Efficient Bulk Deletes in Relational Databases

A. Gartner* A. Kemper* D. Kossmann B. Zeller!
U Universitit Passau 2 Technische Universit Miinchen
94030 Passau, Germany 81667 Minchen, Germany
(lastname) @db.fmi.uni-passau.de kossmann@in.tum.de
Abstract Archiving is a two step process. In the first step, the data

o) to be archived are extracted from the database and written to
Many applications require that large amounts of data are e This first step involves the execution of (fairly complex)
deleted from the database — typically, such bulk deletes ag eries such as "find all orders which were processed more
carried out periodically and involve old or out-of-date data. 4 three months ago”. Query processing has been studied
If the data is not partitioned in such a way that bulk deletes, 5 number of previous projects (e.d-] [3]) and is not the
can be carried out by simply deleting whole partitions, thery,piect of this work. In the second s?ep, the extracted data

most current database products execute such bulk delete Oy gejeted from the database. How to efficiently delete such
erations very poorly. The reason is that every record i$,5sses of data is the subject of this work.

deleted from each index individually. This paper proposes |, aqition to archiving, there are several other applica-

and evaluates a new class of techniques to support bulk delgfgy, g that involve bulk deletes. For example, bulk deletes
operations more efficiently. These techniq.ues outperform the. frequently in a data warehouse that keepiaowof,
"record-at-a-time” approach |mplemented In many d""t""b""sesay, all the sales information of the last six months. The tech-
products by about one order of magnitude. niques presented in this paper can also be applied to speed
) up UPDATEstatements; for instance, increasing the salary of
1. Introduction above-average Employees involves carrying out a bulk delete

Sometimes we are confronted with more data than we cd@nd bulk insert) on thEmp.salaryindex.
really use, and it might be wisest to forget and to destroy mogt 1 The State of the Art

of it. .
(Donald Knuth, The Art of Computer Programming) Bulk deletes can be implemented very efficiently if the

For many companies, the cost to administrate their databas#ata is partitioned accordingly. For example, if we know
has increased dramatically in the last couple of years. Thibat we are going to delete all sales information from the first
trend can be observed even though most database systegusrter in September, all sales information from the second
have become easier to use and database system administy@arter in December, and so on, then we can store the sales
tors have gained more and more experience in using the sysformation of each quarter in a separate partition. In this
tems. The reason for this cost explosion is that the sizes ofise, the bulk deletes can be implemented very efficiently by
databases grow at a dramatic rate. In 1999, only a few SA##mply discarding a whole partition (including all the indices
R/3 databases were larger than one terabyte. It is estimatefithat partition). Partitioning a database for this purpose is
that this number will rise dramatically within the next two supported by most database products; e.g., Oracle [11]. How-
years. ever, partitioning only helps if the bulk deletes are planned
The obvious way to limit the size of a database is to makbefore the data is actually created and a table can only be
use of archiving. Thatis, data which are not needed for everyartitioned along one dimension. That is, partitioning will
day operations are demoted from the database (disks) to t@et help if, say, some bulk deletes are carried out according
tiary storage (tapes). This way the database can carry out its the order dateand some bulk deletes are carried out ac-
every-day operations efficiently and the data remains avaitording to theship date Furthermore, partitioning does not
able for possible reuse. Archiving for this purpose is used, fdnelp if there are additional restrictions; e.g., "delete old or-
instance, in the SAP R/3 installation of the German Telekonders but only if they have been fully processed”. If the data
In a more general context, archiving is studied as part of this not partitioned right, then the traditional way of deleting
SAP Terabyte project in cooperation with the University oftuples perform very poorly on bulk deletes.
Passau. To see how the delete operations are carried out tradition-

T —— statement was executed. Due to the high cost to re-create the
drop &create —x— | indices, this approach has a very high running time, too, but
in fact, this approach outperforms thraditional approach
significantly if more than 5% of the records of tabieare
deleted.

The goal of this work is to devise new ways to carry out
bulk delete operations that significantly outperform the tradi-
tional ways of database systems to carry DELETESstate-

] ments. The two key ideas are to take a more holistic approach
0 ‘ ‘ to optimize suctDELETEstatements and to delete records

1 5 10 15
Deleted tuples (3 of twuples) from indices in a batch rather than a record at a time.

Time (min)

-X1h 16 min

Figure 1. Bulk deletes using a commercial 1.2. Related Work

RDBMS: 500 MB table, 3 indices, vary number . .
of deleted tuples y To the best of our knowledge, an algorithm for the imple-

. . o . mentation of bulk deletes—aside from partitioned tables—
ally if the_data_ Is not partitioned acc_ordlngly, let us look athas not been published yet. However, there has been work on
the following S|mplg SQL statement in order to deleteituple e analysis and implementation of ,delete operations from
from table k. 1.4 is the key of tablelz and D. A contains indices and a number of other related issues. Probably the

the keys of all records oR that are to be deleted. For in- .
stance, tablé could be created as part of the first step of ar? est known algorithm to delete records fronbd-tree was

archiving process. We will use this example throughout thigroposed by Jannink [7] and an improvement to this algo-

paper, but of course the techniques devised in this work ca”r%hm was proposed by Olivie and Maelbranckel[13]. Shasha

be applied to any (bulkPELETEstatement and to any kind ahnd Johnson st]tjd|e|d the overgll pe.rforrrllar;]cetbftreels n-
of application. the presence of deletes and inseris [8]: their conclusion is

that leaf pages should not be merged after deletions. Bulk
DELETE FROM R WHERE R.A IN (SELECTD.AFROMD) loading, the dual of bulk deletes, was studied in a number of
N _)) _ papers. Seeger et al., for instance, propose an algorithm to
Traditionally, this statement is carried out by scanning,kjoad generalized search tregs|[22]. Furthermore, Wiener
through tabler, te_stlng the predicate forgach record Qf tableyng Naughton show how object-oriented databases can be
R, and then Qeletlng each tuple Bffor which the predicate |gaded efficiently [24.25]; they propose to carry otjpi
holds. Most importantly, whenever a record is deleted frometyeen the table of all OIDs and the table of all objects in or-
table R, itis immediately removed from all indices (B-trees) yer 1o initialize inter-object references in the object-oriented

of table R. As a consequence, for every record, each B-tregatapase. Deleting records from tables and the management
is traversed individually from the root to the relevant leaf ref free space is described [[6,114].

sultmg in overall very high costs.) There also has been a line of work on creating and reor-
Figure[1 shows the results of performance expenmeng

that iod out usi fth) lational datab anizing indices while other (update, insert, delete) opera-
at we carried out using one ot the major relational databasg s 5re carried out without blocking those operations; e.g.,

products. We ran our example statement from above usir*[fi7 26,21]. We will discuss that work and show how it can
synthetic instances of tablésandD. TableR? had 1.000.000 . :appl,ied in our context in Sectibh 3

records of 512 bytes before tRELETEstatement was car-
ried out. We varied the size of table such that 1%, 5%, 1 3. Qverview
10%, or 15% of the records of table were deleted. There

were three indices on tablg: one primary index and two The remainder of this paper is organized as follows. Sec-
secondary indices. The hardware was a SUN UltraSPAR{on[2 presents new algorithms to carry out bulk deletes. This
1 Creator 170E with 256 MB memory and a 4.55 GB Seasection describes the overall idea to process deletes in a set-
gate Barracuda 4XL disk, which spins at 7200 rpm. Lookingriented way rather than a record-at-a-time and it gives sev-
at thetraditional graph, we observe that the running time oferal examples. Sectidn 3 discusses concurrency control and
theDELETEstatement increases sharply the more records @écovery issues in the context of bulk deletion. Secfibn 4
R are deleted. It takes almost three hours to delete 150.088ntains the results of performance experiments that show
records (i.e., 15%) even for this tiny database. that our new approach to carry out bulk deletes significantly
Figure[1 also shows the running time to delete recordgutperforms traditional ways in various different situations.

from table R using an alternative approach (referred to a%ectiorib contains conclusions and our plans for future work.
drop & creatd. In this approach, we first dropped the sec-

ondary indices ofR and re-created them after tRELETE

2. Algorithms for Bulk Deletes serve as the input of anothgk and we generatglanswith

i)) several X operators - one for each index and one for the base
In this section, we will show how bulk deletes can be pros,p e - in order to execute bulk deletes.

cessed efficiently by a relational database system. We will g0, this discussion it should have become clear that the
first present the general idea and then discuss several exafiy operator is closely related to the relatiofain opera-
ples. Throughoutthis work, we will assume that8rees are 1 |, fact, the| X operator carries out pointer based join
the only kind of indices supported and, thus, we will focus Ofyrg 17 in order to find the records of the base table or index
showing how bulk deletes can be carried out in the presen ich should be deleted. Accordingly, thel operator can

of B¥-trees. We will study bulk deletes for other kinds of,o jmplemented in many different ways and the best choice
index structures (e.g., hash tables, grid files, and R trees) @Smade by the query optimizer depending on the size of the
part of future work. table/index, the number of records to be deleted, and the size
2.1. Overall Approach of the main memory buffer pool. In all, the optimizer faces

_)) the following decisions:
Processing ®ELETEstatement involves deleting recordsl_ | Mimethod: just like the ordinary relational join, the

from the base table as well as from all indices of that ta%lmoperator can be carried out using many different tech-

ble. Furthermore, referential integrity constraints from othe iques including nested-loops, merging, and hashing. How-

E\E:_e;_rrgust be t?:eQ' Irt\ ? trﬁdltlonal s%/stlerr!, t:el \;vhdo er, it should be noted, that not every join method is appli-
process isiorizontal whenever a tple 1S 0€1€1ea ¢)0 hacause records must be deleted from one of the “join”

from the base table, it is immediately deleted from all indice%\rguments for instance, an adapted version of the grace or

before the next record is deleted. In other words, records aﬁ?/brid hash join which would partition the table/index is not

delleteddone—at_—a—tllme andgr?linde?ch index md::r/_ld_uallly. viable. Only those join algorithms are applicable that oper-
n order to implement bulk de gtes more e iciently, We,te on the original data pages ("in place”) of the base relation
propose to carry out bulk deletgertically. That is, we pro-

del I ds f he b ble f del or leaf node pages of the indices—not on copies generated
pose to delete all records from the base table first, to de e&%ring partitioning or sorting. This restriction is obviously

f"l" records from the first index next_, and so on. The mo ecessary for deleting the tuples (or index entries) from their
important advantage of such a vertical way to process bu me pages

deletes is that thphysicalstructure of the base table and in- - . Co
Py | Worder: the optimizer must decide which indices to

dices can be taken into account. For instance, it is ossible%o . . .
P nsider first and at what point the records should be deleted

sort the records before deleting them from an index in ord . -
to avoid random disk I/O. In addition, as we will see, a num: ™" the base table. As we will see, the optimizer must also

ber of additional optimizations become possible if the record‘gec'de which of the two inputs of & operator is to be con-

are deleted from the indices using such a vertical approacsfil'.derecj as thener andouter. Again not every join order is

Furthermore and for the same reasons, integrity constrain‘i‘?pllcable for the above mentioned reason.
can be processed more efficiently using a vertical approach. Primary | X predicate: an index can be seen as a list of
Since the same mechanisms are applicable for processing (€Y. RID records. Given a list of keys arfé/ Ds of records
tegrity constraints with the help of indices as for the deletiofi® delete, the entries of the index can be looked up either by
of records from indices, we will ignore the processing of intheir key (and thei1.D to distinguish duplicate keys) or by
tegrity constraints in the remainder of this paper. their RID. Looking up entries in an index by theR/Ds

To delete a set of records from a base table or an index, WRight sound counterintuitive, but as we will see, sometimes
introduce a new (logicat)ulk delete operatqrepresented by this approach makes indeed sense in order to implement bulk
a X symbol. The bulk delete operator takes two inputs: (1) &eletes. Also, the choice of the primaiy predicate (key or
table or index, and (2) a list of records containing the keys oft/ D) can impact the choice of thgd method and order.
RIDs (row identifiers] of the records that are to be deleted. Being aware of all these options, it is quite straightfor-
The bulk delete operator carries out two steps. In the fir¥ard to extend an existing optimizer to make these deci-
step, the records that are to be deleted are located in the b&1s; for example, a query optimizer based on dynamic
table (or index) and removed from the table (or index). In the@rogramming[[4, 12] can easily be extended for this purpose.
second step, the table (or index) is reorganized; for instancé/e will present and discuss the tradeoffs of three viable plans
empty pages are reclaimed or two nodes of-atBe can be in the next subsection.
merged (Section 2.3). The output of thig operatoris alist 2 o Examples
of deleted records; this way the output of dixeoperator can

To demonstrate alternative ways to execute bulk deletes,

1A RID can be thought of as a pointer to a record of a base table. TyR/'ve will go back to the example of the introduction. Table
ically, such aRID is composed of a file or volume number, page number,)

and a slot number. However, to keep the examples readahierthe in our R frf)m which records are supposed to be delet?d is shown
examples consist only of a page number X and a slot number Y, e.g., 4.2. in Figure[2. Among others, tablB has three attributed,

Table merge merge
X8 RID M E D

RID A B C
11 e 1 e sortp sorte
Index on A D 12 | g 7 r \[L Index on C \HE Rib Hcm/n
2.1 10 i
. \é 22 | g 5 If Iy (B, RID merge Io (C,RID
linked A B (B,) NL RID ¢ (C,)
leaf { 31| z 7 o v v
pages D 32 | p 1 i Z [L sortgrip
4.1 e 8 n /
E 42 | 1 3 h o
D / R(RID,A,B,C,...)
merge
DA Q
L L Sorm/\
E g g D A B ~ >
D(A) I, (ARID)
Index on B ’:‘

Figure 3. Using sorting and merging
different |} orders) and the choice which option to use must
B, and C and three indiced 4, Iz, and I on these at- be made by the query optimizer. We will also discuss special
tributes. As mentioned earlier, we assume that all indice&®ses such as clustered indices and unique indices. Com-
are BT -trees [23] in which all{ key, RID)-entries are in pound indices on several attributes can be treated just like
the |eaf pagesl The inner nodes Of tBé_tree Contain 0n|y indiceS on a Single attribute. HOWeVer, we W|” ignore in'
reference keys for navigation purposes—no real data valud§grity constraints in the following examples; as mentioned
Furthermore, we assume a B-link-tree organization [10]; if? the previous subsection, integrity constraints can also be
a B-link-tree, the leaf nodes are chained in order to faciliProcessed more efficiently using a vertical approach. We pro-
tate sequential scanning at the leaf node level. Records in a0se to check integrity constraints in such a vertical way as
ble R are uniquely identified (and located) viaRd D value early as possible and before deleting records from the table
which contains the page ID and the slot number of the reco@nd the indices so that no work needs to be undone if an in-
within that page. In addition, we assume that a second réegrity constraint fails.
lation, calledD, exists;D stores thed-values of all records

2.2.1. Bulk Deletes by Sorting and Mergin
that are supposed to be deleted fr@min summary, we have y i g ging]
the following storage structures: Figure[3 shows how sorting can be used to implement bulk

o deletes. The arrow in the | operator points to the table or
* RQRIP’ A’ B,C;..)))] index from which records are deleted (left or right). In this
RID indicates, that the relatiof is clustered (i.e., example, the table or index is always iheerwhich is indi-
sorted) oni/ D values. cated by the use oftd| symbol; for layout reasons, however,
e D(A) the bulk delete from indeXp is shown with a| X symbol
e I4(A,RID) althoughip is the inner of this bulk delete operation. The
A indicates that the leaf pages of the index are cluster(%/o top-levelx | operators produce no output (indicated by
on A.); the output of the othek | operators is piped into other
R IB(E,RID) rela’gonal operators (i.e., prqjectlons in F|_glIt_e 3). The plan
_ of Figure[3 is based on sorting and merging in order to im-
e Ic(C,RID) plement bulk deletes. That is, in every step the list of keys

We will also use the query from the introduction, but the(orRIDs) of the records that are to be deleted is sorted ac-

discussion is relevant for any kind of bulk delete statemeni:ording to the clustering of the table or index. The tables and
Y indices on which the bulk deletion is carried out and which

(Any kind of SQL sub-query could be used as part of theare typically much larger than the list of keys need not be
DELETEstatement.) o .
sorted. Also, we can apply projections before each sort in
DELETE FROM R WHERE R.AIN (SELECTD.AFROMD) order to minimize the volume of data that needs to be sorted.
Using our new bulk delete operatlr, such aDELETEop- Carrying out bulk deletes in this way is usually much better
eration corresponds to the following logical plaR: X | I4 than the traditional (horizontal) approach to carry out deletes
X| RNX| Ig X]| Io. In the following, we will discuss alter- because sorting avoids random disk 1/O to locate and delete
native ways to execute thBELETEplan efficiently: the first the records; in other words, we use sorting in order to ad-
approach is based on sorting, the other approaches make jis#t the list that specifies the records to delete to the physical
of hashing and partitioning. As mentioned in Sectiod 2.1layout of the table and indices. Essentially, this plan is often
many more possibilities are conceivable (e.g., consideringttractive just as sort/merge joins are often more attractive

Figure 2. Example for arelation R with 3indices

e S g e

RID

R(RID,A,B,C,...)

’:‘

I (C,RID)

NS

Iy (B,RID)

NS

input

build input range range build input hash
! g‘a'sohip partition B 1 partionC 11— N hast

range
| hRe?th —— partition B 2

range
partition C 2 ok E’}Bh

hash__range
probe IXIRID —partition B 3

input

range hash probe
partition C 3— DK} RID input

merge
prp = PURIDT —Tenn
/

sortpip

HR‘]D .
M&werge X1 nAwerge
‘“_t/\ 'U f/\ R(RID,AB,C, ...)
Sorta I5 (B,RID) s Ic (C,RID)
D(f’l(I, (A RID) D(A) I, (A RID)
H C Figure 5. Using hashing and range partitioning

Figure 4. Using hashing only necessary that thiel Ds (without any keys) fit into main
than nested-loop joins. Again, it is also important to keep imemory. Figur€l4 shows how hashing can be used to carry
mind that only the (small) lists of keys ariti Ds need to be out bulk deletes.
sorted. As in the plan of FigurEl3, sorting is used in order to delete

The plan of Figurél3 is not a tree, it is a graph. The resulhe records from indek, and to find theR/ Ds of all records
of the bulk delete operation with tabl is split and piped that should be deleted. Thi®I D list is then piped into three
into two different query trees in order to carry out bulk deletediash-basedX operators that are used to delete the records
for the indiceslg and-. That s, the result of the “join” of from tableR and indiced andi. More precisely, a main-
D, I4 andR is a common subexpression for the subsequemhemory hash table is constructed from fReD-list and the
bulk delete operations on the other indices. Splitting outpueaf pages of the indices and all pages of tablare scanned
streams in a query plan has also been used in different coand the RIDs of each record is probed with the hash table in
texts; i.e., in[[2]. Here, it makes it possible to process therder to see whether the record should be deleted. Probing
bulk deletes oz andi¢ independently and in parallel. can be done independently and in parallel for each index and
In the following, we will discuss special cases thatimpact théable R, but on a single-processor machine the same hash
way bulk deletes are carried out: table can be used. This approach corresponds toléssic
Clustered Index I 4 hash jqian [18] and_ is part?cularly attractive if the hash table
If 14 is a clustered index, then we need not sort the list o'fea"y fits into ;_)hy_smal main memory.

If the RID list is very large and the size of the hash table

RIDs because the result of the fitgt operation (i.e., delet-) . ;
ing records fromi) is already sorted by21 D in Figurel3. exceeds the size of the available main memory, then range

In this case, the sort/merge approach to carry out bulk deletB&titioning can be applied. Figuré 5 shows an example that
becomes even more attractive. This is analogotstévest- demonstrates how range partitioning and hashing can be used

ing orderswhich make sort/merge joins more attractive int@ implemgqt the bulk deletes for indicés andic. For the
regular join processing [5]. range partitioning phase, the key valuesifand C of all

records that should be deleted need to be known so that range
Clustered Index 5 (or Ic) partitioning can only be applied after the bulk delete for table
Analogously, i/ (or I¢) is a clustered index, then we can g has been carried out. The idea is to partition BeD-list
save thesortz (or sortc) operators in the plan of Figufé 3 jnto partitions that fit into main memory and then carry out
because an order ofi/ D implies an order omB (or C) in the bulk delete for each partition individually using the main-
this case. memory hash-based approach described above. In Fijjure 5,
Unique Indices three partitions are created for each bulk deldig.and I
For the plan of Figur&l3 this constraint has no direct efcan be range partitioned without any cost because ifgex
fect. However, it does have an effect on concurrent ups clustered (ordered) bi andlc is clustered by’
date/insert transactions which need to consult the index 1bis of course possible to mix hash-based and sort-bgged
enforce the uniqueness constraint. Such transactions can@@€rators in many more ways in a single plan. For instance

proceed while the unique index is off-line. We will revisit in the plan depicted in Figure 5, sorting and merging (instead
this issues in Sectidd 3. of hashing) could be used to process taRle

2.2.2. Bulk Deletes by Hashing 2.3. Reorganization

As an alternative to sorting, hashing can be used in order to One important advantage of our approachto carry out bulk
detect which records should be deleted. Hashing is particdeletes is that th&"-trees can be reorganized with very lit-
larly attractive if the list of keys an®2] Ds that specify which tle extra cost. In all three plans described in the previous
records should be deleted fits into main memory; in fact, it isection, the leaf pages are scanned from the beginning to the

I:l base nodes

empty pages

3.1. Concurrency Control Issues

So far we have described the bulk deletion process without
consideration of other, concurrent transactions accessing the
same relation and/or indices. That is, we assumed that the
bulk deletion process has obtained exclusive access on the
entire relationR as well as on its indices. Even though our

v ariis bulk deletion approach is very efficient—typically up to an
" reorgerisation units order of magnitude faster than the traditional approach as we
orogress of reorganisation will show in the performance experiments of Section 4—it
may still be beneficial to allow concurrent transactions while
bulk deletion is still in progress.

However, we see no benefits in allowing concurrent trans-
end; therefore, leaf pages candmmpactedcompressednd actions while the bulk deletion processes the base tBble
merged with neighbor pages (i.e., clustered) during the bululk deletion is employed if a vast number of tuples is re-
delete. The inner nodes of thg"-tree can be updated (and moved fromR. Therefore, database systems employing lock
reorganizedafter or while the leaf pages are processed. Onescalation would switch to an exclusive lock on the base ta-
way to update and reorganize the inner-nodes afterwardsiie, anyway. Other database systems will set a very large
to process each layer individually (a full-fledged B-link treenumber of locks leading to a very severe number of conflicts
organization is necessary for this approach). An alternativ@leadlocks) with other transactions. Therefore, our bulk dele-
is to update the inner-nodes on the fly by adapting the algdion process locks tabl& exclusively and switches all in-
rithm presented in[26] as shown in Figlide 6. The idea is tdices onR off-line.
identify one inner-node as a base node; typically, such a base As soon as table R and all unique indices are processed
node will be chosen in such a way that the sub-tree rootgdnd the bulk deletion is committed) the lock @his re-
by the base node fits into the available main memory bufferéeased and the unique indices are brought on-line in order
First, bulk deletion and reorganization for the leaves of thiso allow other concurrent read and update transaction3.on
sub-tree is carried out and the inner-nodes of this sub-tree arfowever, the indices without a unique constraint remain off-
updated. Then the next base node (i.e., the right sibling dihe while the bulk deletion process propagates the deletions
the previous base node) is chosen and the leaves and innirthe index structures. This increased concurrency is facil-
nodes of that sub-tree are processed. At the end, if necessargted by our vertical processing technique that propagates
the nodes of the “base-node” level and of higher levels of thdeletes to the table and the indices separately. This vertical
tree are reorganized in the same fashion. Since t&bie approach allows us also to process the indices with a unique-
also scanned from the beginning to the end in all our exanrmess constraint first. Processing the unique indices first is
ple plans, table? could also be reorganized while processingnecessary to ensure that the uniqueness constraint isn'’t vio-
the bulk deletion for tabl&. Reorganizing tabl&, however, lated. Trying to ensure the uniqueness constraint while the
involves updating the entries of all indices because®fi®s unique index is off-line can lead to inconsistencies because
of (almost) all records of: change. In the plan of Figuké 3, no locking is possible. Furthermore it is difficult to decide at
for instance, we would have to update most entries of indethe time an insertion is made whether a conflict exists or not
1,4 after the bulk deletes for tabl® have been carried out if because a potentially conflicting entry may be deleted by the
table R is reorganized as part of the bulk delete; as a resulbulk deletion later on. However, we will study if the restric-
index 4 would be processed twice. tion of processing the unique indices first can be relaxed or

Note that the procedure sketched in Fidure 6 may generatet as part of our future work.
some "holes” in the storage area of the leaf nodes. In order Of course, the off-line indices cannot be used as access
to retain (or generate) a contiguous storage area for the entjpaths or for predicate locking before the deletes have been in-
set of leaf nodes it is also possible to shift all entries "to thestalled. Update transactions modifying base relafivhave
left"—beyond base node delimiters. to do extra work in order to guarantee the consistency of in-

dices after the whole bulk delete is finished. Two approaches
3. Concurrency Control and Recovery Issues are possible, which are derived from Mohan and Narang's

. . T work on online index creation [17]:
In this section we will briefly address concurrency control [17]

methods that have to be applied if the bulk deletion process ® Side-file Update transactions log their changesitin
runs concurrently with other transactions accessing and mod- Side-files which are propagated to the indices.

ifying the same relation and its indices. We will also briefly e Direct propagation / no side-fiteThe updates are di-
outline the recovery methods to guarantee the fault tolerance rectly installed in the indices while bulk deletion pro-
and restartability of a bulk deletion process. cessing is still active.

Figure 6. Reorganization of a B*-tree during
bulk deletion

3.1.1. Side-File the bulk deletion instead of rolling it back as done during tra-
When a side-file is used the remaining indides and /¢ ditional recoveryl[15, 16]. Further attention is needed when

aren't changeable directly by any other transaction. In thisde-files are used. If the bulk deletion is ﬁ,”isrﬁd during
case, all changes made to this indices by a updater transact/&y°Ve"Y thg 5|_de-f|les are appended. The S'd,e'_ lies areé ap-
are logged in side-files (one for each index). When the buIR“ed to the indices when the bulk deleter has finished. This

deletion has processed an index the side-file is applied to thkNecessary because the changes logged in the side-files were

index but still the index is off-line and still other transactions™ad€ by transactions that were triggered after the commit of

can append the side-file. When nearly the whole side-file i%e bulk delet?on and have thereforg to be. madg durable after
processed, the bulk deletion quiesces all updates to the indd e bulk deletion changes to avoid inconsistencies.
processes the last entries of the side-file and brings the indax
on-line again. This approach is also described.in [20]. '

The side-file approach has the advantage that no latchesIn this section, we present the results of performance ex-
on index pages during bulk deletion are necessary (excepériments that show that ouertical approach to implement
for unique indices, see below) and it is easy to implement. bulk deletes outperforms the traditiorr@rizontalapproach

if a significant portion of a table is deleted. We will only

3.1.2. No Side-File / Direct Propagation present results that were obtained using sorting and merg-
CLW to implement the| X operator. The tradeoffs between

to the off-line indices. Therefore the bulk deleter as well a§@Shing and sorting for bulk deletes are the same as for reg-
the updater transactions have to set latches on the index pa# j0ins [3], and the differences in performance are much

in order to avoid conflicts. However, latching the pages is noimaller than the differences between the horizontal and ver-
enough. To avoid conflicts between updater transactions afiga! approach.

the bulk delete transaction an inserted erjtiyRID) has 4.1, Benchmark Environment

to be marked as undeletable. This will prevent the following

race condition: the bulk deleter may have the corresponding T0 study the performance of bulk deletes, we used a pro-
RID in its delete-set. Thi®ID may have been re-used by totype database system implemented on top of a UNIX file

Performance Experiments and Results

When no side-file is used the changes are propagated dire

the database management System for an insert. SyStem. The implementation of ti&"-trees is based on the
However, an undeletable entry can be removed as part §¢de developed by Jan Jannifk [7] so that the deletes in the
rollback processing for the transaction that inserted it. traditional, horizontal approach were carried out as best as
possible using Jannink’s algorithm. However, we adapted
3.1.3. Index Processing Order the B*-tree so that the nodes in each level are linked (B-link

, i i , - tree [10]) because this organization was necessary in order to
There exist many possible orders in which the indices cafyiement our horizontal bulk delete approaches (Seftion 2).
be processed due to the vertical approach of our new bul,q \hole prototype was implemented in the C++ language.
delete algorithm. Thgrefore indices which are cr!t|cal fqrthe Our prototype is installed on a SUN Ultra 10 worksta-
performance of applications can be processed first while t fn with a 333 MHz SPARC processor and a 9.1 GB Sea-
proces_sing_of non-critical indices can k_)e delayed. Especial ate Medialist Pro hard disk. The operating system is Solaris
the unique indices can be processed first. 2.7. The size of the main memory is 128 MB; however, if
3.2. Checkpoints and Recovery not. reported otherwise.,.our protot_ype uses oply 1Q MB of
main memory The traditional algorithm uses this main mem-
We propose to make use of checkpoints to minimize thery as input/output buffers in order to read chunks of several
loss of work during a system failure. A checkpoint could bepages from disk (i.e., chained I/O) or to cache pages of in-
established at any time by flushing all pages to stable storagé&ces and/or base tables. The bulk deletion algorithm uses
with a LSN equal or less to the actual one. Additionally thehis main memory not only for caching but also to carry out
last processe®I D or key-value respectively can be storedsorting. The page size for tables and indices is 4096 bytes and
in the log. This will speed up recovery because the storagee use Solaris’ direct I/O feature in order to avoid caching
structures are clustered regardingRéDs and key-values, effects of the operating system.
respectively. So the already processed values can easily beThe database consisted of one taBRewith eleven at-
recognized. Also the results of the join variants described itributes A,B,...,K In all experiments, tablé? has initially
Section® should be materialized to stable storage. Check-:000.000 tuples, each of size 512 bytes. The first 10 at-
points are especially advisable when the processing of ondbutes are random integers and the last attribute (9.,
structure R, 14, I, or I¢) is finished. is a string field containing garbage data for padding. Each
To take full advantage of checkpointing and to save thattribute is free of duplicates because Janniik'stree im-
work done even after a system failure we propose to finisplementation does not support duplicates. However, the exis-

160 sorted/trad —— ‘ sorted/trad —+—
140 not sorted/trad - | 350 | not sorted/trad -~ |
bulk delete - drop/create -
bulk delete %
120 | e 300 -
=) = 250]
£ £ - |
@ o 200 | 1
E E
= F 150
100 M
50 |
* K
0 - - 0
5 10 15 20 1 2 3
Deleted tupels (% of tupels) Number of indexes
Figure 7. Running time [min], vary deletes, 1 Figure 8. Running time [min], vary indices,
unclustered index, 5 MB memory uncl. indices, 5 MB memory, 15% deletes
tence of duplicates does notimpact much the tradeoffs of oy (b) tableD is not sorted (referred to amt sorted/trag.
new bulk delete techniques. Obviously, thesorted/tradversion performs much better be-

If not stated otherwise, we only have one index on tabl@gyse it avoids random I/O while probing indEx for each
R: 14, anindex on attributel. The height off 4 is three and ey stored in table; this version roughly corresponds to the
the inner nodes contain up to 512 entries. Also, we generajgyy the database product studied in the introduction carries
a tableD with randomA values and use the sardLETE oyt bulk deletes. Thdrop & createmethod proposed in the
statement that we have been using in all examples throughqkroduction is not studied becaugg is the only index in
this paper; i.e.: this experiment and 4 is vital to carry out the bulk delete
DELETE FROM R WHERE R.A IN (SELECTD.AFROMD) operation using any approach.

We executed thiDELETEstatement in isolation (i.e., nocon- Figured shows clearly the importance to implement bulk
currency control effects) and measured its running time. Weeletes using one of our special horizontal approaches. Even
vary the size of tablé so that 5% to 20% of the records of the sorted/trad approach is clearly outperformed by our
table R are deleted. Accordingly, the size of tablevaries sort/merge-based horizontal approach. The differences be-
from about 200 KB to 800 KB, and tablb can always be come larger, the more records are deleted. If 20% of the
sorted in one pass in main memory. In some experimentsecords are deleted, our horizontal approach outperforms the
we also vary the number of indices and the size of the maimot sorted/tradapproach by almost one order of magnitude:
memory buffers. Furthermore, we study scenarios in whichalf an hour compared to more than two hours.
1,4 is clustered (i.e., tabl® is sorted according to attribute
A) and situations in whicli4 is not clustered. 4.3. Experiment 2: Vary Number of Indices
Typically the height of all indices is three and the height
of the indices does not change even if 20% of the records are Figure[8 shows the running times of the alternative ap-
deleted. As proposed in|[9], we only reorganize and garbagwoaches if we vary the number of indices. In this series
collect an index page if it is totally empty (We do not applyof experiments, always 15% of the records are deleted from
the techniques proposed in Sectiod 2.3). In all experimentsble R. We observe that our horizontal approach to carry
almost no reorganization is carried out because of the randarat bulk deletes becomes more important, the more indices
distribution of the keys of the records that are deleted. exist. In the extreme case of this experiment (three in-
dices), our horizontal approach takes only about half an hour
whereas the traditional approaches take more than two hours
Figure[7 shows the running times of our sort-based (vertisorted/trag and more than three hounsdt sorted/trad, re-
cal) bulk delete approach compared to traditional (horizontagpectively. (These numbers are comparable to the results de-
approaches to carry out bulk deletes. Our sort-based budcribed in the introduction which were obtained using a com-
delete approach carries out a sort/merge-based bulk deletercial relational database system; see Figure 1) i$ not
operation with index/ 4 first and then a sort/merge-basedthe only index, then thdrop & createapproach makes sense,
bulk delete operation with tabl& (Figure[2). The tradi- but as shown in Figurg] 8, thdrop & createapproach per-
tional approaches probe indéx in order to find all records forms even worse than the traditional (vertical) approaches,
to delete, and then for each match immediately delete theere. (Apparently, creating indices is slower in our prototype
corresponding record from tabfeéand index/ 4. We studied than in the commercial database system used for the experi-
two versions of the traditional approach: (a) tablés sorted ments of Figur&ll.)
before the deletes are carried out (referred teated/trad

4.2. Experiment 1: Vary Number of Deleted Records

200 T 200

sorted/trad —+— ‘ ‘ ‘ ‘ sorted/trad/clust —m—
not sorted/trad -~ sorted/trad/unclust ---+---
bulk delete - not sorted/trad/clust --©--
bulk delete -
150 1 150 =
=) - 5
E | E
% 100 o 100 o)
£ E
= F O
T
50
3
0 0

2 6 10 6 8 10 12 14 16 18 20

Main Memory (MB) Percentage of deleted tupels
Figure 9. Running time [min], vary memory, 1 Figure 10. Running time [min], clust. index, 1
uncl. index, 15% deletes index, 5 MB memory, 15% deletes

be carried out in one pass in main memory because only small
lists of RIDs and keys need to be sorted, and the merging
We also tested the performance to carry out bulk deletggith table ? or indexZ4 requires only very little main mem-
with different index heights (Tablé 1). To construct a versiomyy, too. On the other hand, the traditional approaches are
of index I, with a larger height, we (artificially) increased more sensitive to the size of the main memory. In particu-
the size of the keys in the inner nodesIof by allocating |ar, the performance of theot sorted/tracapproach depends
more space within a node for each key. More specifically, Wgtrongly on the amount of available main memory: pages of
store 100 keys per node in order to create an indewith the index and the base table are possibly used several times
height four; normally, we store up to 512 keys per node angnd the more memory is available, the more pages of the in-
indeXIA has he|ght three. As shown in Taﬂb 1, the runningjex and Of the base tab'e can be Cached_
time of our bulk delete approach is almost independent of .
the height of the index. The running times of the traditionaft-6- Experiment 5: Clustered Index
approaches, however, increase sharply with the height (size) Figure[I0 shows the running times if ind&xis clustered;
of an index. Recall that the whole index must be traverseide_, tableR is sorted by attributel. As a baseline, F|gu@_0
from the root to the corresponding leaf in order to delete @|so shows the runing times of tiserted/tradapproach if
record using a traditional approach; instead our approach 10, is not clustered. (These results are identical with those
implement bulk deletes directly operates on the leaf pages 8hown in FigurdT7.) If indext4 is clustered and no other
an index. indices exist, this is the best possible case for the traditional
Remember that the bulk delete algorithm sorts the delete S@éproaches_ In this case, twrted/tradapproach even out-
D before d9|eting the entries in the index and in this case t%rforms our (VerticaD approach to imp]ement bulk deletes
sorting can be done in main memory. Therefore sorfing hecause no advantage can be achieved by sorting and by car-
before evoking the bulk delete algorithm has no significantying out the deletes in a vertical way. The analogon is that
impact onthe running time of the bulk delete statement USinmdeX nested_|oop joins perform very well if the index is clus-

4.4. Experiment 3: Vary the Height of the Index

our new bulk delete algorithm. tered and the outer table is sorted accordingly. However, even
Table 1. Running time [min], 1 uncl. index, 15% in this extreme case and although it does not take advantage
deletes, 5 MB memory of the fact that the index is clustered and sorting is unneces-
index height 3| index height 4 sary, our bulk delete approach performs almost as well as the
(min) (min) sorted/tradapproach. Thaot sorted/tradapproach benefits
sorted/bulk 24,87 26,79 from the clustering of the index, but it shows overall very
not sorted/bulk 24,87 26,79 poor performance because of its high cost to probe the index
sorted/trad 64,65 80,65 in order to find the records to delete.
not sortedftrad 102,05 136,09 5. Conclusions and Future Work

4.5. Experiment 4: Vary Size of Available Memory In this paper, we proposed new algorithms for deleting

Figure[9 shows the running times of the alternative apmasses of data in relational databases wentrees are
proaches varying the size of the available main memory usegsed for indexing. First, we described the traditional imple-
for sorting and to cache pages of indexand tableR. We mentation of deletes; the traditional implementation is to take
observe that our new approach performs just as well if onlg horizontalrecord-at-a-time approach. Then we introduced
very little main memory (2 MB) is available: all sorting can a new and more holistic approach which deletes records from

tables and indices in a set-oriented way. We presented altgt-1] L. Leverenz, R. Mateosian, and S. BobrowsBracle8 Server
native ways to delete records in such a set-oriented way and
showed that the bulk deletes can be optimized in similar ways

as complex join queries: the join method, the join order, and!?

the primary join predicates can be chosen depending on the
size of the table, the number of records to delete and prop-
erties of the indices (e.g., uniqueness and clustering). Tf'[@g]
traditional, record-at-a-time way to execute bulk deletes cor-
responds to a plan in which nested-loops are used as a method
for all joins and records are deleted from the base table firdf4]
and then from the indices. We carried out performance exper-
iments that showed that a plan which is based on sorting and

merging and which uses a different join order outperform
the traditional way by up to almost one order of magnitude.

This work was restricted td&3*-trees; in our prototype,

T1s]

other kinds of indices are updated in the traditional way. In
future work, we plan to generalize our approach and study al-
gorithms to delete records in bulk from other index structure$l6]

such as hash tables, R-trees, or grid files.

Acknowledgements

This work was partially supported by the German Re

[17]

search Council DFG under contract Ke401/7-1 and by SAP

as part of the Terabyte project.

References

(18]

[1] R. Braumandl, J. Claussen, A. Kemper, and D. Kossmann.

Functional join processingThe VLDB Journal 8(3-4):156—

177, 2000. Invited Contribution to the Special Issue “Best of

VLDB 98".

[2] J. Claussen, A. Kemper, G. Moerkotte, K. Peithner, and

(19]

M. Steinbrunn. Optimization and evaluation of disjunctive [20]

queries. IEEE Trans. Knowledge and Data Engineering

12(2):238-260, 2000.
(3]

(4]

ACM Computing Survey85(2):73-170, 1993.

pages 160-172, San Francisco, CA, USA, May 1987.

[5] G. Graefe, A. Linville, and L. Shapiro.

6(1):120-135, Mar. 1994.

[6] J. Gray and A. ReuteiTransaction Processing: Concepts and

G. Graefe and D. DeWitt. The EXODUS optimizer generator.
In Proc. of the ACM SIGMOD Conf. on Management of Data

G. Graefe. Query evaluation technigues for large database$21]

Sort versus hash[22]
revisited. IEEE Trans. Knowledge and Data Engineering

Techniques Morgan Kaufmann Publishers, San Mateo, CA, [23]

USA, 1993.
[7] J. Jannink. Implementing deletion in B+-treesCM Sigmod
Record 24(1):33-38, Mar. 1995.

[8] T. Johnson and D. Shasha. Utilization of B-trees with in-

serts, deletes and modifies. Pnoc. ACM SIGMOD/SIGACT
Conf. on Princ. of Database Syst. (POD$ages 235246,
Philadelphia, Pennsylvania, Mar. 1989.

(24]

(25]

[9] T. Johnson and D. Shasha. B-trees with inserts and deletes:

Why free-at-empty is better than merge-at-halburnal of
Computer and System Sciencé8(1):45—-76, Aug. 1993.

(10]
tions on B-treesACM Trans. on Database Syster§t):650—
670, 1981.

P. Lehman and S. Yao. Efficient locking for concurrent opera-

(26]

— Concepts Manual Oracle Corporation, Redwood Shores,
CA, USA, 1997.

] G. Lohman. Grammar-like functional rules for representing

query optimization alternatives. IRroc. of the ACM SIG-
MOD Conf. on Management of Datpages 18-27, Chicago,
IL, USA, May 1988.

R. Maelbrancke and H. Olivie. Optimizing Jan Jannink’s
implementation of B+-tree deletionACM Sigmod Record
24(3):5-7, Sept. 1995.

M. McAuliffe, M. Carey, and M. Solomon. Towards effec-
tive and efficient free space management. Phoc. of the
ACM SIGMOD Conf. on Management of Dafsages 389—
400, Montreal, Canada, June 1996.

C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz. ARIES: A transaction recovery method support-
ing fine-granularity locking and partial rollbacks using write-
ahead loggingACM Trans. on Database Systeri3(1):94—

162, Mar. 1992.

C. Mohan and F. Levine. ARIES/IM: An efficient and high
concurrency index management method using write-ahead
logging. InProc. of the ACM SIGMOD Conf. on Management
of Data pages 371-380, San Diego, CA, USA, June 1992.

C. Mohan and I. Narang. Algorithms for creating indexes for
very large tables without quiescing updates. Piroc. of the
ACM SIGMOD Conf. on Management of Dagaages 361—
370, San Diego, CA, USA, June 1992.

L. Shapiro. Join processing in database systems with
large main memories.ACM Trans. on Database Systems
11(9):239-264, Sept. 1986.

E. Shekita and M. Carey. A performance evaluation of
pointer-based joins. IRroc. of the ACM SIGMOD Conf. on
Management of Datgpages 300-311, Atlantic City, NJ, May
1990.

G. Sockut, T. Beavin, and C. Chang. A method for on-line re-
organization of a databasBM Systems JournaB6(3):411—

436, 1997.

V. Srinivasan and M. Carey. Performance of on-line index
construction algorithms. IfProc. of the Intl. Conf. on Ex-
tending Database Technology (EDBWdlume 580 of_ecture
Notes in Computer Science (LNCBages 293-309, Vienna,
Austria, Mar. 1992. Springer-Verlag.

J. van den Bercken, B. Seeger, and P. Widmayer. A generic
approach to bulk loading multidimensional index structures.
In Proc. of the Conf. on Very Large Data Bases (VLPB#ges
406-415, Athens, Greece, Aug. 1997.

H. Wedekind. On the selection of access paths in a data base
system. INFIP Working Conference Data Base Management

pages 385-398, 1974.

J. Wiener and J. Naughton. Bulk loading into an OODB: A
performance study. IRroc. of the Conf. on Very Large Data
Bases (VLDB)pages 120-131, Santiago, Chile, Sept. 1994.
J. Wiener and J. Naughton. OODB bulk loading revisited: The
partitioned-list approach. IRroc. of the Conf. on Very Large
Data Bases (VLDB)ages 30—41, &tich, Switzerland, Sept.
1995.

C. Zou and B. Salzberg. On-line reorganization of sparsely-
populated B -trees. InProc. of the ACM SIGMOD Conf.
on Management of Datgages 115-124, Montreal, Canada,
June 1996.

	-1em. Introduction
	-1em. The State of the Art
	-1em. Related Work
	-1em. Overview

	-1em. Algorithms for Bulk Deletes
	-1em. Overall Approach
	-1em. Examples
	-1em. Bulk Deletes by Sorting and Merging
	-1em. Bulk Deletes by Hashing

	-1em. Reorganization

	-1em. Concurrency Control and Recovery Issues
	-1em. Concurrency Control Issues
	-1em. Side-File
	-1em. No Side-File / Direct Propagation
	-1em. Index Processing Order

	-1em. Checkpoints and Recovery

	-1em. Performance Experiments and Results
	-1em. Benchmark Environment
	-1em. Experiment 1: Vary Number of Deleted Records
	-1em. Experiment 2: Vary Number of Indices
	-1em. Experiment 3: Vary the Height of the Index
	-1em. Experiment 4: Vary Size of Available Memory
	-1em. Experiment 5: Clustered Index

	-1em. Conclusions and Future Work

