency index management method using write-ahead
logging. InProc. of the ACM SIGMOD Conf. on Management
of Data, pages 371–380, San Diego, CA, USA, June 1992.

[17] C. Mohan and I. Narang. Algorithms for creating indexes for
very large tables without quiescing updates. InProc. of the
ACM SIGMOD Conf. on Management of Data, pages 361–
370, San Diego, CA, USA, June 1992.

[18] L. Shapiro. Join processing in database systems with
large main memories.ACM Trans. on Database Systems,
11(9):239–264, Sept. 1986.

[19] E. Shekita and M. Carey. A performance evaluation of
pointer-based joins. InProc. of the ACM SIGMOD Conf. on
Management of Data, pages 300–311, Atlantic City, NJ, May
1990.

[20] G. Sockut, T. Beavin, and C. Chang. A method for on-line re-
organization of a database.IBM Systems Journal, 36(3):411–
436, 1997.

[21] V. Srinivasan and M. Carey. Performance of on-line index
construction algorithms. InProc. of the Intl. Conf. on Ex-
tending Database Technology (EDBT), volume 580 ofLecture
Notes in Computer Science (LNCS), pages 293–309, Vienna,
Austria, Mar. 1992. Springer-Verlag.

[22] J. van den Bercken, B. Seeger, and P. Widmayer. A generic
approach to bulk loading multidimensional index structures.
In Proc. of the Conf. on Very Large Data Bases (VLDB), pages
406–415, Athens, Greece, Aug. 1997.

[23] H. Wedekind. On the selection of access paths in a data base
system. InIFIP Working Conference Data Base Management,
pages 385–398, 1974.

[24] J. Wiener and J. Naughton. Bulk loading into an OODB: A
performance study. InProc. of the Conf. on Very Large Data
Bases (VLDB), pages 120–131, Santiago, Chile, Sept. 1994.

[25] J. Wiener and J. Naughton. OODB bulk loading revisited: The
partitioned-list approach. InProc. of the Conf. on Very Large
Data Bases (VLDB), pages 30–41, Z¨urich, Switzerland, Sept.
1995.

[26] C. Zou and B. Salzberg. On-line reorganization of sparsely-
populated B+-trees. InProc. of the ACM SIGMOD Conf.
on Management of Data, pages 115–124, Montreal, Canada,
June 1996.

	-1em. Introduction
	-1em. The State of the Art
	-1em. Related Work
	-1em. Overview

	-1em. Algorithms for Bulk Deletes
	-1em. Overall Approach
	-1em. Examples
	-1em. Bulk Deletes by Sorting and Merging
	-1em. Bulk Deletes by Hashing

	-1em. Reorganization

	-1em. Concurrency Control and Recovery Issues
	-1em. Concurrency Control Issues
	-1em. Side-File
	-1em. No Side-File / Direct Propagation
	-1em. Index Processing Order

	-1em. Checkpoints and Recovery

	-1em. Performance Experiments and Results
	-1em. Benchmark Environment
	-1em. Experiment 1: Vary Number of Deleted Records
	-1em. Experiment 2: Vary Number of Indices
	-1em. Experiment 3: Vary the Height of the Index
	-1em. Experiment 4: Vary Size of Available Memory
	-1em. Experiment 5: Clustered Index

	-1em. Conclusions and Future Work

