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Abstract. Change design is an important part of IT Change Man-
agement. It is concerned with the creation of a plan in order to
achieve a high-level goal. Recent work has been focusing on plan-
ning by re�nement of tasks, e. g., using HTN approaches. These
approaches do not consider that domain objects have states, lead-
ing to various drawbacks.
First, hierarchical problem solving behavior is mixed with domain
object behavior. Second, dependencies are not made explicit and
they can be better described by referring to the states of other
domain objects.
To overcome these drawbacks we design a hybrid HTN/Classical
Planning approach that copes with task re�nement and planning
according to states of domain objects. Using the proposed algo-
rithm we demonstrate how to write knowledge bases that clearly
separate hierarchical problem solving behavior, behavior of domain
objects, and dependencies. This increases maintainability, extend-
ability, and reuseability of our knowledge bases.
We demonstrate the applicability of our algorithm and proposed
domain description by applying it to change request planning of
SAP systems.
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1. Introduction

This chapter motivates and introduces the research done in this work. Particularly we
start by motivating our research in the area of change request planning in Section 1.1.
Although there has been done lots of research in this area over the last years, we identify
a research problem that has not yet satisfactory been solved in Section 1.2. After that,
we highlight in Section 1.3 how the solution proposed in this work solves the identi�ed
research problem. Finally, we provide an outline for the remainder of this work in Section
1.4.

1.1. Motivation

Data centers have been massively grown in size and numbers over the last years. In
September 2002 Google reported to have 15,000 servers in six data centers [27]. By 2005
Stephen Arnold [5] reported that Google has grown to over 100,000 systems in 15 data
centers. Today's estimates assume about 500,000 servers in over 35 data centers [25]. The
growth of data centers in general is very much driven by the proliferation of the Software
as a Service (SaaS ) paradigm, the need for commercial high-performance computing,
and the success of advertisement based services and online consumer services [25]. The
increasing popularity of the Cloud Computing paradigm and the data centers needed by
Cloud Computing providers emphasize this development. Cloud Computing o�ers SaaS
in a large, scalable, distributed computing environment, the Cloud. With the increase
in the density of data centers, there comes more software being hosted in the �Cloud�.
But not only the amount of software is increasing but also its complexity because it has
become a�ordable to build large scalable distributed software systems hosted in data
centers. For example, Animoto [4], [41] is a service that takes a music �le and a set of
pictures and renders both to a video clip showing the pictures based on characteristics of
the music. Animoto's rendering service is based on Amazon EC2 [2] and S3 [3], Amazon's
Cloud Computing services. A few days after Animoto has been launched on Facebook, it
was gradually scaled up from 50 EC2 computing nodes, i. e., 50 virtual machines doing
the rendering, to 3,500 EC2 nodes. Depending on the load, the Animoto application
automatically increases or decreases the number of rendering units. Another project
used about 100 EC2 nodes for the generation of about 11 million pdf articles making up
the archive of the New York Times from 1851 until 1922 [24]. These large scale services
put additional pressure on the IT Change Management that is done behind the scenes
at the Cloud Computing providers. For example virtual machines have to be migrated
to other physical servers due to workload or maintenance constraints. The pure size of
data centers and massively distributed applications like Animoto make it impossible to
oversee the current state of the data center without assistance by a computer.
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According to [25] large scale data centers can only be operated cost-e�ciently if the stan-
dard processes in the data center are automated. One of these processes is IT Change
Management [29], which de�nes how changes are dealt with in a data center environ-
ment. Changes to the IT environment, i. e., software systems and hardware systems,
are formalized by a Request for Change (RFC ). The RFC is mapped to a �rst high-level
change request describing the high-level goal in order to achieve the RFC. One important
step in this process is the planning of the change request. Given a high-level task, e. g.,
to bring up a new Cloud service, a detailed executable plan is generated. The actions
that make up the plan change the software and virtual infrastructure running in the data
center in order to achieve the high-level goal. Due to the size of todays data centers
and complexity of software hosted in them, automated change planning becomes a key
technology to automate the maintenance of data centers. Plans for such complex systems
cannot be generated by hand any more because

• operators are not capable of overseeing the current state of a massively distributed
application like Animoto any more.

• the e�ects of changes are di�cult to assess in an environment that is heavily driven
by constraints induced by software components. For example, it might be di�cult
to assess in which order applications can be shutdown because they might depend
on each other.

• policies accounting in the data center, e. g., security policies, are not allowed to be
violated while performing the changes. In addition to that, the data center has to
be changed constantly to conform to policies. For example, virtual machines with
less load might be aggregated on a server to free resources for additional virtual
machines.

• generating plans by hand becomes an highly error-prone task due to the complexity
of distributed software systems and the dependencies accounting between di�erent
software components. In addition to that, plans can contain hundreds of steps
growing too big in order to be created by hand.

All of these aspects motivate the research done in change request planning.

1.2. Research problem

Because of the importance of change request planning as outlined in Section 1.1, di�erent
approaches for change request planning have been studied over the last years:
Early work was done by Keller et al. [31] on the IBM CHAMPS system. The work
focuses on planning and scheduling for non-hierarchical tasks. It tries to exploit a high
degree of parallelism. Dependencies between software components are de�ned by data
structures. Compared to our work �ndings about planning from the area of Arti�cial In-
telligence (AI ) Planning1 are not considered, leading to the creation of corrupt plans. In

1AI Planning is a branch of Arti�cial Intelligence that deals with algorithms and strategies to construct
plans of actions to achieve a certain goal.
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addition to that, the hierarchy inherent to the domain of IT Change Management plan-
ning is not taken into account. Furthermore, CHAMPS does planning exclusively due
to dependencies and does not consider planning according to best practices in Change
Management.
Cordeiro et al. [10] overcome the disadvantages of CHAMPS in the hierarchical domain
by proposing ChangeLedge, a system for the hierarchical re�nement of change plans. To
the best of our knowledge it is the �rst work that introduces a planning algorithm that
takes the hierarchical re�nement of change requests into account. High-level plans are
gradually re�ned according to dependencies until a work�ow is reached that can be di-
rectly executed. The drawbacks of Cordeiro's approach are that re�nement based on
best practices and work�ow speci�cation cannot be expressed on lower re�nement levels.
Furthermore, plans are not generated taking best practices of IT Change Management
into account. Although the approach takes preconditions and e�ects of operators into
account, it can generate unsound plans.
Recently, Trastour et al. have introduced ChangeRe�nery [46], a system for the au-
tomated re�nement of change requests. Compared to ChangeLedge, ChangeRe�nery
applies Hierarchical Task Network (HTN ) Planning [16], a well de�ned AI Planning
technique, to the domain of IT change request planning for the �rst time. HTN re�nes
abstract high-level tasks into a set of atomic tasks that cannot be decomposed any fur-
ther. This tasks are then executed to implement the plan. Although HTN is suited for
change request re�nement, it has some drawbacks when applied to IT change request
planning because the domain of IT change management is not entirely hierarchical.
When looking at the domain objects of an IT change request planning domain, it becomes
apparent that lots of these objects have a state. For example a database can be �running�
or �stopped�. The same accounts for an application server. Virtual machines can be in
states like �undeployed�, �deployed�, �running�, or �paused� depending on the underlying
virtualization technique. Using HTN in a domain where domain objects do have a state
and where re�nement of tasks is necessary, leads to the mixture of hierarchical problem
solving knowledge and the description of behavior of domain objects. The behavior of
domain objects is better expressed by state-transition systems. Mixing both in one data
structure decreases the comprehensibility of the knowledge base. In addition to that,
dependencies in the IT change request planning domain are best described by referring
to the state of domain objects. For example, a database can only be stopped if all other
services accessing the database are already in state �stopped�. Nevertheless, stopping a
database might be a more complex task with need for further re�nement. Describing the
dependencies in a pure HTN domain mixes up tasks that solve dependencies and tasks
changing the state of the domain object the dependency is solved for. In addition to
that, the states de�ning a domain object are implicitly coded into then HTN methods.
All the mentioned issues lead to decreased readability, maintainability, and adaptability
of the knowledge base. This makes it hard to cope with changes of the knowledge base,
e. g., when new virtualization techniques or new kinds of services with di�erent depen-
dencies are added to the planning domain. Our work aims at overcoming these problems
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by introducing a hybrid HTN/Classical Planning2 approach for IT change request plan-
ning.

1.3. Proposed solution

In this work we introduce a hybrid HTN/Classical Planning approach for IT change
request planning to overcome the problems of a pure HTN approach as described in
Section 1.2. Our approach combines HTN with an extended version of Classical Planning
enabling us to seamlessly switch between both planning techniques. The hierarchical
re�nement of change requests is described by HTN methods. Domain objects have a
state-transition system associated describing their behavior. Dependencies are linked to
transitions in the state-transition systems. They describe Classical Planning problems
that need to be solved in order to execute the transition. Transitions of a state-transition
system are linked to a task that can be subject to further re�nement by HTN methods.
This task needs to be solved when taking the transition.
The hybrid approach has the following advantages compared to pure HTN approaches
like [46] in the domain of IT change request planning:

• Clear separation between data structures describing the behavior of domain objects,
e. g., a service, virtual machine, or physical machine, and hierarchical problem
solving behavior.

• Clear expression of dependencies between domain objects by Classical Planning
problems.

• Increased maintainability, adaptability, and extendability of the planning domain
due to separated descriptions for object behavior, hierarchical problem solving, and
dependencies.

• No indirect coding of domain object behavior into HTN methods. The behavior of
domain objects is made explicit.

• An algorithm that has a well de�ned semantics for dependencies in the domain of
IT Change Management.

• Computation of HTN decompositions by solving Classical Planning problems.

We derive the idea of the hybrid approach by conducting a case study. The case study
examines change requests in the context of SAP systems, a software product frequently
hosted in corporate data centers. Upon this case study we derive a general model to
describe dependencies and �nally the hybrid approach.

2Classical Planning is a planning approach that plans by searching through the state-space of a restricted
state-transition system [22].
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1.4. Outline of the work

The remainder of this work is organized as follows.

Chapter 2 introduces the SAP case study upon which the development of the hybrid
approach is based. We introduce the planning domain and explain why hierarchical task
decomposition as well as the notion of state-transition systems is needed. In addition to
that, we explain the dependencies that account in the domain and �nally derive eight
requirements for the hybrid approach.

Chapter 3 provides an introduction to HTN and Classical Planning. By giving some
examples from the SAP case study we argue that neither a pure HTN approach nor a
Classical Planning approach ful�lls all of our needs. In addition to that, we highlight
how the hybrid approach overcomes the weaknesses of the two pure approaches.

Chapter 4 introduces the main ideas of the hybrid approach. We describe how HTN
and Classical Planning are linked together by the hybrid approach. Furthermore, we ex-
plain a basic high-level run of the hybrid approach algorithm and introduce the theoretic
model underlying the hybrid approach.

Chapter 5 Proposes a Domain Speci�c Language which is used to describe the plan-
ning domain of the hybrid approach. We explain how the DSL facilitates reuseability,
extendability, and the separation of concepts like domain object behavior, hierarchical
re�nement rules, and dependencies. An EBNF description of the DSL is given in order
to de�ne the precise syntax of the DSL. Furthermore, we provide some examples showing
how the planning domain of the SAP case study is described in the DSL.

Chapter 6 explains the algorithm of the hybrid approach. We provide separate algo-
rithms for the HTN and the Classical planner that call each other to do the planning.
Having introduced the algorithm, we show how it solves an example from the SAP case
study. Furthermore, we explain how the algorithm keeps track of temporal dependencies
in order to produce sound plans.

Chapter 7 takes a closer look at related work regarding hybrid HTN Planning ap-
proaches in general as well as related planning approaches in the �eld of IT change request
planning.

Chapter 8 concludes the work and explains our plans for future work.
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2. The SAP case study

This chapter introduces the SAP case study. It explains the challenges a planning ap-
proach for the SAP case study has to face and solve. We explain the domain objects,
their characteristics, and the constraints and dependencies a planner needs to plan for in
the SAP case study. Thus, this chapter builds an important foundation for the solution
proposed later on in this work.
First of all, we explain the characteristics of the Model Information Flow. The planning
approach developed in this work needs to be able to plan for the changes of the Model In-
formation Flow. After that, Section 2.2 explains the domain objects of the SAP case. In
addition to that, we describe how our approach captures the behavior of domain objects
and how it di�ers compared to previous work. We continue with a precise description
of dependencies that account for the SAP case study in Section 2.3. After that, Section
2.4 introduces some work�ows, i. e., best practices how to manage software and hard-
ware in the SAP case study. A planner needs to be able to plan according to work�ows.
Furthermore, we introduce an UML class diagram in Section 2.5 which describes the
domain objects of the planning domain and their relationship to change requests. The
hybrid approach planner uses this object oriented model in order to do the planning.
Finally, Section 2.6 derives requirements from the analysis conducted in this chapter.
They should be satis�ed by the Hybrid Planning approach developed in this work.

2.1. The Model Information Flow

The Model Information Flow (MIF) is an important concept of the SLiM project. Because
the MIF changes the state of the world, a planner needs to be able to plan for its changes.
This section provides an introduction to the Model Information Flow. The big picture
behind the Model Information Flow is introduced in Subsection 2.1.1, followed by an
overview of the states of the MIF in Subsection 2.1.2. Finally, we extract the main
characteristics of the Model Information Flow having an in�uence on the design of our
planner in Subsection 2.1.3.

2.1.1. Idea of the Model Information Flow

This subsection provides an introduction to the Model Information Flow. The Model
Information Flow provides a generic, model based view on components of a data center.
Hardware, virtual machines (VMs), and software components are administered over their
lifecycle by a well de�ned model, the Model Information Flow.
In order to deploy an SAP system, there are lots of di�erent actions necessary, that need
to be done step by step. Such actions are, for example, the collection of non-functional or
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Figure 2.1.: States of the Model Information Flow described by a model, the Service
Lifecycle Model

functional requirements and the deployment of the actual system on the physical hard-
ware. No matter which service, e. g., an SAP system or any other Cloud service, is to be
brought to life, the Model Information Flow describes best practice steps and the nec-
essary tools in order to automate this process. The Model Information Flow starts with
a very abstract model and re�nes this model until a model is reached which formalizes
software components running on virtual machines and physical machines. Each of these
re�nement steps takes the model, which is an object oriented EMF model, and changes
attributes of objects or adds / deletes new objects including associations. These changes
to the model are done by tools, e. g., stand alone applications or just software packages
of the SLiM project. Thus, the model always re�ects the current state of the system.
A planning approach within the project needs to be able to plan for the changes of the
model through the Model Information Flow. Changing the state of the model involves
the invocation of a set of tools in sequence or in parallel. Thus, a planner needs to be
able to compute a set of sequential or parallel tool invocations in order to reach a well
de�ned state of the Model Information Flow.

2.1.2. States of the Model Information Flow

This subsection gives an overview of the di�erent states of the Model Information Flow
and the change requests necessary to change the state of the model. Change requests can
be directly matched to tool invocations in order to accomplish a transition to another
state of a model. An in depth introduction to the states of the Model Information Flow
can be found in [42], which also builds the basis for this subsection.

General state

The General state (see Figure 2.1) is the initial state of the Model Information Flow. It
describes abstract requirements on a business process level. After the model has been
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instantiated in General state, its state can be changed to the Custom state.

A change request changing the state to the Custom state would be �change state from
General to Custom�.

Custom state

The Custom state adds functional and non-functional requirements to the model. Func-
tional requirements can further re�ne the business processes described by the model.
Non-functional characteristics can be, e. g., security, performance, reliability, and scala-
bility measures.

In order to transform the model from General to Custom state, there needs to be a
change request to collect the non-functional requirements like �collect non-functional re-
quirements�. Another change request in this context is the change request �start Template
Browser� which starts the Template Browser, a tool enabling the customer to navigate
through the model. Further requirements need to be collected through additional change
requests as needed. As soon as all the functional requirements are collected from the
customer, the state of the model can be changed to the Unbound state. In order to get
back to the General state a generic change request called �restore model to General state�
can be used.

Unbound state

The Unbound state adds information from the software vendors to the Custom model.
The information from the software vendors describe the components that are necessary in
order to support the chosen business processes. Components could be, e. g., application
servers, databases, or external services.

The transition from the Custom to Unbound state can be performed using the Template
Browser. In order to rollback the changes made to the model, the change request �restore
model to Custom state� needs to be applied.

Grounded state

The Grounded state describes a complete design of the Cloud service. It contains details
about the infrastructure design, the software components of the service, and their map-
ping to virtual machines.

In order to perform the transition from Unbound to Grounded, a design has to be cho-
sen from di�erent design alternatives. Thus, a change request �choose design template�
needs to be planned for. In addition to that performance parameters need to be set
by the �set performance parameters� change request. Finally, a new model, the System
Model, needs to be created by the change request �create System Model�.
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Bound state

The Bound state extends the Grounded state by adding information about resource bind-
ings. Resources like hosts, storage, and networking are acquired from a shared virtualized
resource pool.

The transition from Grounded to Bound state involves calling a tool, the Resource
Acquisition Service. It maps the virtual resources like virtual machines to physical re-
sources. Thus, a change request �acquire resources� becomes necessary to transform the
model to the Bound state. In order to get back to the Grounded state, we need to free
the resources, which is done by the change request �release resources�.

Deployed state

The Deployed state includes information about the deployed and running components
that belong to the created service instance, e. g., the SAP system. In order to deploy
the infrastructure, resources need to be con�gured by the Resource Deployment Service,
software needs to be installed by the Software Deployment Service, and software is con-
�gured by the Software Con�guration Service. Furthermore, application monitoring is
added.
This leads to the change requests �create resources�, �deploy software�, �con�gure soft-

ware�, and �deploy monitoring�. In order to get back to the Bound state, the changes
mentioned above need to be reversed. Thus, the software needs to be stopped, monitor-
ing needs to be removed, and resources need to be unbound. This leads to the change
requests �terminate software�, �stop monitoring�, and �unbind resources�.

2.1.3. Characteristics of the Model Information Flow

This subsection summarizes the main characteristics of the Model Information Flow
and their e�ects on the planning algorithm. First of all, the Model Information Flow
describes a set of best practice states in which a SLiM model can be. It is thus wise to
have a notion of states in order to plan for the changes of the MIF. In addition to that,
transitions between the states are accomplished by solving a set of partially1 ordered
change requests. These change requests might need to be further re�ned. This demands
an hierarchical re�nement of tasks linked to a transition. None of the previous works,
e. g., [10] and [46], on IT change planning take an explicit notion of states together with
the concept of task re�nement into account. Previous work has only been focusing on
hierarchical re�nement of tasks.
Furthermore, change requests regarding the MIF can be generally described as �bring
the model into state x�, where x is a state of the Model Information Flow. Be aware
that change requests of this pattern describe a Classical Planning problem [22], because
we de�ne the state a transition system needs to be brought in. All in all, the Model

1a partial order < is a binary relation which is antisymmetric (i. e., ∀a∀b : a < b ∧ b < a → a = b),
transitive (i. e., ∀a∀b∀c : a < b ∧ b < c → a < c) and re�exive (i. e., ∀a : a < a )
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Information Flow demands a planning approach that supports both, hierarchical task
decomposition and the explicit notion of states. Such an approach is developed in this
work.

2.2. Domain objects of the planning domain

This section introduces the domain objects of the planning domain, i. e., the domain
objects the planner plans over. We analyze these objects in order to capture similarities
between them. The di�erent domain objects part of the SAP case study are explained
in Subsection 2.2.1. Based on this introduction we derive a general behavioral model for
the domain objects in Subsection 2.2.2. We explain our best practices how to describe
the behavior of domain objects in the context of IT change planning and emphasize the
di�erences to previous approaches.

2.2.1. View on SAP systems in the Deployed state

This subsection gives an overview of the model components of an SAP system as they are
part of the Deployed state of a SLiM model. An SAP system consists of a database (DB)
and a set of application servers. Application servers might be either running a central-
instance (CI) or a dialog-instance (DI). A fully deployed SAP system always contains
one database, one central-instance, and at least one dialog-instance.
Figure 2.2 shows a possible con�guration of an SAP system consisting of a database,
a central-instance, and a dialog-instance. An SAP system within the SLiM project
comprises the following components:

Services:

The database, the central-instance, and the dialog-instances of an SAP system are mod-
eled as services within the SLiM project. The expression service is used interchangeably
with Grounded Execution Service (GES ).
The following three services occur within the SAP case study:

• database service: The database service models the database software component
of an SAP system.

• central-instance service: The central-instance service models an SAP central
Instance2 pro�le running on a VM.

• dialog-instance service: The dialog-instance service models an SAP dialog In-
stance pro�le running on a VM.

Besides these di�erent types of services, there are no other Grounded Execution Ser-
vices present in the SAP case study. All services go through the same states. For example,
a service can be in states �not installed�, �installed�, or �running�, compare Figure 2.3.

2an SAP Instance is a collection of application server components [26] de�ned by a pro�le.
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Figure 2.2.: A decentralized SAP system

If we extend the scope beyond the SAP case study, there might be other services with
a di�erent lifecycle. For example, services that can be paused and resumed. This would
add new transitions from and to a new �paused� state. A planning approach needs to
provide enough �exibility to describe this behavior in a simple and adaptable way.

Virtual machines:

The Grounded Execution Services described by the SAP case study are executed in vir-
tual machines. The virtual machines can be based on di�erent virtualization techniques
like XEN [48] or VMware [47]. A planning approach needs to take this into account
providing a mechanism to easily de�ne di�erent behavior behind the same domain con-
cepts. Depending on which virtual machines the services are executed, we can speak of
two di�erent SAP deployment con�gurations:

• centralized system: In a centralized SAP system the database and the central-
instance services are running on the same virtual machine. The dialog-instances
are running on di�erent dedicated virtual machines, all distinct from the database
/ central-instance machine.

• decentralized system: In a decentralized SAP system the database and the
central-instance are running on dedicated virtual machines. Each dialog-instance
has its own virtual machine, distinct from the database and the central-instance
machine. Figure 2.2 shows a decentralized system with one dialog-instance.
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Figure 2.3.: State-transition systems for virtual machines, physical machines, services,
and volumes

SAP systems have a variable amount of dialog-instances. If the user demand increases,
new virtual machines hosting dialog-instances can be added.
Figure 2.3 shows the state-transition system of virtual machines. It consists of four
states. The initial state is the �created� state meaning that a virtual machine exists but
is not yet deployed. The �deploy� transition deploys a virtual machine thus leading to
the �deployed� state. The virtual machine is not yet running in this state. From the
�deployed� state the machine can be either started (�start� transition) or undeployed
by executing the �undeploy� transition. If the virtual machine is started, it is in state
�running�. From there the �pause� transition can pause the virtual machine. It can be
resumed from this state. The machine can be stopped if it is in the �running� or �paused�
state. This is only one possible description of a virtual machine. There might be other
kinds of virtual machines with di�erent states and transitions.

Physical machines:

Virtual machines are running on physical machines. There can be more than one virtual
machine running on a physical machine. Figure 2.2 shows a decentralized SAP system
where each virtual machine is running on a dedicated physical machine. Physical ma-
chines do not necessarily need to have the same characteristics, for example, they can
have di�erent memory capacities.
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The transition system of a physical machine consists of two states, �on� and �o��. As
it can be seen in Figure 2.3, the transitions �power on� and �power o�� switch between
these two states.

Volumes:

Volumes describe disc images that can be mounted within a virtual machine. The SLiM
project distinguishes between the following types of volumes:

• DB volume: The DB volume contains the database.

• OS volume: The OS volume contains the operating system. Such a volume is
connected to each virtual machine.

• CI volume: The CI volume contains central-instance speci�c data. A CI volume
needs to be connected to a VM hosting a central-instance service.

Figure 2.3 shows the transition system for volumes. A volume can be either �not con-
nected� or �connected�. The transitions �connect� and �disconnect� switch between the
two states.

2.2.2. A general behavioral model for domain objects

In this subsection we summarize important characteristics of the domain objects intro-
duced in Subsection 2.2.1. We extract the similarities behind the behavior of the domain
objects in order to get a general model underlying the behavior of domain objects.
Our general model of domain objects is based on the observation from Subsection 2.2.1
that the domain objects can be considered to have a state. Previous work done in the
�eld of IT change planning does not consider this.
Figure 2.3 in Subsection 2.2.1 shows the state-transition systems describing some of the
domain objects. For example a service, i. e., a Grounded Execution Service, can be in
states �not installed�, �installed�, and �running�. In order to change the state of a ser-
vice, a transition needs to be executed. For example the �stop� transition leads from the
�running� state to the �installed� state. Figure 2.3 in Subsection 2.2.1 shows one state
transition-system accounting for all Grounded Execution Services. Thus, all services of
the planning domain do have the same lifecycle. The advantage of the hybrid approach
proposed in this work is that we only need to specify this state-transition system once
and then it accounts for all Grounded Execution Services. Also note that the transi-
tions might be di�erently implemented for di�erent kinds of services. For example, in a
database the �stop� transition might consist of an action to stop the database and one to
backup all database tables. In contrast to this, the �stop� transition of a central-instance
might only consist of an action to stop the CI. The hybrid approach takes this into ac-
count, enabling us to specify di�erent re�nement behaviors depending on the domain
object a transition system is associated to. Thus, the more general lifecycle behavior is
clearly separated from hierarchical re�nement to implement transitions in state-transition
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systems. In addition to that, the hybrid approach facilitates the reuseability of domain
speci�cations. For example, if a new service is added to the planning domain, the state-
transition system can be reused and one only needs to de�ne new hierarchical problem
solving behavior to implement the transitions.
Related approaches alloy the behavior of domain objects with hierarchical task re�ne-
ment strategies. The general behavioral model underlying the hybrid approach is the
state-transition system. It separated from the description of hierarchical task re�ne-
ment.
Be aware that even if domain objects cannot be described as state-transition systems, the
hybrid approach still supports the speci�cation of task re�nement strategies not related
to state-transition systems.

2.3. Dependencies in the SAP case study

The following section gives an overview of the dependencies a planner needs to take into
account when planning in the domain of the SAP case study. They are only accounting
when the SAP system has been completely deployed on a data center, i. e., in the De-
ployed state of the model (compare Subsection 2.1.2).
This section assumes that the state-transition systems described in Figure 2.3 in Subsec-
tion 2.2.1 are associated with the domain objects in order to describe the dependencies
properly. Figure 2.3 shows the state-transition systems associated with services, physical
machines, virtual machines, and volumes. A dependency always accounts for a transition
in a state-transition system. This means dependencies need to be ful�lled in order to do
a transition in the transition system.
First of all, Subsections 2.3.1 to 2.3.3 introduce the dependencies according to the type
of service (DB, CI, or DI service). After that, Subsection 2.3.4 explains additional de-
pendencies regarding virtual machines and volumes. Finally, Subsection 2.3.5 extracts
similarities from the previously mentioned dependencies to pave the way for a general
model of dependencies occurring in the SAP case study. This general model builds the
foundation for the notion of dependencies in the hybrid approach.

2.3.1. Dependencies of a database Grounded Execution Service

This subsection explains the dependencies for a database Grounded Execution Service. It
introduces the dependencies according to the transitions a database service has. See the
state-transition system of a service in Figure 2.3 in Subsection 2.2.1 for these transitions.
Table 2.1 shows the transitions of a database service and the dependencies linked to each
transition.
Each row of the table describes a transition and at most one dependency holding for

it. The �rst column holds the name of the transition we are looking at. The second
column holds the description of a dependency. If it and the following columns are empty,
the transition does not have a dependency. The �domain object� column describes the
domain object that is a�ected by the dependency. Dependencies within the SAP case
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Table 2.1.: Dependencies of database transitions

transition name dependency description domain object state to achieve

start � � �
stop stop CI before DB CI installed
install � � �
uninstall uninstall CI before DB CI not installed

study demand to bring another domain object into a certain state in order to perform a
transition. The �domain� object column describes which domain object we need to bring
into a well de�ned state in order to execute the transition mentioned in the �rst column.
The last column names the state we need to achieve in the domain object a�ected by the
dependency.
As it can be seen in Table 2.1, there are no dependencies for the �start� and �install� tran-
sitions of a database service. The database is the lowest tier in the multi-tier architecture
of an SAP system. The database depends on nothing to perform its service. Thus, we can
start or install it without considering any dependencies. However, the central-instance
depends on the database. It can only run if the database is running. This results in
dependencies for the �stop� and �uninstall� transitions. The second row shows the de-
pendency for the �stop� transition. In order to stop the database the central-instance
needs to be stopped �rst. The dependency is called �stop CI before DB� and demands
that the central-instance (see �domain object� column) is in state �installed�. Similarly, if
we want to uninstall the database we need to uninstall the CI �rst because we assume that
there are dependencies checked during the uninstallation process. Dependency �uninstall
CI before DB� in Table 2.1 describes this dependency.

2.3.2. Dependencies of a central-instance Grounded Execution Service

This subsection describes the dependencies of a central-instance service. Table 2.2 gives
an overview of the dependencies based on the transitions a central-instance service has.
Remember that Figure 2.3 in Subsection 2.2.1 shows the state-transition system for a
service.

Table 2.2.: Dependencies of central-instance transitions

transition name dependency name target state of target

start start DB before CI DB running
stop stop all DIs before CI all DIs installed
install install DB before CI DB installed
uninstall uninstall all DIs before CI all DIs not installed

The central-instance depends on the database to deliver its service. This leads to
two dependencies, one for the �start� and one for the �install� transition of the central-
instance. We cannot start the central-instance if the database is not running because
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the central-instance relies on code stored in the database. Thus, the database needs to
be in state �running� in order to do transition �start� of the central-instance. The same
principle accounts for the �install� transition. During installation of a central-instance,
the existence of a database is checked. Thus, the database needs to be at least in state
�installed� (see row three of Table 2.2).
All dialog-instances depend on the central-instance in order to deliver their service. This
leads to dependencies for the �stop� and �uninstall� transitions. The �stop all DIs before
CI� dependency is shown in the �stop� row of Table 2.2. It says that we need to stop all
dialog-instances before we can stop the central-instance because the dialog-instances de-
pend on the service provided by the central-instance. The dependency for the �uninstall�
transition demands that all dialog-instances need to be uninstalled before the central-
instance can be uninstalled. Thus, we need to bring all dialog-instances into state �not
installed�.

2.3.3. Dependencies of a dialog-instance Grounded Execution Service

This subsection examines the dependencies that account for a dialog-instance service.
They are shown in Table 2.3.

Table 2.3.: Dependencies of dialog-instance transitions

transition name dependency name target state of target

start start CI before DI CI running
stop � � �
install install CI before DI CI installed
uninstall � � �

The dialog-instance depends on the services delivered by a central-instance. Thus,
there are dependencies for the �start� and �install� transition of a DI service. Row one
shows the �start CI before DI� dependency. In order to start the dialog-instance, the
central-instance needs to be started �rst, i. e., it needs to be in state �running�. Row
three of Table 2.3 shows the similar requirement for the �install� transition. A dialog-
instance can only be installed if the central-instance is already installed because the
install routine of the DI checks the presence of the CI.
As nothing depends on the dialog-instance, we can stop or uninstall it without considering
any dependencies.

2.3.4. Additional dependencies regarding other model components

Besides the dependencies services have to other services, there are other model compo-
nents whose behavior is massively driven by dependencies. Independent from the kind of
a service, a transition within a service (i. e., �install�, �start�, �stop�, or �uninstall�; com-
pare Figure 2.3 in Subsection 2.2.1) can only be done if the VM the service is running
on is in state �on�. This models the fact that any changes to software can only be done
when the machine is running.
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Any transition within a virtual machine (compare Figure 2.3) can only be performed
if there is at least an OS volume connected to the virtual machine. This models the
invariant that virtual machines cannot work without an OS volume hosting the operat-
ing system. Similarly, we have to demand that a database or central-instance volume
is connected to the virtual machine in which the state of a database or central-instance
service is to be changed.

2.3.5. A general model for dependencies between domain objects

In this subsection we explain how the previously mentioned dependencies can be uni�ed
in a general model for dependencies. A dependency is always linked to the execution of
a transition. For example, the �start CI before DI� dependency is linked to the �start�
transition of a central-instance as shown in Table 2.3 in Subsection 2.3.3. This means,
that the dependency �start CI before DI� has to be solved before the �start� transition
can be taken. Thus, a dependency always accounts for a transition and references a state
to be achieved in another domain object. Assuming that the general behavior model
as described in Subsection 2.2.2 accounts, a dependency can be described as a Classi-
cal Planning problem. Classical Planning problems [22] can be considered as searching
through the state space of a transition system. This is exactly the solution in order to
achieve the dependency. In the given example we need to �nd a sequence of transitions
that bring the central-instance to state �running� when executed. All in all, the hybrid
approach holds the view that dependencies can be described as Classical Planning prob-
lems. This idea separates dependencies, described by Classical Planning problems, from
hierarchical problem solving behavior and the description of domain object behavior.
Be aware that even if some domain objects do have the same state-transition systems
the dependencies linked to the transition might be di�erent. For example, compare the
�start� transition of a service. A database does not have a dependency associated with
the �start� transition as it can be seen in Table 2.1 in Subsection 2.3.1. This is di�erent to
a dialog-instance which has a dependency associated (see Table 2.3 in Subsection 2.3.3).
The hybrid approach takes this into account. Compared to previous work done in the
area of IT change planning the hybrid approach o�ers a more intuitive way to specify
dependencies because they are made explicit. In a pure HTN approach like Trastour's
[46] dependencies can only be described as part of a hierarchical decomposition. In the
hybrid approach we provide our own concept for dependencies and can thus separate
dependencies from the description of hierarchical problem solving behavior.

2.4. Work�ows within the SAP case study

This section gives an example of sequential and parallel work�ows a planner has to plan
for. Planning for sequential and parallel execution is essential for a planner in the context
of the SAP case study.
Work�ows that are dominated by dependencies as introduced in Section 2.3 are a good
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example for totally3 ordered task decomposition. Given an SAP system with a DB, a CI,
and one DI Grounded Execution Service, stopping the database service implies stopping
the central-instance and before that the dialog-instance. Due to the imposed temporal
constraints there is no parallel decomposition possible.

An example that uses sequential, i. e., totally ordered, as well as parallel decomposition
is the high-level change request �setup new SAP system�. It can be accomplished through
a totally ordered sequence of CRs like �create new virtual machines�, �start VMs�, �install
software on VMs�, and �start software on VMs�. It would be very ine�cient to further
decompose the �create new virtual machines� subtask into �create one VM� tasks in
sequential order because virtual machines can be created in parallel. In addition to that, a
plan which sets up VMs totally ordered would result in a very long execution time because
setting up a VM takes some time and each step waits for the previous one to complete. If
a software installation routine checks dependencies to other software components during
installation, a sequential decomposition is needed in the �install software on VMs� change
request. As described in Section 2.3, starting a Grounded Execution Service involves
starting all the services one is dependent on �rst. Thus we have to decompose the last
node �start software on VMs� in sequential order. The proposed approach also needs to
be able to plan by task re�nement in order to capture the best practices of the IT Change
Management domain. Although the example provided here suggests either a total order
or parallel decomposition of tasks, the hybrid approach supports planning using partial
order decomposition. Note that a parallel decomposition can be expressed by a partial
order but not every partial order can be expressed by a pure parallel decomposition.

2.5. Model of the planning domain

This subsection explains the object oriented model which describes the components of the
infrastructure the planner plans over. In addition to that, it explains the characteristics
of a change request modeled by the class �AI_ChangeRequest� and how it relates to the
classes describing the infrastructure.
Figure 2.4 shows an UML class diagram of the object oriented model, which is used

for planning by the hybrid approach. Be aware that the hybrid approach is not limited
to planning over this model. We can easily add new classes to the model as subclasses of
the class �InfrastructureComponent�. Existing classes can be specialized or new classes
can be added to model new domain objects. The strength of the hybrid approach is
that it is fully customizable to the model. This leads to great �exibility regarding the
speci�cation of state-transition systems linked to classes.
The class �SystemModel� is the anchor of the model. Every class in the model can be
reached from �SystemModel�. We can receive the �SystemModel� from every subclass of
�ModelComponent� by calling the �get_SystemModel()� method. A �SystemModel� is an
aggregation of �ModelComponents�. Every other class in the model is a subclass or indi-

3a total or linear order < is a binary relation which is antisymmetric (i. e., ∀a∀b : a < b ∧ b < a →
a = b), transitive (i. e., ∀a∀b∀c : a < b ∧ b < c → a < c) and total (i. e., ∀a∀b : a < b ∨ b < a))
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Figure 2.4.: An UML class diagram describing the planning domain and the characteris-
tics of the class �AI_ChangeRequest�
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rect subclass of �ModelComponent�. The class �InfrastructureComponent� adds a �state�
attribute and an unique identi�er to a �ModelComponent�. It models elements of the
planning domain that have a state. Every object part of the infrastructure is a subclass
of �InfrastructureComponent�. We call these classes / objects �domain objects� because
they describe the planning domain. Currently, there is �AI_ComputerSystem� modeling
a physical machine. On it �AI_VirtualMachines� are running that are itself running
�AI_GroundedExecutionServices�. The abstract class �AI_GroundedExecutionService�
is specialized by a database (class �AI_GES_DB�), a central-instance (�AI_GES_CI�),
and a dialog-instance (�AI_GES_DI�). We can navigate the domain objects using the
named associations shown in Figure 2.4.
The class �AI_ChangeRequest� is of particular interest because it models a change re-
quest and its relationships to the domain objects. It has the following attributes and
references:
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• description: A string describing the change request.

• type: A string describing the type of the change request. The hybrid approach
comprises di�erent types of change requests that are described by the value of the
�type� attribute.

• params: A Groovy map holding the parameters of the change request. The key
describes the name of a parameter and the value the value of the parameter.

• target: A reference describing an instance of class �InfrastructureComponent�, a
domain object. It points at the domain object the change request relates to.

• after: A set of references to �AI_ChangeRequests� describing the change requests
that need to be executed after the completion of the change request.

• before: A list of references to class �AI_ChangeRequest� describing the change
requests that need to be completed before the change request can be executed.

By describing the change requests that need to happen before or after a change request we
describe a partial order over all change requests. The formalization of dependencies using
�after� and �before� references is redundant. If two change requests cr1 and cr2 need to
happen in sequence, then cr2 is contained in the after list of cr1 and cr1 is contained
in the before list of cr2. For convenience we assume this redundancy. From a graph
theoretic point of view it is su�cient to either look at the �before� or �after� relation. We
name the relation describing the after references the happens_before relation, i. e., for
two change requests cr1 and cr2 (cr1, cr2) ∈ happens_before accounts if cr2 is contained
in cr1's after list. Change requests that are not part of the transitive closure of the
happens_before relation can be executed in parallel.
Be aware that for a change request neither the �after� nor the �before� change requests
need to be speci�ed. In this case the change request can be executed in parallel to all
other change requests.

2.6. Requirements for a planning approach

The following section collects requirements for the planner that are implied by the intro-
duction of the SAP case study and best practices common in AI Planning. Especially
the dependencies explained in Section 2.3, the work�ows introduced in Section 2.4, and
the Model Information Flow impose a set of requirements the planner needs to ful�ll.
The developed hybrid approach is to be measured according to these requirements.

• R1 : Parallel and sequential task decomposition

Complex tasks as shown in Section 2.4 need to be decomposed into easier change
requests. Due to e�ciency reasons there needs to be the possibility to decompose
tasks either in sequence or in parallel. A planning approach needs to take this into
account.
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• R2 : Sound planning algorithm

A deterministic4 planning system is called sound, i. e., it ful�lls the soundness
property, if, whenever it is invoked on a planning problem P and returns a plan
result ! = failure then result is guaranteed to be a solution for the planning
problem according to the prede�ned semantics of a solution [22].

• R3 : Complete planning algorithm

A deterministic planning system is called complete (i. e., it ful�lls the completeness
property) if, whenever it is invoked on a planning problem with an existing solution
the algorithm guarantees to return a plan result ! = failure where result is a
semantical solution to the planning problem [22].

• R4 : Possibility to express dependencies

There need to be concepts within the planning algorithm and the domain descrip-
tion to express dependencies as they were explained in Section 2.3. There needs
to be a domain concept for dependencies which serves as input to the planner.
This concept needs to take into account that dependencies can be di�erent on the
level of instances. For example, there can be di�erent dependencies for di�erent
kinds of Grounded Execution Services. All dependencies introduced in Section 2.3
are referencing states of other objects' state-transition systems which leads to R6
demanding a powerful concept for states.

• R5 : Preserving of dependencies during planning

The planning approach needs to be aware of the dependencies and must ful�ll these
dependencies during planning. Dependencies are not allowed to be violated. This
requirement is closely linked to the soundness property (R2 ) because the violation
of R5 leads to a violation of R2.

• R6 : Notion of state

A planner needs to be aware of the states the domain objects are in. Furthermore,
it needs to know which change requests need to be done in order to get to another
state. The behavior of a domain object strongly depends on the state it is in. As
dependencies are referencing the state of other domain objects, it is wise to have a
good and powerful notion of state incorporated into the planning algorithm.

• R7 : Planning changes according to the Model Information Flow

The Model Information Flow is an important part of the SLiM project. Thus,
the planning algorithm needs to be able to plan for changes of the MIF. A typical
change request in this context would be the �change state of model to 'Deployed'
� change request. The fact that the MIF heavily makes use of the notion of states
enforces requirement R6.

• R8 : Possibility to describe work�ows

Work�ows in the context of Change Management are describing best practice steps

4A planning system is called deterministic if for any given pair of state and action there is at most one
state successor de�ned by the state transition underlying the planning problem.
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in order to achieve a certain goal. For example, updating a software component
includes stopping, updating, and starting the software again. A planning approach
within the SLiM project should provide means to de�ne these best practice steps
to generate plans adhering to them.

• R9 : Task re�nement capabilities

The planner needs to be able to plan the re�nement of tasks because this is central
to the domain of IT change request planning. Because solving a dependency can be
part of a task re�nement process, the algorithm needs to be able to solve a planning
problem over state-transition systems as part of a task re�nement process.

• R10 : Reuse of behavior and dependency speci�cation

If there are components with a similar behavior in the planning domain, then there
should only be one speci�cation of this behavior. Components with similar behavior
need to be added easily to the domain description. If a dependency is the same
for a set of components, then these dependency should only be speci�ed once and
reused.

Besides soundness (requirement R2 ) and completeness (requirement R3 ), there is a
third criteria, the admissibility criteria, introduced in [22]. An admissible planning algo-
rithm returns an optimal solution whenever a planning problem P is solvable. Admissible
planning algorithms need a measure to evaluate the optimality of a solution. This work
focuses on plan generation that is heavily driven by dependencies and by best practices
reducing the room for optimization heavily. Finding optimal plans within the small set
of plans satisfying the constraints, makes it necessary to introduce a function to assess
the changes to infrastructures. We plan to address this topic in a future work.
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3. Evaluation of existing planning
approaches

Several planning approaches, solving di�erent kinds of planning problems, do already
exist. Two of them are promising to solve the problems imposed by the SAP case study.
First of all, the two approaches are introduced in Sections 3.1 and 3.2. Having introduced
the approaches, Section 3.3 has a closer look at them under di�erent viewpoints. For
each viewpoint we describe the capabilities of the two approaches. In addition to that,
we explain the advantages of the hybrid approach regarding every viewpoint. Finally,
Section 3.4 summarizes the �ndings from Section 3.3 to justify the research done in the
hybrid approach.

3.1. Classical Planning

This section gives an introduction to Classical Planning, one of the two planning tech-
niques used by the hybrid approach. Subsection 3.1.1 introduces a conceptual model
for planning which is then restricted by a set of constraints in Subsection 3.1.2. This
restricted conceptual model is the foundation of the Classical Planning approach which is
�nally introduced in Subsection 3.1.3. This section follows the introduction to Classical
Planning given in [22].

3.1.1. A conceptual model for planning

This subsection provides a simple theoretical model in order to describe the main elements
and characteristics of a planning problem. Be aware that such a conceptual model does
not de�ne computational or semantical aspects of a planning problem. The Classical
Planning approach introduced in Subsection 3.1.3 is based on this conceptual model.
According to [22], a planning problem can be described by a state-transition system
(sometimes also called discrete-event system) which formally is a 4-tupel

∑
= (S,A,E, γ)

where:

• S = {s1, s2, ...} is a �nite or recursively enumerable set of states.

• A = {a1, a2, ...} is a �nite or recursively enumerable set of actions.

• E = {e1, e2, ...} is a �nite or recursively enumerable set of events.

• γ is a state-transition function with signature γ : S×A×E → 2S , where 2S is the
powerset of S, i. e., 2S = {S′ | S′ ⊆ S}.
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The transition function γ depends on the current state, an action, and an event. While
actions are transitions controlled by the planner, events cannot be controlled by the plan-
ner. They may change the state of the transition system without the occurrence of an
action. It is convenient to introduce an neutral action noop in order to model transitions
that are only in�uenced by events. Furthermore, a neutral event ε to model transi-
tions only in�uenced by actions is necessary. The following abbreviations are holding:
γ(s, noop, e) ≡ γ(s, e) and γ(s, a, ε) ≡ γ(s, a). Be aware that ≡ is used to de�ne an
abbreviation while = is used to de�ne an equivalence. An action a is called applicable
to a state s if γ(s, a) ≡ γ(s, a, ε) 6= ∅. If e is an event and γ(s, e) 6= ∅, then e can occur
in state s. That means the state-transition system can change its state to another state
s′ ∈ γ(s, e) on occurrence of event e. There can be di�erent semantics regarding the
state-transition function γ. For example, γ could be de�ned to lead to a state in γ(s, a)
or γ(s, e) if γ(s, a, e) is invoked, i. e., actions and events are competing for execution.
Given a state-transition system

∑
and a start state sinit, the purpose of planning is to

�nd a set of actions to apply to
∑

in order to achieve a goal. A goal can be speci�ed

• explicitly through a goal state sg ∈ S or a set of goals Sg ⊆ S. In this case the plan-
ner searches for a sequences of actions that lead to a goal state. Classical Planning,
which is introduced in Subsection 3.1.3, uses this kind of goal speci�cation.

• through conditions that have to account for a sequence of states of a plan. The
goal of the planner is not to reach a speci�ed state but to �nd a plan that satis�es
constraints formulated over states. For example, we could demand the planner to
construct a plan that excludes some previously de�ned states.

• through a task. The objective of the planner is to achieve a plan for a given task.
HTN Planning represents this kind of objective speci�cation. It is used in the
hybrid approach and is introduced in Subsection 3.2.

Figure 3.1 shows a high-level architecture of a very simple planning system. The
planner needs a description of a real world planning domain which is formalized as a
state-transition system

∑
. Further inputs to the planner are an initial state sinit ∈ S

and objectives describing the goals of the planner. The planner generates a plan which is
given to a controller. The controller executes the plan on the system in order to change it.
Changes to the system lead to new observations which are recognized by the controller.
These observations are not passed back to the planner. This means that the planner
does the planning once and does not change the plan according to observations made by
the controller (o�ine planning).

3.1.2. A restricted model for planning

This subsection introduces eight assumptions that de�ne a restricted model for planning
based on the conceptual model explained in the previous subsection. Classical Planning,
which is introduced in Subsection 3.1.3, bases on these assumptions. We explain why
some of these assumptions hold in the planning domain. For others, we explain the
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Figure 3.1.: A conceptual model for o�ine planning [22]

additional restrictions that need to be imposed. The constraints are important because
Classical Planning is based on the restrictions and it can only be used in the context of
the SAP case study if the restrictions account.

• A1 - �nite
∑
: A state-transition system

∑
= (S,A,E, γ) is called �nite if S is

�nite. This accounts for the SAP case study because every state-transition system
shown in Figure 2.3 in Subsection 2.2.1 has a �nite amount of states. Thus, looking
at a single state-transition system ful�lls assumption A1.

• A2 - fully observable
∑
: A state-transition system

∑
is called fully observ-

able if the planner has complete knowledge about the state of the system. This
accounts for the SAP case study because all used state-transition systems are fully
observable.

• A3 - deterministic
∑
: A state-transition system

∑
is called deterministic i�

(if and only if) ∀u ∈ A ∪ E ∀s ∈ S : |γ(s, u)| ≤ 1, i. e., for a given state and a
given action or event there is maximal one successor. This also accounts for the
SAP case study domain if transitions are treated as actions in the state-transition
systems in Figure 2.3 in Subsection 2.2.1.

• A4 - static
∑
: A planning system

∑
= (S,A,E, γ) is called static if there are no

external events (E = ∅). This means the environment only changes its state due to
actions performed by the planner. We assume that this accounts for the SAP case
study, too. Transitions in Figure 2.3 in Subsection 2.2.1 model actions. There are
no events and no other actions than the modeled ones.

• A5 - restricted: A planning system has restricted goals if a goal is de�ned ex-
plicitly as a goal state sg ∈ S or a goal set Sg ⊆ S. Allowing only change requests
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of type �set state of state-transition system to s�, where s ∈ S, issued towards a
single state-transition system as shown in Figure 2.3 in Subsection 2.2.1, results in
a planning system with restricted goals. The Classical Planning part of the hybrid
approach complies to this.

• A6 - sequential: A solution to the planning problem is a totally ordered sequence
of actions. If we only focus on the lifecycle of objects, i. e., on the state-transition
systems described in Figure 2.3 in Subsection 2.2.1, and on change requests of type
�set state of state-transition system to s� (s ∈ S), then this restriction also accounts
for the SAP case study.

• A7 - implicit time: The actions of a planning system do not have a duration.
In the SAP case study we do not reason about the duration or length of actions.
Instead, we are aiming at a binary partial order that describes after which actions
an action can be executed. Thus, assumption A7 accounts in the SAP case study.

• A8 - o�ine: In an o�ine planning problem the planner is not concerned with
changes to the environment that might occur during the planning phase. We as-
sume that only the actions executed by the controller change the state of the
infrastructure. Thus, the SAP case study is conducted under assumption A8.

3.1.3. Classical Planning

Classical Planning is also called STRIPS Planning due to the name of a planner for
restricted state-transition systems [20]. A restricted state-transition system

∑
is a state-

transition system which adheres to restrictions A1 to A8 introduced in Subsection 3.1.2.
Such a system

∑
does not have any events1, thus

∑
= (S,A, γ) holds. If γ is applicable

to s, then there is only one successor2 state s′ ∈ S, thus {s′} = γ(s, a). We also write
this as s′ = γ(s, a).
A planning problem P for a restricted state-transition system

∑
= (S,A, γ) is a triple

P = (
∑
, sinit, G) where sinit ∈ S is the initial state andG ⊆ S a set of goal states. A solu-

tion in P is a sequence of actions (a1, ..., an), n ∈ N0, such that γ(...γ(γ(sinit, a1), a2)..., an)
∈ G. The expression Classical Planning generically refers to planning for restricted state-
transition systems, i. e., searching through the state space of a restricted state-transition
system. The restrictions as described in Subsection 3.1.2 are important in the context
of this work. A hybrid approach needs to adhere to these restrictions when it comes to
solve a Classical Planning problem as part of a hybrid planning problem. Furthermore,
it is a characteristic of Classical Planning that goals are explicitly de�ned by specifying
a goal state or a goal set. This is di�erent to an HTN approach where the decomposition
of a task is the goal.

1E = ∅ due to A4
2assumption A3
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3.2. Hierarchical Task Network Planning

Hierarchical Task Network (HTN ) planners di�er from Classical planners (see Subsection
3.1.3) in �what they plan for and how they plan for it� ([22], p. 229). They do plan for
a decomposition structure of a high-level task into subtasks, called hierarchical task
network, in order to accomplish the high-level task. They do not plan for it by searching
for a sequence of actions, but by searching for a task decomposition that achieves a
provided high-level task. In HTN a plan is a decomposition of a high-level task, e. g.,
setting up an SAP system, into smaller and smaller subtasks until primitive tasks are
reached. Primitive tasks cannot be decomposed further.
The basic idea behind HTN was developed in the 70s ([43], [44]). The approach was
further re�ned into a set of available domain independent HTN planners. One of the most
sophisticated ones is the SHOP2 planner ([36], [39], [37], and [38]). HTN has been widely
applied to practical planning problems with great success, for example, Mars exploration
[17], work�ow planning in Grid Computing [23], crisis intervention [19], control of deep
space antennas [8], and recently IT change request planning [46].
This section gives a non-formal high-level introduction to HTN Planning. It bases on a
conceptual model for HTN Planning introduced in [22] and some experiences made with
SHOP2. First of all, the important terms in the context of HTN are introduced and
explained. After that, an Hierarchical Task Network planning example from the SAP
case study is given in order to provide a better understanding of the introduced terms.

A conceptual model for HTN Planning

Besides HTN Planning there is a simpler form, called Simple Task Network (STN ) Plan-
ning [22] which only allows a restricted set of constraints being used during task de-
composition. This frees the planner from additional complexity. For the scope of this
work a partially ordered STN decomposition is su�cient. As Hierarchical Task Networks
are more expressive than Simple Task Networks, everything mentioned in this section
also applies for HTN. However, the di�erences between HTN and STN in the context
of this work are marginal so that Simple Task Network Planning can be considered as
Hierarchical Task Network Planning. Other publications than [22] might not even deal
with this �ne grained di�erentiation. For an explanation of the minor di�erences of the
two approaches see [22].
An Hierarchical Task Network planner is basically de�ned by the following terms:

• task: A task can either be a primitive or a non-primitive task. A non-primitive
task can be decomposed into subtasks by applying an HTN method to it. The
capabilities of the HTN algorithm de�ne whether the subtasks need to be solved
in sequence, i. e., in total order or in partial order. The latter one enables the
speci�cation of subtasks that can be executed in parallel. Primitive tasks are the
leaf nodes of a decomposition tree, the hierarchical task network. Primitive tasks
can change the state of the world, e. g., by deleting or adding predicates to the
knowledge base of the planner. Tasks are identi�ed by a unique name and they
have variables that enable to customize the behavior.
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• method: Methods decompose non-primitive tasks into a combination of primitive
and non-primitive tasks. A conceptual model for HTN methods consist of the
following four parts [22] :

� name: A unique name for the method, including a set of parameters that
customize the method.

� task: The non-primitive task which is decomposed by the method.

� precondition: A precondition de�ned over the knowledge base and the pa-
rameters of the method. It needs to be true in order to apply the method to
the speci�ed task.

� an hierarchical task network: An hierarchical task network describes a set
of tasks and an order imposed on these tasks. The tasks can be either totally
or partially ordered, depending on the capabilities of the HTN algorithm.

• operator: Primitive tasks cannot be decomposed further and are mapped to op-
erators. Operators can change the state of the world by modifying the knowledge
base. If no operator can be found for a primitive task, then this is regarded as a
fault to achieve a successful decomposition.

• planning domain: An HTN planning domain is a tuple D = (O,M) where O is
a set of operators and M a set of methods. D is called a partially-ordered planning
domain if every m ∈ M is partially ordered, i. e., the hierarchical task network
belonging to m. The hybrid approach uses partially ordered planning domains.

• planning problem: A planning problem describes the inputs to an HTN planner.
An HTN planning problem is a 4-tuple P = (sinit, w,O,M), where sinit ∈ S is the
initial state, w is a task network called the initial task network describing the tasks
to solve, and D = (O,M) is a planning domain.

• plan: In Simple Task Network or Hierarchical Task Network Planning approaches
a plan is a task network that solves the initial task network of a planning problem.
Readers interested in a more precise semantics of a plan are encouraged to have a
look at [22] or [15].

An HTN example

To get a better understanding of Hierarchical Task Network Planning, Figure 3.2 shows
a task decomposition of the high-level task �install_software�. This high-level task has
one parameter, the ID of the SAP system on which to install the software. As mentioned
in Section 2.3, there are dependencies that need to be taken into account when installing
the software on an SAP system. The decomposition of a task into subtasks needs to take
care of not violating these constraints. A method decomposes the non-primitive high-
level task �install_software� into the three non-primitive subtasks �install_db-software�,
�install_ci-software�, and �install_di-software� in total order (compare Figure 3.2). De-
compositions in total order are visualized through a curved arrow. Each of the �rst two
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install_software [on : sapid]

vm

connected

not connected

connect disconnect

install_ci-software [on : vmid2]install_db-software [on : vmid1] install_di-software [on : sapid]

!install_software [type :
"db", on : vmid1]

!install_software [type :
"ci", on : vmid2]

!install_software [type :
"di", on : vmid3]

!install_software [type :
"di", on : vmid4]

Figure 3.2.: An hierarchical task network for decomposing the task �install_software� in
the context of an SAP system.

children of the �install_software� task has one parameter, the id of the virtual machine
to install the Grounded Execution Service on. The third task has the id of the SAP sys-
tem as an attribute because there might be more than one dialog-instance in the system.
The language used to describe a method needs to provide computational functionalities
interpreted by the planner in order to �nd the ids of the virtual machines.
Another method decomposes the �install_db-software� task into a sequence of one sub-
task, the �!install_software� task. This is a primitive-task which is mapped to an operator
as shown by the exclamation mark in Figure 3.2 (SHOP2 notation). It cannot be de-
composed any further. It changes the state of the knowledge base such that a database
Grounded Execution Service is installed on the speci�ed virtual machine. The �install_ci-
software� decomposition is similar to the decomposition of the �install_db-software� task.
Be aware that in both the more general operator �!install_software�, which takes a soft-
ware type and a virtual machine id as input parameters, is used. The reuse of generic
operators to build high-level change requests is characteristic for the HTN approach.
The decomposition of the third task �install_di-software� is done in parallel because the
software installed on dialog-instances is independent from each other. This can be seen
by examining the dependency tables in Section 2.3.
If there is more than one method with a matching precondition, then the decomposition
becomes indeterministic. If a decision does not lead to a successful decomposition, the
planner backtracks [12] and uses another method whose precondition is satis�ed to do the
decomposition. The plan for the �install_software� task produced by the HTN planner
is the hierarchical task network as shown in Figure 3.2. More precisely the plan consists
of the operators located in the leaf nodes of the decomposition tree and a partial order
imposing an execution order on the tasks. This order is de�ned by the sequential or par-
allel decompositions the operators are part of in the hierarchical task network. Be aware
that the hierarchical task network shown in Figure 3.2 is the result of a planning task
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issued in a knowledge base in which database, central-instance, and dialog-instance were
not installed when planning was started. Figure 3.2 would show a di�erent task network
if the domain objects were in di�erent states. We also would have to de�ne di�erent
methods then. During plan execution only the leaf nodes are executed according to their
global temporal order.

3.3. Limitations of the planning approaches

This section explains why neither a pure Classical nor a pure HTN Planning approach
cope well with the characteristics inherent to the SAP case study. Depending on the
viewpoint, there is always one of the two approaches which has di�culties satisfying the
demands. Every viewpoint describes an aspect that is important for planning in the SAP
case study. In addition to that, we explain for every viewpoint how the hybrid approach
overcomes these di�culties and emphasize its advantages compared to previous work
done in the area of IT change request planning.
We start by examining the capabilities of the three algorithms when planning in do-
mains where domain objects do have a state. After that, we explain the problems that
occur when changing the lifecycle of domain objects in Subsection 3.3.2. Furthermore,
additional limitations when describing work�ows and dependencies are explained in Sub-
sections 3.3.3 and 3.3.4. Finally, we examine the di�erent capabilities of Classical and
HTN Planning when it comes to describe hierarchical planning domains in Subsection
3.3.5.

3.3.1. Planning over states of objects

This subsection examines how HTN and Classical Planning cope with planning in plan-
ning domains where domain objects do have a state. We also explain why the hybrid
approach is well suited for planning over the states of domain objects and why previous
work done on IT change request planning is not.

Characteristics of HTN and Classical Planning

Classical Planning is superior to Hierarchical Task Network Planning when it comes
to plan over the states of domain objects. The Model Information Flow has states,
Grounded Execution Services have states, and lots of other components, too (compare
Chapter 2). An HTN approach does not make these states explicit, instead, the states
are implicitly coded into the HTN methods. A set of methods are introduced with dif-
ferent preconditions in order to decompose the same high-level task. The preconditions
evaluate to true depending on the state the object is in.
For example, consider the task �start_db-software� shown in Figure 3.3. Leaving depen-
dencies aside for a while the decomposition only depends on the state of the database
service (see Figure 2.3 in Subsection 2.2.1 for the states of a database service).
Figure 3.3 shows two decompositions of the �start_db-software� change request being

the result of two di�erent methods. The preconditions of the methods only depend on
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start_db-software [on : vmid1]

!install_software [type :
"db", on : vmid1]

!start_software [type :
"ci", on : vmid1]

start_db-software [on : vmid1]

!start_software [type :
"db", on : vmid1]

precondition "db is in state
not installed" is satisfied

precondition "db is in
state installed" is satisfied

Figure 3.3.: HTN Planning considering states

the state of the database service. Compare the preconditions shown above the lines
linking the children to their parent node in Figure 3.3. The method decomposing the
left �start_db-software� task in Figure 3.3 can only be applied if the database is in state
�not installed�. The method decomposes the the task into a sequence of two primitive
tasks. These atomic tasks install and start the service according to the two hop path
in the state-transition system of a service in Figure 2.3 in Subsection 2.2.1. The second
method can only be applied to the �start_db-software� task if the database is in state
�installed�, i. e., it is currently stopped. In this case we only need to start the database.
All in all, we write an HTN method for every state a database can be in because the
path to the goal state is di�erent when we demand to start a database.
Be aware that the HTN approach does not make use of the state-transition system de�ned
in a data structure. But the designer of the HTN methods inevitably has the states of a
database in mind and designs the HTN decompositions according to the states through
which a state-transition system can go. For each state s1, s2, ..., sn ∈ S that a domain
object can be in and for each goal state g1, g2, ..., gn ∈ S of the state-transition system,
we need to de�ne a method with a suitable precondition in order to de�ne the actions
to execute in order to get from start to goal. The introduced example shows how HTN
methods with di�erent preconditions are used to model paths within a state-transition
system. Such a solution makes the description of the behavior, the state-transition
system, implicit. This results in drawbacks regarding maintainability and readability.
In comparison to HTN, Classical Planning o�ers an explicit notion of state. This becomes
advantageous when planning over the states of objects. States do not explicitly need to
be coded into the HTN methods.

Advantages of the hybrid approach

Compared to pure HTN approaches like [46] the hybrid approach makes the behavior of
domain objects explicit by using state-transition systems. This behavior is not alloyed
with hierarchical re�nement of tasks as it is done in an HTN approach. This results in
the fact, that someone who is confronted with a planning domain of the hybrid approach
can easily see what the behavior of domain objects is and which methods do actually
describe the re�nement of tasks. By making the behavior of domain objects explicit
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it is easier to adapt this behavior. For example, given an HTN domain description
as used by [46] it is di�cult to adapt this description when the lifecycle of a domain
object changes. This is caused by the fact that we cannot clearly identify the behavior
of the domain objects in the HTN methods because these methods contain behavior,
hierarchical problem re�nement, and dependencies. The hybrid approach encourages
the domain writer to reuse or to adapt the behavioral descriptions of domain objects
because the behavior is clearly stated and identi�able. All in all, the hybrid approach
has an explicit notion of states of domain objects but still supports hierarchical problem
solving strategies.

3.3.2. Changes to the lifecycle of domain objects

This subsection examines the capabilities of HTN, Classical, and Hybrid Planning under
the aspect of changing the behavior of domain objects. First HTN and Classical Planning
are examined under this aspect. After that, we explain how the hybrid approach simpli�es
changes to the lifecycle of domain objects.

Characteristics of HTN and Classical Planning

An advantage of Classical Planning is that it can cope very well with changes to the
lifecycle of a domain object. The changes can be directly propagated to the state-
transition system. A domain description of a restricted state-transition system can be
easily adapted to add new states like, for example, a �paused� state for virtual machines.
Accomplishing these changes in an HTN domain is more di�cult because we need to
identify the relevant methods that implicitly code the changes to the state of a domain
object (compare the example given in Subsection 3.3.1). Furthermore, it is di�cult to
foresee the e�ects of these changes as HTN methods are written with a problem solving
intention that might be destroyed by the modi�cations. Methods are coding problem
search behavior plus behavior of domain objects. Instead, state-transition systems are
only modeling the behavior of domain elements. This makes changes to the lifecycle of
domain object easier in Classical Planning.

Advantages of the hybrid approach

In the hybrid approach the lifecycle of a domain object is stored in a state-transition sys-
tem. Dependencies are linked to a transition in the state-transition system. Hierarchical
re�nement rules are speci�ed as HTN methods. Thus, the lifecycle of a domain object
can be clearly identi�ed. By making it explicit, it is easy to adapt, change, or copy the
lifecycle. Compared to other approaches [46] the knowledge base designer does not need
to worry that parts of the behavior description are overseen. For example, in an HTN
approach the behavior of a domain object can be distributed over many HTN methods
like the ones shown in Figure 3.3 in Subsection 3.3.1. Other approaches like CHAMPS
[31] and Cordeiro's approach [10] do not o�er the possibility to describe the behavior of
domain objects by state-transition systems. They do not make the behavior of domain
objects explicit.
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3.3.3. Description of work�ows

In this subsection we examine the three planning approaches based on their capabilities
to describe work�ows, i. e., best practices in the area of IT Change Management.

Characteristics of HTN and Classical Planning

The HTN approach is very well suited to describe work�ows in an intuitive manner.
For example, the work�ow �update software� might consist of the steps �stop software�,
�execute update�, and �restart software�. Writing an HTN method which has the high-
level task �update software� and the mentioned three children is close to the work�ow idea.
Work�ows cannot be speci�ed as easily in Classical Planning. We would have to introduce
a new state (or even a new state-transition system) called �software updated� and a three
hop path from the current state to this state with the actions �stop software�, �execute
update�, and �restart software� needs to exist. We can then describe the �update software�
work�ow as the change request �set state to 'software updated' � which computes the
path consisting of the three previously mentioned actions. This solution mixes lifecycle
speci�cation from the original state-transition system with work�ow behavior. Describing
the steps of a work�ow is something totally di�erent from describing the steps a domain
object can go through. Various problems arise when it comes to integrate this work�ow
behavior into a state-transition system describing the lifecycle. Thus, Classical Planning
is not suitable to describe work�ow behavior.

Advantages of the hybrid approach

The hybrid approach o�ers all capabilities known from HTN planners. Thus, the hybrid
approach can specify best practices and work�ows by HTN methods. This is separated
from the speci�cation of the behavior of domain objects. The hybrid approach enables
us to specify the behavior of domain objects by state-transition systems which is more
natural than coding the elementary behavior of domain objects into HTN methods as
done by other approaches.

3.3.4. Description of dependencies

This subsection examines HTN and Classical Planning from the viewpoint of dependen-
cies. Planning according to dependencies in the hybrid approach is crucial to produce
sound plans. First, we explain how HTN and Classical Planning cope with describing
dependencies. After that, we highlight the advantages when it comes to specify depen-
dencies in the hybrid approach.

Characteristics of HTN and Classical Planning

Specifying HTN methods in a domain including dependencies inevitably mixes depen-
dency change requests, i. e., change requests that need to be introduced in the decompo-
sition in order to take care of dependencies, and object lifecycle speci�c change requests.
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set_state [on : DI, to : running]

set_state [on : CI, to : running]

!install_software [on : DI]

!start_software [on : DI]

and

di, ci, db in state "installed", then children described by color

di, ci, db in state "not installed", then children described by colors

set_state [on : CI, to : running]

set_state [on : DB, to : running]

!install_software [on : CI]

!start_software [on : CI]

set_state [on : DB, to : running]

!start_software [on : DB]!install_software [on : DB]

Figure 3.4.: HTN Planning taking dependencies and states of domain objects into account

An example for this is the task to start a dialog-instance. We assume that the depen-
dencies described in Tables 2.2 and 2.3 in Section 2.3 are holding. Thus, it is necessary
to start the database �rst. After that, we can start the central-instance and �nally the
dialog-instance. Besides the occurrence of dependencies the given example is very suit-
able to see how the notion of states in�uences the de�nition of methods. Thus, there is
some overlapping with Section 3.3.1. Figure 3.4 implicitly shows nine methods that are
necessary to produce a plan which starts a dialog-instance taking the dependencies and
the states of other domain objects into account.
There are three decompositions shown. The one at the top is a decomposition for the

�set_state [on : DI, to : running]� task. It is a change request to set the state of the
dialog-instance to �running�. This task can be decomposed in three di�erent ways de-
pending on the state of the dialog-instance. The decomposition only containing the gray
children, i. e., the �rst and third child, describes a method decomposing the high-level
task into the two subtasks �set_state [on : CI, to : running]� and �!start_software [on
: DI]� if the dialog-instance is in state �installed�. Note that the �rst child needs to
be solved because the central-instance needs to be started in order to start the dialog-
instance. This is a dependency task, a task that needs to be solved to guarantee a
constraint. If the dialog-instance is in state �not installed�, a method is used which has
an additional �!install_software [on : DI]� task between the two subtasks (task in orange
color in Figure 3.4). If the dialog-instance is already in state running, there is no need to
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do a further decomposition. This case is not explicitly shown in Figure 3.4, nevertheless a
method needs to be de�ned for this case, too. As it can be seen, the dependency to start
the CI before the DI, is modeled by the �rst subtask which demands the central-instance
to be started before anything else is done to the dialog-instance. The same idea accounts
for the �set_state [on : CI, to : running]� task which is shown in the second decompo-
sition in Figure 3.4. First of all, the state of the database needs to be set to �running�.
After that, a set of change requests depending on the state of the CI is issued against
the central-instance itself. Again three methods are needed. The last decomposition for
the �set_state [on : DB, to : running]� task does not need to check any dependencies. It
only issues change request against the database depending on the state of the database.
Considering all possible states a DB, DI, and CI service can be in, we need nine di�erent
methods in order to achieve a complete HTN decomposition for the �set_state [on : DI,
to : running]� task. These nine decompositions can deal with all states a central-instance
and database can be in. The amount of methods will increase if we also consider stopping
or installing a database.
The interesting question regarding dependencies is whether this decomposition re�ects
what is expected by the general dependency model introduced in Section 2.3. It ful�lls
the requirements under special circumstances. It is not enough to only introduce a de-
pendency subtask like �set_state [on : CI, to : running]� because nothing guarantees that
the e�ects of this subtask are still accounting when for example, the �!start_software�
operator is executed (compare Figure 3.4, �rst decomposition). The second subtask �!in-
stall_software [on : DI]� could annul the changes of the �rst dependency subtask. If the
precondition of the third task does not check whether the e�ects of the �rst dependency
change request are still accounting, we are running into problems. Strongly formulated
preconditions are needed to achieve the dependency model explained in Subsection 2.3.5.

There are some drawbacks regarding this kind of dependency speci�cation:

• Mixture of dependencies and states of objects: In Figure 3.4 there is no
separation between child change requests driven by dependencies and the ones that
in�uence the state of the state-transition system. It is di�cult to later adapt the
methods according to new dependencies or to new states introduced within the
lifecycle of domain objects. When using an already existing domain description, it
might not be obvious which change requests belong to a dependency.

• Implicit dependencies: Dependencies play an important role in the SAP case
study. They should be made explicit in a domain description. Compare requirement
R4 in Section 2.6.

• Strong preconditions: A lot of e�ort needs to be put into taking care that
preconditions are strong enough. Otherwise changes to the e�ects of dependency
driven change requests can be missed.

Compared to HTN, it is very di�cult to describe dependencies in a pure Classical
Planning domain. One possibility to describe dependencies in a pure Classical Planning
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approach is to have a global point of view on the state space. Lets assume the state
space is a tuple space in which the �rst element of the tuple models the state of the
database and the second the state of the central-instance. For example, a transition
from (installed, installed) to (installed, running) is not possible because the database
is not running in the goal state but the central-instance is. A possible solution according
to this idea is not considered in this thesis because the state space of a cross product
restricted state-transition system would grow very big. Furthermore, a description of
dependencies in a tuple space is even less intuitive and more di�cult to read than the
HTN dependencies.

Advantages of the hybrid approach

Due to the importance of dependencies in the SAP case study, the hybrid approach
has its own domain concept for dependencies. Dependencies are always described as
Classical Planning problems to be solved. These problems are linked to a transition in
a state-transition system. Before the transition can be executed, we need to solve the
dependency by solving the Classical Planning problem. Dependencies are thus made
explicit in the hybrid approach. They can be directly identi�ed by looking at the state-
transition system. Compared to that dependency tasks described in a pure HTN domain
like in [46] can be di�cult to identify. In addition to that, it becomes more di�cult to
change the behavior of domain objects because it is di�cult to assess the scope of the
dependencies. Within the hybrid approach the scope of a dependency is made explicit by
associating the dependency to a transition. Another advantage of the hybrid approach
is that dependencies are not alloyed with hierarchical task re�nement strategies.

3.3.5. Notion of hierarchical decomposition

This subsection examines the three approaches regarding their capabilities to specify
re�nement strategies for abstract high-level tasks. First of all, HTN and Classical Plan-
ning are examined. After that, we explain the advantages of the hybrid approach when
it comes to specify task decomposition rules.

Characteristics of HTN and Classical Planning

Classical Planning does not o�er the possibility to de�ne the hierarchical decomposition of
tasks. Compared to HTN, Classical Planning always plans at the level of the operators,
the leaf nodes of the tree. It does not make use of the domain speci�c, best practice
planning strategies that are encoded within HTN methods. It only searches for a sequence
of actions to accomplish a goal without having a notion of intermediate goals.
Compared to Classical Planning, HTN methods guide the planner on a path that is

likely to lead to a successful decomposition. Classical Planning cannot be sure whether
it follows a path that leads to the goal. This is the main aspect that helped HTN to
gain wide success in lots of practical planning problems. HTN is very important in the
context of the SAP case study because the domain of IT change planning is a hierarchical
domain where task re�nement is essential. Furthermore, the concept of a plan in the SAP
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case study is not a sequence of actions but an hierarchical task network which solves the
high-level change request.

Advantages of the hybrid approach

The hybrid approach o�ers all the re�nement capabilities provided by an HTN planner.
Compared to previous approaches like [46] we link the transitions in a transition system
to task re�nement by associating a task with the transition. This task might be subject to
HTN re�nement when taking the transition in the transition system. Thus, we link HTN
planning to Classical Planning. The hybrid approach can also trigger Classical Plan-
ning problems by specifying them within methods. This gives us the freedom to switch
between both representations whenever the other one might be more convenient. This
increases the readability, maintainability, and extendability of knowledge bases speci�ed
in the hybrid approach.

3.4. Need for a Hybrid Planning approach

The previous section has shown drawbacks and advantages of both HTN and Classical
Planning in the context of the SAP case study. Hierarchical Task Network approaches
can plan over the states of objects but then the description is rather unintuitive and
complex as explained in Subsections 3.3.1 and 3.3.4. If dependencies de�ned over states
are added to this domain, the description becomes more confusing (compare Subsection
3.3.4). In this context an HTN method based description has di�culties to cope with
changes as seen in Subsection 3.3.2. Nevertheless, the HTN approach is a powerful con-
cept which matches very well to the description of work�ows (Section 3.3.3) and the
hierarchical concept of change requests (Section 3.3.5). Some of the HTN drawbacks can
be neutralized by Classical Planning. Subsection 3.3.1 shows that it has advantages in
de�ning planning domains heavily determined by the states of objects. In such domains
Classical Planning improves readability and maintainability of the knowledge base (Sub-
section 3.3.2). Furthermore, dependencies can be made explicit and do not need to be
hidden within HTN method decompositions as explained in Subsection 3.3.4. The pro-
posed hybrid approach in this thesis picks the best of both worlds. Chapter 5 introduces
a Domain Speci�c Language (DSL) which describes the Hybrid Planning domain. This
DSL describes the knowledge base and is used to generate a plan. The hybrid approach
is introduced in Chapter 6.
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4. Overview of the hybrid approach

This chapter gives an introduction to the basic principles of the hybrid approach. It
builds a foundation for the introduction of the DSL in Chapter 5 and the algorithm in
Chapter 6. We start by describing how the hybrid approach links together Hierarchical
Task Network Planning and Classical Planning in Section 4.1. After that, we explain an
example run of a simpli�ed version of the algorithm in Section 4.2. Finally, Section 4.2
introduces the conceptual model of the hybrid approach.

4.1. Basic ideas behind the hybrid approach

This section introduces some elementary principles behind the hybrid approach. First of
all, we explain its ability to reason about the re�nement of change requests in Subsection
4.1.1. Section 4.1.2 continues by explaining some elementary characteristics of the state-
transition systems used in the hybrid approach. Finally, we explain how dependencies can
be described as Classical Planning problems linked to a transition in a state-transition
system in Subsection 4.1.3.

4.1.1. Hierarchical task re�nement

This subsection explains the capabilities of the hybrid approach regarding the re�nement
of tasks. The hybrid approach is fully compatible to an HTN planner. The hybrid
approach extends HTN in the way that it can reason about three kinds of tasks, non-
atomic, atomic, and reserved tasks. Atomic and non-atomic tasks match to the notion
of tasks in HTN. A reserved tasks, i. e., a reserved change request, describes a Classical
Planning problem. An HTN method in the hybrid approach can re�ne a non-atomic
tasks into a set of non-atomic, atomic, and reserved change requests. Be aware that only
non-atomic change requests are subject to re�nement by HTN methods and that HTN
only deals with non-atomic and atomic tasks. This leads to full backwards compatibility
with HTN approaches. As in pure HTN approaches, atomic tasks are implemented by
an operator, which describes the changes to the knowledge base. A reserved change
request part of the decomposition tree is dealt with by the Classical Planner of the
hybrid approach. It is not subject to further re�nement by a method but by the Classical
Planner.

4.1.2. State-transition systems

The domain of IT change design consists of domain objects that can be considered to
have a state. Thus, the hybrid approach incorporates the states a domain object can be
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in. This helps us to better describe dependencies and the lifecycle of domain objects.
Combined with the HTN capabilities as explained in Subsection 4.1.1, a �exible way
to describe the domain of IT change planning arises. Figure 4.1 shows how the hybrid
approach links Classical Planning and HTN Planning.

Figure 4.1.: Example of a non-atomic change request linked to a transition of a state-
transition system

installed running
start

stop

...

stop database backup all tables

backup table 1 backup table 2

database : service

HTN decomposition of transition stopDomain objects

database

virtual
machine

central-
instance

The left side of Figure 4.1 shows the knowledge base which consists of the domain
objects the hybrid approach is planning over. These are for example services, virtual
machines, and physical machines. Note that the domain objects match to an instance
of a subclass of class �InfrastructureComponent� shown in Figure 2.4 in Section 2.5.
Each domain object can be described by a state-transition system. A transition system
consists of states, transitions, and a task linked to every transition. The task linked to
a transition can be a non-atomic, atomic, or reserved change request. This task needs
to be solved in order to successfully accomplish the transition. For example, Figure 4.1
shows a piece of a state-transition system for a database. Be aware that the shown
part of the state-transition system matches to the transition system introduced for a
service in Figure 2.3 in Section 2.2. The transition leading from �running� to �installed�
is labeled with �stop�. Lets assume �stop� is the non-atomic task associated with the
transition and the transition system is currently in state �running�, i. e., the database is
running. If we de�ne the goal as bringing the database into state �installed�, then we
need to execute the �stop� transition meaning that the non-atomic task �stop� needs to be
solved. Figure 4.1 also shows how the �stop� task is decomposed by methods. A method
decomposes the �stop� task into tasks �stop database� and �backup all tables�. Another
method decomposes the latter task into the atomic tasks �backup table 1� and �backup
table 2�. Be aware that according to Subsection 4.1.1 the hybrid approach also allows to
write methods that specify reserved change requests, i. e., Classical Planning problems,
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as subtasks. If the path to take in the state-transition system comprises more than one
transition then the task network is adapted accordingly. The high-level description given
here does not consider temporal dependencies between the tasks, dependencies between
multiple reserved change requests, and dependencies described for a transition. The
latter one is explained in the next subsection.

4.1.3. Describing dependencies in the hybrid approach

This subsection explains how dependencies are described in the hybrid approach. Previ-
ous observations made in Subsection 2.3.5 show that dependencies can be described as
Classical Planning problems. For example, consider the �stop� transition of a database
Grounded Execution Service as shown in Figure 4.2. In order to stop the database, the
central-instance needs to be brought into state �installed� as described by the dependency
in Table 2.1 in Subsection 2.3.1. After that, we can solve the task network linked to the
�stop� transition. Figure 4.2 illustrates how the decomposition looks like when taking
dependencies into account.

Figure 4.2.: Example of a non-atomic change request and a dependency linked to a
transition
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solving all
dependencies of
the stop transition

The �stop� transition of a database has only one dependency linked to it. It is described
by a reserved change request, i. e., a Classical Planning problem, which demands to to
bring the state-transition system associated with the dialog-instance into state �installed�.
Thus, the �rst task to solve is the reserved change request describing this Classical
Planning problem. The task is shown in the �rst blue box in Figure 4.2. Be aware,
that the dependency task in this box is not further re�ned in the example. There also
might be more than one dependency change request linked to a transition. As soon as
the reserved change requests describing the dependencies have been solved, the hybrid
approach algorithm continues by solving the �stop database� and �backup all tables�
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tasks. These tasks are described by a method decomposing the non-atomic task �stop�.
This has been previously explained in Subsection 4.1.2. Thus, in order to do a transition
in a transition system, there are various tasks to solve. First of all, the reserved change
requests describing the dependencies linked to the transition need to be solved. After
that, the algorithm continues with planning for the task that needs to be done in order
to do the transition. This task can be a non-atomic task like in Figure 4.2. In this case
the task is further decomposed by a method. If the task linked to the transition is an
atomic change request, then the algorithm tries to apply an operator to it. In the case
a reserved change request is linked to the transition, the Classical planner plans for it.
The hybrid approach takes care of setting the temporal constraints between the subtasks
such that sound plans are produced.

4.2. High-level example of the hybrid approach

This section aims to provide a �rst high-level example of the hybrid approach. We give a
simple example that is solved by a basic version of the algorithm. This section leaves aside
lots of problems and more advanced questions that occur during planning, focusing on
the core idea of the hybrid approach. It picks up the basic concepts and ideas introduced
in Section 4.1 and puts them into an example.

Figure 4.3.: A high-level view of the hybrid approach algorithm
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The top-level change request to solve is a Classical Planning problem. Classical Plan-
ning problems, i. e., reserved change requests, are formalized by the abbreviation CPP .
As every change request (compare Figure 2.4 in Section 2.5) has a target domain ob-
ject, a reserved change requests has one, too. In case of the top-level change request
CPP (obj1, 2) the target is obj1. The second argument of the term is a parameter of
the reserved change request, the state to set the state-transition system linked to the
domain object to. All in all, the CPP (obj1, 2) change request demands to set the state
of domain object obj1 to 2. Note that our top-level change request could also be an
atomic or non-atomic task. Because this matches to normal HTN behavior, it is of less
interest.
The box on the right side of Figure 4.3 shows the change request and methods described
by the knowledge base. CR2, CR3, CR5, and CR6 are atomic change requests. CR1
and CR4 are non-atomic change requests. The knowledge base also knows two methods
that can decompose the non-atomic change requests. Note that the method decompos-
ing CR4 only has atomic subtasks and that the method decomposing CR1 describes an
atomic and a reserved change request as subtasks.
Figure 4.3 also shows the states of the state-transition systems that are associated with
the domain objects. A state marked blue is representing the current state of the tran-
sition system. The upper left part of the transition system shows the domain object it
accounts for. The state-transition systems for obj1, obj2, and obj3 are all in state 1.
As mentioned in Section 4.1, there is a non-atomic, atomic, or reserved change request

linked to a transition. In addition to that, a set of dependencies, i. e., reserved change
requests, are speci�ed for a transition. This is also shown in the state-transition sys-
tems given in Figure 4.3. There is one dependency task, the reserved change request
CPP (obj2, 2), linked to transition to2 in the state-transition system of domain object
obj1. Furthermore, the non-atomic change request CR1 is linked to the transition, mod-
eling the task to be solved in order to do the transition. Note that nothing is speci�ed
for transition to1 in every transition system because it is not of relevance to the example.

The planner starts with planning for the CPP (obj1, 2) change request. Because this
is a reserved change request, the Classical Planner part of the hybrid approach de�nes
how to treat this change request. First of all, we need to get the transition system which
is associated to obj1. The reserved change request demands to bring obj1 into state 2.
As the state-transition system is currently in state 1 (compare the blue marked state in
obj1 in Figure 4.3), the shortest path to the goal only consists of transition to2. But in
order to execute a transition we need to resolve the dependency change requests, i. e.,
the reserved change requests linked to the transition, �rst. The only dependency change
request described by transition to2 in obj1 is CPP (obj2, 2). The dependency describes
a Classical Planning problem that demands to bring domain object obj2 into state 2.
As soon as this change request is solved, the algorithm needs to solve the non-atomic,
atomic, or reserved change request linked to transition to2. In case of transition to2 in
obj1 it is the non-atomic change request CR1. Thus, CPP (obj1, 2) has two children, the
dependency task CPP (obj2, 2) and the non-atomic task CR1. Be aware that we apply
some simpli�cations here. First of all, we do not consider temporal constraints between
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the children. Furthermore, we chose an example in which the shortest path only consists
of one transition. If there were more than one transition in the shortest path, then the
same principle applies and the tasks of the nth transition are added after the subtasks
solving the n− 1th transition.
The algorithm continues by planning for the CPP (obj2, 2) change request. This is done
by the Classical Planner because it is a reserved change request. The current state of
the state-transition system linked to obj2 is 1. The shortest path to the goal contains
only transition to2. There are no dependency change requests speci�ed for this transi-
tion. Thus, there is only one child to the CPP (obj2, 2) change request, the CR3 change
request. This is the change request that is linked to the execution of the transition.
Because CR3 is an atomic change request, the HTN planner tries to �nd an operator for
it and applies the changes to the knowledge base. After that, the algorithm continues
with planning for change request CR1.
CR1 is a non-atomic change request and it is planned for by the HTN Planner of the
hybrid approach. As it can be seen in Figure 4.3 there is a method de�ned in the
knowledge base that decomposes CR1 into CR2 and CPP (obj3, 2). We assume that
this method is applicable to CR1. Thus, CR1 gets two new child change requests, CR2
and CPP (obj3, 2). The hybrid planner uses a depth-�rst search strategy leading to an
invocation of the planner on change request CR2.
CR2 is an atomic change request thus it is dealt with by the HTN Planner. The HTN
Planner searches for an operator that implements the atomic task. Having applied the
e�ects of the operator to the knowledge base, the planner continues with planning for the
CPP (obj3, 2) change request. It is a reserved change request. It demands to set the state
of domain object obj3 to state 2. The planner determines the transition system linked
to obj3 and its current state. The shortest path to reach the goal state 2 only consists
of transition to2. There is a dependency task linked to the transition. It demands to set
the state in domain object obj4 to 2. The task linked to the transition is CR4. Both
tasks become the new subtasks of CPP (obj3, 2). The planner continues by planning for
the dependency task.
The dependency task CPP (obj4, 2) is planned for by the Classical Planner because it is
a reserved change request, i. e., a Classical Planning problem. We assume that the state-
transition system associated with obj4 is already in state 2. In this case nothing needs
be done because the dependency is trivially ful�lled. The planner can thus continue with
planning for CR4.
CR4 is a non-atomic change request which is planned for by the HTN Planner. It uses
a method described in the knowledge base to decompose the non-atomic task into sub-
tasks CR5 and CR6. Both are atomic change requests. The planner tries to �nd an
operator for CR5 �rst. If it succeeds it applies the operator to the knowledge base and
continues with planning for CR6 in the same way. After that, planning is �nished and
CPP (obj1, 2) has been successfully decomposed.

Note that lots of simpli�cations were assumed in the given example. We did not
consider temporal constraints between subtasks, possible con�icts between subtasks that
might lead to unsound plans, shortest paths that comprise more than one transition,
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and parameters of change requests. These issues are dealt with when we introduce the
algorithm in Chapter 6

4.3. The conceptual model of the hybrid approach

This section introduces the conceptual model of the hybrid approach. It formalizes
the ideas introduced in Section 4.1 and adds some additional concepts necessary when
talking about planning algorithms. A conceptual model is a simple theoretic device to
describe the concepts that are important for the hybrid approach. It gives the reader an
overview of concepts like state-transition systems, transitions, states, dependencies, and
their relationships to each other as explained in Section 4.1. The concepts are described
using sets, functions, and tuples. This is similar to the conceptual model of Classical
Planning as introduced in Subsection 3.1.1.
Let O = {o1, ..., on} be the set of all domain objects belonging to a planning domain.
Then the following de�nitions hold:

De�nition 1 (task / change request)

A task / change request is a triple

c = (c_name, c_o, c_params)

where

• c_name is the name of the change request which is unique within the set of all
names of change requests.

• c_o ∈ O is a domain object of the planning domain (see De�nition 9) against
which the change request is issued.

• c_params = {p1, ..., pn}, n ∈ N0 is a set of parameters of the change request.

A change request can be either an atomic, non-atomic, or reserved change request.

Let CR = {c1, ..., cn}, n ∈ N0, cn = (c_namen, c_on, c_paramsn) be the set of
all change requests. A change request can be either a non-atomic, atomic, or reserved
change request. Atomic and non-atomic change requests are used within HTN Planning
problems while reserved change requests describe a Classical Planning problem. Due
to this categorization CR can be partitioned into three sets consisting of atomic, non-
atomic, and reserved change requests. CR = atomic_CRs ∪ non_atomic_CRs ∪
res_CRs where all three sets are pairwise disjunct. We de�ne CR_names, the set of
all names of change requests, as CR_names = {c_name | (c_name, c_o, c_params) ∈
CR} =

⋃
i∈{1,...,n} c_namei. CR_names does not contain duplicates, in the case change

requests have the same name.
The function names is de�ned as follows:
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names : 2CR → 2CR_names,
where 2CR 3 X → {name | (name, target, params) ∈ X} ∈ 2CR_names

Given a set of change requests, names delivers a set containing the names of the change
requests.

De�nition 2 (state-transition system)

A state-transition system
∑

in the hybrid approach is a triple∑
= (o, S, T )

where

• o ∈ O is the domain object for which
∑

accounts.

• S = {s1, ..., sn}, n ∈ N0 is a set of states.

• T = {t1, ..., tn}, n ∈ N0 is a set of transitions (see De�nition 4).

In the conceptual model of the hybrid approach a state-transition system accounts
for exactly one domain object o ∈ O. For example, every instance of a subclass of
class �InfrastructureComponent� (compare Figure 2.4 in Section 2.5) is a domain object
and has its own state-transition system. The proposed DSL relaxes the constraints by
describing state-transition systems that can account for a set of domain objects. The
conceptual model does not take this into account to keep matters simple.

De�nition 3 (reserved change request)

A reserved change request is a change request

c = (c_name, c_o, c_params)

as de�ned in De�nition 1, such that

• c_name ∈ names(res_CRs) = {CPP}, i. e., c_name = CPP .

• c_o ∈ O is a domain object of the planning domain (see De�nition 9) against
which the reserved change request, i. e., the Classical Planning problem, is issued.

• c_params = {p}, is a set of parameters containing one parameter. p describes
the goal state of the Classical Planning problem, i. e., the state the transition
system associated to c_o is to be brought to. More formal let

∑
= (c_o, S, T )

be the state transition system for c_o, then p describes the goal state to be
reached in

∑
, i. e., p ∈ S.
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In the conceptual model a reserved change request adheres to all the characteristics of
a change request as demanded by De�nition 1. The name of a reserved change request
is �xed to �CPP� (for Classical Planning problem) and it has only one parameter. This
parameter describes the goal state of the Classical Planning problem that needs to be
solved regarding the domain object c_o. For example, the reserved change request
cr = (CPP, o, state1) demands that domain object o is to be brought into state state1.

De�nition 4 (transition)

A transition t of a state-transition system
∑

= (o, S, {..., t, ...}) is a 5-tuple

t = (t_name, start, goal, task,D)

where

• t_name is the name of the transition. It needs to be unique within a state-
transition system.

• start ∈ S is the source state of the transition.

• goal ∈ S is the target of the transition.

• task is an atomic, non-atomic, or reserved change request to be solved when
executing the transition.

• D = {d1, ..., dn}, n ∈ N0 is a set of dependencies (see De�nition 5) accounting
for transition t in

∑
.

Each transition of a state-transition system has a description (t_name). The transition
also speci�es the source state and the target state it leads to. Linked to a transition is
a change request task. It is optional and describes the change request which needs to
be solved when taking the transition in the transition system. Before this task can be
solved, a set of dependencies D has to be ful�lled �rst. Dependencies are de�ned in
De�nition 5.
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De�nition 5 (dependency)

A dependency d in the context of a transition
t = (t_name, start, goal, task, {..., d, ...}) of a state-transition system

∑
=

(o, S, {..., t, ...}) is a pair

d = (d_name, Tasks)

where

• d_name is the name / description of the dependency. It needs to be unique
within all dependencies belonging to a transition.

• Tasks = {cr1, ..., crn}, n ∈ N0, ∀i=1...n : cri ∈ res_CRs.

A dependency d belonging to a transition t is a pair holding the name of the dependency
(d_name) and Tasks, a set of reserved change requests. Note that all tasks in Tasks are
reserved change requests, i. e., they describe Classical Planning problems. All reserved
change requests contained in Tasks need to be solved in order to ful�ll a dependency d.

De�nition 6 (decomposition)

A decomposition decomp is a pair

decomp = (ord, CRs)

where

• ord is an order, ord ∈ {parallel, sequential}

• CRs = (cr1, ..., crn), n ∈ N0, ∀i=1...n : cri ∈ CR, is an ordered set of change
requests.

A decomposition can either be parallel or sequential, i. e., totally ordered. It also
de�nes an ordered tuple of tasks. These are the tasks that need to be solved in order to
achieve the decomposition.
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De�nition 7 (method)

A method m is a triple

m = (m_task_name,m_pre,m_decomp)

where

• m_task_name ∈ names(non_atomic_CRs) is the name of a non-atomic
change request that can be decomposed by the method.

• m_pre is a precondition that needs to be true in order to decompose a change
request.

• m_decomp is a decomposition de�ning the subtasks and an order how they need
to be solved (see De�nition 6).

Let c = (c_task_name, c_o, c_params) be a non-atomic change request, i. e., c ∈
non_atomic_CRs. m is called applicable to change request c if c_task_name =
m_task_name and m_pre is ful�lled by c_o.

A method can only decompose non-atomic change requests. It speci�es the name
(m_task_name) of a change request that can be decomposed. A precondition (m_pre)
checks whether the target of the change request, i. e., the second element in a change
request triple, ful�lls the circumstances to do the task decomposition. The decomposition
m_decomp describes the subtasks and an order among them. The subtasks need to be
solved in order to achieve the high-level change request.

De�nition 8 (operator)

An operator op is a triple

op = (op_task_name, op_pre, e�ects)

where

• op_task_name ∈ names(atomic_CRs) is the name of an atomic change request
the operator describes the changes for.

• op_pre is a precondition that needs to be ful�lled in order to apply the operator.

• e�ects describes how the knowledge base is altered through the execution of the
operator.

Let c = (c_task_name, c_o, c_params) be an atomic change request, i. e., c ∈
atomic_CRs. op is called applicable to the change request c if c_task_name =
op_task_name and op_pre is ful�lled by c_o.

Operators describe the e�ects that atomic change requests have on the knowledge
base. This can be more sophisticated changes like adding or deleting domain objects.
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An operator describes the name of an atomic change request for which it can perform
the changes to the knowledge base. A precondition is evaluated over the target of the
atomic change request in order to decide whether it can be applied. Furthermore, an
operator contains a concept to describe the e�ects on the knowledge base when executing
the operator.

De�nition 9 (Hybrid Planning domain)

A planning domain D of the hybrid approach is a 4-tuple

D = (σ,M,OP,O)

where

• σ = {
∑

1, ...,
∑

n}, n ∈ N0 is a set of state-transition systems as de�ned in
De�nition 2.

• M = {m1, ...,mn}, n ∈ N0 is a set of methods (see De�nition 7).

• OP = {op1, ..., opn}, n ∈ N0 is a set of operators (see De�nition 8).

• O = {o1, ..., on}, n ∈ N0 is a set of domain objects.

A Hybrid Planning domain aggregates all state-transition systems, methods, operators,
and domain objects to a planning domain. A Hybrid Planning domain is used to describe
a Hybrid Planning problem.

De�nition 10 (A Hybrid Planning problem)

A planning problem P of the hybrid approach is a pair

P = (D,CR′)

where

• D is a Hybrid Planning domain as de�ned in De�nition 9.

• CR′ ⊆ CR is a set of change requests to plan for.

The Hybrid Planning problem consists of a Hybrid Planning domain and a set of change
requests to plan for.
Furthermore, we need to de�ne what a plan looks like in the domain of the hybrid
approach:
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De�nition 11 (plan)

A plan p is a pair

p = (CR′, happens_before)
where

• CR′ ⊆ atomic_CRs.

• happens_before ⊆ CR′ × CR′ is a partial order such that (cr1, cr2) ∈
happens_before if cr1 needs to be �nished before cr2 can be started.

In the hybrid approach a plan is a pair consisting of a set of atomic change requests and
a relation called happens_before. This relation is a partial order < such that cr1 < cr2
means that cr1 needs to be completed before cr2 can be started. Because < is a partial
order, there can be tasks cr1, cr2 ∈ CR′ such that (cr1, cr2) /∈ happens_before and
(cr2, cr1) /∈ happens_before. In this case cr1 and cr2 can be executed in parallel.

The conceptual model describes the ideas and concepts that are important to the
hybrid approach. It shows the relationships between transitions, dependencies, change
requests, task networks, and other concepts. For example, a dependency always belongs
to a transition. The proposed DSL needs to adhere to these constraints. However, the
conceptual model does not specify how the concepts are expressed in the DSL. It only
says which concepts need to be expressed by the DSL and how they relate to each other.
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5. A Domain Speci�c Language
describing the Hybrid Planning
domain

This chapter gives an introduction to the Domain Speci�c Language used to describe
the hybrid approach planning domain. The DSL only describes one possible way how
to express the planning domain. It needs to conform to the de�nitions introduced in
Section 4.3 de�ning the conceptual model of the hybrid approach. Section 5.1 introduces
the Groovy language, which is used to express the proposed Domain Speci�c Language.
Groovy is explained to the extent it is needed to understand the constructs to de�ne the
Domain Speci�c Language. After that, we present the DSL for state-transition systems
in Section 5.2. The DSL is described syntactically by EBNF notation. Furthermore,
semantical constraints are explained. Sections 5.3 and 5.4 explain, how the Domain Spe-
ci�c Language can describe HTN methods and operators.

5.1. The Groovy language for DSL speci�cation

This section introduces the programming language Groovy, which is used to describe the
Domain Speci�c Language of the planning domain. The DSL makes intense use of some
important concepts of the Groovy language. Thus, it is important to understand these
concepts in order to understand the DSL and how it can be used by the planner. Section
5.1.1 gives a high-level overview of the characteristics of the Groovy language. Closures,
which are an important concept of Groovy, are introduced in Subsection 5.1.2. In addition
to closures, Groovy supports dynamic object orientation features, like catching method
calls to unde�ned methods. This is explained in Section 5.1.3. Finally, Section 5.1.4 sums
up the advantages of Groovy in the context of the hybrid approach. Readers interested
in a more comprehensive introduction to the Groovy language are encouraged to have a
look at [32].

5.1.1. Short overview of Groovy

�Groovy is an agile dynamic language for the Java Platform with many features that are
inspired by languages like Python, Ruby, and Smalltalk, making them available to Java
developers in a Java-like syntax� ([32], p.4). Groovy is closely linked to Java because
all Groovy code is directly translated into Java code. The fact that Groovy code is
actually Java code enables full integration with Java. Classes de�ned in Java can be
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directly instantiated in Groovy code giving all the power of the Java class libraries to the
Groovy programmer. In addition to that, Groovy has its own powerful libraries, called
GDK. Groovy code can be statically (like in Java) or dynamically typed. The language
o�ers very good scripting capabilities. But Groovy goes far beyond the capabilities of
a scripting language. It o�ers a concept, called closure, to encapsulate executable code
into objects. Furthermore, it is great for XML processing, database querying, and �le
processing. In addition to that, Groovy o�ers dynamic object orientation features. This
enables us to change the behavior of objects at runtime. All these features make Groovy
an excellent candidate to implement a planner.

5.1.2. Groovy closures

This subsection gives an introduction to Groovy closures. Closures are Groovy objects
that hold executable code. Furthermore, parameters can be passed to a closure when
executing it. As closures are Groovy objects, their reference can be passed as a param-
eter to a method call. The method can then use this closure to customize its behavior
according to the code de�ned in the closure. Closures are very useful for the planner
because we can write Groovy code accessing our model elements into a closure. This
closure can then be used during planning to evaluate a precondition over the model or
to change the model when it comes to implement an operator. A �rst simple usage of a
closure is shown in Listing 5.1.

Listing 5.1: De�ning and calling a closure

1 de f my_closure = {
2 int x = 5 + 5 ;
3 p r i n t l n " value o f x : " + x ; return x
4 }
5

6 int ret_value = my_closure ( )
7 p r i n t l n ( " re turn value o f c l o s u r e : " + ret_value )

value of x : 10

return value of closure : 10

x

Below each listing there is a box which shows the results when executing the code from
the listing above in a Groovy interpreter. Lines 1-4 de�ne a closure over an untyped vari-
able, called �my_closure�, holding a reference to a closure object. In a closure de�nition
everything written within curved brackets is the code that is held by the closure object.
The closure's code consists of three statements. The �rst assigns the result of the addi-
tion 5+5 to x (line 2). After that, a Groovy function named �println� to print the value
of x is called. It is the equivalent of Java's �System.out.println�. In line 3 the closure
returns the value of x.
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Line 6 calls the previously de�ned closure and the return value of the closure is stored in
the integer variable �ret_value�. Be aware that the statement in line 6 does not need to
be ended by a semicolon because this is optional in Groovy. The last line prints the value
of the integer returned by the closure. Looking at the output in the box below Listing 5.2,
we can see how the statements within the closure are executed when calling the closure
in line 6. As a closure is an object, its reference can be passed to methods. Listing 5.2
shows how a closure is de�ned and then passed to a method in order to �customize� it.

Listing 5.2: De�ning and passing a closure to a method

1 de f f i l t e r = { int x −> return x > 10 }
2

3 de f test_method ( int x , Closure c l o s u r e ) {
4 i f ( c l o s u r e (x ) ) {
5 p r i n t l n " F i l t e r approved " + x
6 } else {
7 p r i n t l n " F i l t e r did not approve " + x
8 }
9 }
10

11 test_method (9 , f i l t e r )
12 test_method (11 , f i l t e r )

x

Filter did not approve 9

Filter approved 11

x

Line 1 de�nes a closure called ��lter�. The closure has one integer parameter, which is
written on the left side of the arrow. The right side of the arrow de�nes the actual code
that makes up the closure. The closure returns a boolean value describing whether the
parameter passed to the closure is bigger than 10. A method named �test_method� is
de�ned between lines 3 and 9. It expects two parameters, an integer and a closure. In
line 4 the passed closure is called with the passed integer in order to receive a boolean
value that describes whether the parameter is �ltered or not. Depending on the return
value of the closure a message is printed. The last two lines are calling the method with
di�erent integers and the same ��lter� closure. The example given in Listing 5.2 shows
how code de�ned in a closure can be used to customize a method. The ��lter� closure
could de�ne a precondition of an HTN method and �test_method� from Listing 5.2 could
be a general plan method. In order to use closures in the DSL, we need a more intuitive
way of how to de�ne them than in line 1 in Listing 5.2. Listing 5.3 shows three di�erent
ways how to do calls to a closure which takes a closure as its last parameter.
A closure �test_closure� is de�ned in lines 1-6. It takes two parameters, a string called

�test� and a closure called �closure�. The parameter �test� is printed out in line 3 and
then the closure �closure� is executed. We also de�ne a closure �second_param� in line
8, which prints out the string �hello world� when called. The last three lines of Listing
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Listing 5.3: Di�erent possibilities how to pass a closure to a closure

1 de f Closure t e s t_c l o su r e = {
2 St r ing te s t , Closure c l o s u r e −>
3 p r i n t l n t e s t ;
4 c l o s u r e ( ) ;
5 p r i n t l n ""
6 }
7

8 de f Closure second_param = { p r i n t l n " h e l l o world"}
9

10 t e s t_c l o su r e ( " f i r s t param" , second_param )
11 t e s t_c l o su r e ( " f i r s t param" , { p r i n t l n " h e l l o world" })
12 t e s t_c l o su r e ( " f i r s t param" ) { p r i n t l n " h e l l o world"}

x

first param

hello world

first param

hello world

first param

hello world

x

5.3 show three di�erent possibilities how to call the closure �test_closure�. All calls are
semantically equivalent to each other. The �rst call in line 10 passes the two parameters
to the closure as known from ordinary Java method calls. In line 11 we pass a locally
de�ned closure as the second parameter to �test_closure�. It should not be surprising
that it delivers the same result. The last line shows an abbreviation of the call in line
11 in Listing 5.3. If the last parameter passed to a closure is a locally de�ned closure,
then Groovy allows to put the parameters before the last one into round brackets (in
case there are any). The curved brackets de�ning the last parameter, a locally de�ned
closure, can be written outside the round brackets. This is shown in line 12 in Listing
5.3. Thus, we put the �rst parameter in round brackets and write the locally de�ned
closure outside the round brackets. This closure is treated as the second parameter. This
only works for locally de�ned closures. The closure �{println �hello world�}� in line 12
cannot be replaced by the previously de�ned �second_param� closure. As we can see on
the output shown below Listing 5.3, all three calls deliver the same result.
Listing 5.4 shows a simple DSL for a state-transition system making use of this abbre-
viation. The listing is syntactically valid Groovy code. The idea behind the DSL is
explained according to the control �ow when executing the �transition_system� closure
from Listing 5.4.
Like in the previous examples, the code shown in Listing 5.4 only works if the inter-
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Listing 5.4: A simple DSL for state-transition systems

1 t rans i t ion_system ( " system1" ) {
2 s t a t e s {
3 s t a t e {"1"}
4 s t a t e {"2"}
5 }
6

7 t r a n s i t i o n s {
8 t r a n s i t i o n {"1 to 2"}
9 t r a n s i t i o n {"2 to 1"}
10 }
11 }

preter knows of the de�nitions of the closures that are called. To limit the length of
code snippets the de�nitions are shown in Listing 5.5. Remember from the previously
given examples that the de�nition of closures has to be processed before the closures
are invoked. After all closure de�nitions from Listing 5.5 have been read, the Groovy
interpreter can start to call the closure �transition_system� in Listing 5.4, line 1. The
�transition_system� closure is de�ned in lines 1-5 of Listing 5.5. The closure takes two
parameters, a string called �name� and a closure called �states_and_transitions�. The
parameter �name� is mapped to �system1� and the closure �states_and_transitions� is
mapped to the closure de�ned through the content within the curved brackets in lines
1 and 11 in Listing 5.4. The control �ow proceeds by executing the code stored in the
�transition_system� closure. Thus, the �rst output of the program will be the �println�
statement in line 3 of Listing 5.5. After that, the closure �states_and_transitions� is
executed. Thus, the code between the curved brackets in lines 1 and 11 in Listing 5.4
is executed. This is again valid Groovy code. It is a sequence of calls to the closure
�states� and the closure �transitions�. The �states� closure is called and one parameter,
the closure between the curved brackets in lines 2 until 5 in Listing 5.4, is passed to
it. To see what happens when the �states� closure is executed we need to look at the
de�nition of this closure in lines 7-9 in Listing 5.5. The �states� closure executes its
only parameter, a closure. This means that lines 3 and 4 from Listing 5.4 are executed.
This is valid Groovy code again because it is a sequence of two closure calls each to the
closure �state�. First the �state� closure is called with one parameter, the closure {�1�}.
To see what happens with the parameter, we need to look at the de�nition of the closure
�state� in Listing 5.5, lines 15-18. It shows that the closure {�1�}, which is semantically
equivalent to {return �1�}, is executed and its return value is stored in an untyped vari-
able called �name_of_state�. After that, the value of this variable is printed out and
the control �ow returns to the execution of the second �state� closure. The �transitions�
closure is then treated analogously to the �states� closure.
The output to the command line when executing the �transition_system� closure is shown
in the box below Listing 5.5.
As shown, Groovy o�ers excellent possibilities to specify planning domains in a very ele-
gant way. Listing 5.5 can be hidden from the user who speci�es a planning domain. The
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Listing 5.5: Code to de�ne the closures from Listing 5.4

1 de f Closure t rans i t ion_system = {
2 St r ing name , Closure s tate s_and_trans i t i ons −>
3 p r i n t l n "name o f t rans . system" + name
4 s ta te s_and_trans i t i ons ( )
5 }
6

7 de f Closure s t a t e s = { Closure body −>
8 body ( )
9 }
10

11 de f Closure t r a n s i t i o n s = { Closure body −>
12 body ( )
13 }
14

15 de f Closure s t a t e = { Closure body −>
16 de f name_of_state = body ( )
17 p r i n t l n "came ac c r o s s s t a t e " + name_of_state
18 }
19

20 de f Closure t r a n s i t i o n = { Closure body −>
21 de f name_of_transit ion = body ( )
22 p r i n t l n "came ac c r o s s t r a n s i t i o n " + name_of_transit ion
23 }

x

came accross state 1

came accross state 2

came accross transition 1 to 2

came accross transition 2 to 1

x

writer of the planning domain only needs to be aware of the syntax and the semantics
of a DSL like the one shown in Listing 5.4. Note that with small modi�cations done
to Listing 5.5 a state-transition system data structure can be built when executing the
DSL.

5.1.3. Dynamic object orientation

Groovy o�ers the possibility to catch calls to unknown methods in a well de�ned method.
This allows the speci�cation of subtasks of an HTN decomposition by calls to unde�ned
methods in a closure. The calls are intercepted by a well de�ned Groovy method, which
then can generate the new change request objects according to class �AI_ChangeRequest�
in Figure 2.4 in Section 2.5. The parameters of the method call are also provided to this
well de�ned Groovy method. We can then set the parameters by assigning a value to
the �params� map of the �AI_ChangeRequest� instance. An example of a Groovy DSL
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describing a set of subtasks is given in Listing 5.6.

Listing 5.6: A DSL using calls to unknown methods

1 subtasks {
2 change_request1 ( [ f : " t1 " , s : " t2 " ] )
3 change_request2 ( [ f : " t3 " ] )
4 }

Listing 5.7 shows the necessary closure and method de�nitions in order to process
the DSL from Listing 5.6. Each Groovy class has an �invokeMethod� method. If a
non-existing method is called, the control �ow is redirected to this method. A default
implementation is automatically inherited behind the scenes. In order to customize the
behavior of a class, we need to override this method. This also works within Groovy
scripts because Groovy scripts are translated to Java classes behind the scenes. Listing
5.7 shows the de�nition of the �invokeMethod� method. It takes a string, the name of
the method, and an object modeling the parameters. It is assumed that we only pass a
Groovy map when calling non-existing methods. This map matches to the �params� map
stored by an �AI_ChangeRequest�. The given example prints the name of the change
request, i. e., the name of the unknown method called, and extracts the map from the
object. Lines 6-8 print out the key value pairs of the map by making use of a closure.
The method �keySet� in line 6 of Listing 5.7 delivers a list of keys. On this list the
method �each� is called which takes a closure as a parameter. This closure de�nes what
is done to each element from the list of keys. The Groovy interpreter will call the closure
with each element from the list. By convention the passed element is referenced by the
identi�er �it� within the closure. In addition to that, the �subtasks� closure needs to be
de�ned (line 12 in Listing 5.7). The output of the program is shown in the box below
Listing 5.7. The proposed DSL for the hybrid approach makes use of this idea in order
to specify task decompositions.

5.1.4. Advantages of Groovy as a language for planning

There are some advantages when using Groovy as the underlying programming language
to implement the hybrid approach:

• Java compatibility: As Groovy is based 100% on Java, it is fully backwards
compatible with Java. This enables us to de�ne our model as explained in Figure
2.4 in Section 2.5 as an EMF model to make use of the deepcopy mechanism to
backup and restore the model during planning. Furthermore, the planner can be
written in Groovy making use of features like closures and method interception.

• Closures: Closures can be used to describe preconditions that are directly for-
mulated over objects belonging to the model. They can specify the Groovy code
which is to be executed on an object in order to check whether a precondition is
ful�lled. The object can be passed to the closure by a parameter. A planner can
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Listing 5.7: Method to catch calls to unknown methods

1 public Object invokeMethod ( St r ing name , Object args ) {
2 p r i n t l n "new change reque s t : " + name
3 L i s t l i s t = ( L i s t ) args
4 Map arguments = (Map) l i s t [ 0 ]
5 p r i n t l n "parameters : "
6 arguments . keySet ( ) . each {
7 p r i n t l n "key " + i t + " , va lue " + arguments [ i t ]
8 }
9 p r i n t l n "\n"
10 }
11

12 de f Closure subtasks = {Closure body −> body ( )}

x

new change request : change_request1

parameters:

key f, value t1

key s, value t2

new change request : change_request2

parameters:

key f, value t3

x

then store this closure in a data structure and use it at planning time to evaluate
preconditions directly over the model. There is no need to construct a transfor-
mation of the model to a predicate based knowledge base as it is used by lots of
planners like SHOP2.

• Possibility to catch method calls: Groovy's dynamic object orientation capa-
bilities enable us to catch calls to unknown methods by overriding a well de�ned
method. This can be used to de�ne a decomposition of a task by writing Groovy
code into a closure. This nicely integrates with a DSL describing state-transition
systems similar to the one shown in Listing 5.4 in Subsection 5.1.2.

5.2. The DSL to describe state-transition systems

This section introduces the DSL for state-transition systems used by the planner. The
conceptual model presented in Section 4.3 shows that a state-transition system comprises
states and transitions. The latter one is a more complex concept which is linked to the
concepts of decomposition and dependencies. Especially transitions cannot be looked at
detached from transition systems. The same accounts for dependencies and transitions.
This results in the issue that the DSL for transitions and dependencies needs to be
explained together with the DSL for state-transition systems. This section explains the
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DSL for state-transition systems and the concepts linked to it in a step by step manner.
First, the DSL specifying the frame of a transition system is explained in Subsection
5.2.1. After that, we show how transitions are formalized in the DSL in Subsection 5.2.2.
Finally, Subsection 5.2.3 explains how dependencies can be described for the transitions.
For each subsection an EBNF describing the syntax and an example adhering to it are
given. Semantical constraints that need to account but are di�cult to express in EBNF
are textually explained by comments.

5.2.1. The frame to describe state-transition systems

The DSL for state-transition systems follows the idea introduced in Listing 5.4 in Subsec-
tion 5.1.2. It uses the recursive principle that closures can have closures as parameters.
To introduce the DSL, we start at the highest closure and re�ne the closures in a step-
wise manner. As a running example, an instance of the DSL describing the dependencies
among services is given. This example is then re�ned together with its EBNF. Listing
5.8 shows the �rst part of the DSL adhering to the EBNF from Figure 5.1. The EBNF
presented adheres to the EBNF speci�cation in [28]. Non-terminal symbols are written
in blue typewriter font, terminal symbols in the usual black font.

Figure 5.1.: EBNF for the frame of state-transition systems

(1) Transition_system = 'transition_system(target : ' Classname_tran ') {'
Tran_system_body '}' ;

(2) Classname_tran = (* Name of a class for which the transition system accounts. *) ;
(3) Tran_system_body = Valid_closure States_closure Transitions_closure ;
(4) Valid_closure = 'valid{' Valid_closure_body '}' ;
(5) Valid_closure_body = (* valid Groovy code returning a boolean value. The identi�er �it�

references any instance of the class named in rule 2. *);
(6) States_closure = 'states{' {State_closure} '}' ;
(7) State_closure = 'state{' State_name '}' ;
(8) State_name = (* a valid Java string representing the name of a state.

Needs to be unique within the bodies of all �state� closures. *);
(9) Transitions_closure = (* see EBNF rule 1 in Figure 5.2 for de�nition. *) ;

The closure which is called when executing the DSL in Listing 5.8 is the �transi-
tion_system� closure. It takes two parameters, the �rst is a map and the second is a
closure (compare Listing 5.8, line 1). The map needs to have a �target� key. The value
of the key is the name of a class occurring in the model. In the given example it is the
class �AI_GroundedExecutionService�, a class representing database, dialog-instance,
and central-instance services. Semantically this means that each domain object of in-
stance �AI_GroundedExecutionService� is a potential candidate to have the described
state-transition system associated. Whether it is really associated to an instance of
�AI_GroundedExecutionService� is determined by the �valid� closure. It is shown in line
3 in Listing 5.8 and de�ned by the non-terminal �Valid_closure� in rule 4 in Figure 5.1.
To make the following textual explanations more readable we call a closure x that is
given to a closure y as the last parameter the body of y. For example, the closure de�ned
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Listing 5.8: A DSL describing the frame of state-transition systems

1 t rans i t ion_system ( ta r g e t : AI_GroundedExecutionService ) {
2

3 va l i d {true}
4

5 s t a t e s {
6 s t a t e {" no t_ in s ta l l ed "}
7 s t a t e {" i n s t a l l e d "}
8 s t a t e {" s t a r t ed "}
9 }
10

11 t r a n s i t i o n s { . . . }
12

13 }

through the curved brackets between lines 1 and 13 in Listing 5.8 is called the body of
the �transition_system� closure. Alike the closure �{true}� in line 3 is called the body
of the �valid� closure.
The body of the �transition_system� closure is always a sequence of three closure invoca-
tions. EBNF rule 3 in Figure 5.1 shows that this sequence is �xed and none of the three
closures, i. e., non-terminals on the right side, are optional. The �valid� closure is very
simple. It is described by EBNF rules 4 and 5. The body of the �valid� closure needs to
return a boolean value. The �valid� closure decides whether an arbitrary domain object
that is an instance of the target class has the described transition system associated. For
example, this becomes advantageous for the di�erent services that are all a subclass of
�AI_GroundedExecutionService� (compare Figure 2.4 in Section 2.5). This enables us
to associate the same state-transition system to di�erent kind of services if the body of
the �valid� closure returns �true� as shown in Listing 5.8.

Listing 5.9: Possible �valid� closures

1 va l i d { i t . type == "DI"}
2 va l i d { i t . type == "CI"}
3 va l i d { i t . type == "DB"}
4 va l i d {System . cur rentT imeMi l l i s ( ) > 5}

Listing 5.9 shows di�erent possible bodies of the �valid� closure, i. e., closures passed
to the �valid �closure. The planner always calls the �valid� closure with one param-
eter, which is an instance of the class provided in the �target� key value pair of the
�transition_system� closure (compare line 1 in Listing 5.8). In the given example the
code in the body of the �valid� closure needs to be executable on each instance of an
�AI_GroundedExecutionService� class. If only one parameter is passed to a closure,
then it is always referenced by the identi�er �it� within the closure. Grounded Execution
Services have an attribute called �type� (compare Figure 2.4 in Section 2.5) describing the
kind of service. The �valid� closure could thus select more precisely for which instance
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of class �AI_GroundedExecutionService� the transition system holds. Using the �rst
closure from Listing 5.9 would only associate the transition system to dialog-instances.
The last closure shows that arbitrary code returning a boolean value can be written into
the closure. In this case the transition system is only linked to a Grounded Execution
Service if the system time is greater than 5 milliseconds at the time the planner evaluates
the closure. The example given in Listing 5.8 just returns true because the transition
system accounts for databases, central-instances, and dialog-instances. Remember that
in contrast to the states and transitions the dependencies are di�erent for database,
central-instance, and dialog-instance services.
The �states� closure in lines 5-9 is de�ned by EBNF rules 6-8 in Figure 5.1. The body
of a �states� closure consists of an optional amount of �state� closure calls. It is basically
allowed to de�ne a transition system without states but the �states� closure always has
to exist (compare rule 3). A �state� closure models one possible state of the transition
system. The closure given to it needs to return a string which describes the name of
the state as described by rule 7 and 8 in Figure 5.1. There must not exist two �state�
closures whose bodies return the same string, i. e., state names need to be unique within
a transition system.

Comparison with the conceptual model

There are some slight di�erences to the conceptual model. According to De�nition 2 in
Section 4.3, a state-transition system

∑
is a triple

∑
= (o, S, T ). The set of states S

matches very well to the �states� closure whose body consists of a sequence of �state�
closure calls. The same accounts for the set of Transitions T which is described in the
same manner in Subsection 5.2.2. The only tuple element of

∑
that cannot be found

directly in the DSL is the domain object o to which
∑

is associated. In the conceptual
model every domain object o has its own transition system

∑
. In the worst case we

have to specify the same state transition system for di�erent domain objects if they have
the same behavior. This redundancy is convenient for a theoretical model because it
simpli�es the conceptual model. But it is not practicable for the DSL. It should avoid
redundant speci�cations and facilitate the reuse of transition systems where possible as
demanded by Requirement R10 in Section 2.6. This is achieved by using the �valid�
closure and the �target� map in order to select a set of objects for which a transition
system accounts.

Advantages of the DSL

The DSL shown in Listing 5.8 enables the reuse of state-transition systems without spec-
ifying them twice. For example, the transition system given in Listing 5.8 accounts for all
subclasses of �AI_GroundedExecutionService�. Looking at the UML model of the plan-
ning domain in Figure 2.4 in Section 2.5, we can see that the transition system accounts
for all three subclasses of �AI_GroundedExecutionService�, i. e., the classes describing a
database, central-instance, and dialog-instance service. Another advantage of the hybrid
approach is that we can directly write Groovy code into the body of the �valid� closure
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in order to check whether a domain object is associated with the state-transition system.
This enables us to write more complicated associations not only based on classes. For
example, we can assign di�erent state-transition systems depending on the value of an
attribute or the associations of a domain object.
All in all, the DSL shown in Listing 5.8 introduces the notion of states (compare Require-
ment R6 in Section 2.6) and enables the domain writer to make reuse of the behavior
speci�cation of domain objects (Requirement R10 ).

5.2.2. Describing transitions

This subsection describes the body of the �transitions� closure in more detail. Listing
5.10 shows an example of the body of a �transitions� closure which describes the �transi-
tions� closure left empty in Figure 5.8, line 11. The given example adheres to the EBNF
de�ned in Figure 5.2.

Figure 5.2.: EBNF for transitions and subtasks

(1) Transitions_closure = 'transitions{' { Transition_closure } '}' ;
(2) Transition_closure = 'transition(' Transition_name ' , [from : ' State_name

', to : ' State_name ']) {' Transition_body '}' ;
(3) Transition_name = (* a Java string containing the name of the transition.

The name needs to be unique within the transition system. *);
(4) State_name = (* a Java string representing the name of a state. It needs to

match the name of a state produced by rule 8 in Figure 5.1. *);
(5) Transition_body = Subtask_closure Dependencies_closure ;
(6) Subtask_closure = 'subtask{' Subtask_closure_body '}' ;
(7) Subtask_closure_body = (* Groovy Code with a call to at most one unde�ned

method describing the task to solve when executing the
transition. The identi�er �it� points to the domain object
the state-transition system is associated to. *);

(8) Dependencies_closure = (* See EBNF rule 1 in Figure 5.3 for de�nition. *) ;

Listing 5.10: The part of the DSL describing transitions

1 t r a n s i t i o n s {
2 t r a n s i t i o n ( " i n s t a l l " , [ from : " no t_ in s ta l l ed " , to : " i n s t a l l e d " ] ) {
3

4 subtask {
5 install_AI_GES on : i t
6 }
7

8 dependenc ies { . . . }
9 }
10 }

The body of a �transitions� closure always consists of any number of �transition� closure
invocations (see rules 1-2, Figure 5.2). If there are no transitions, the body of the
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�transitions� closure is left empty. The �transitions� closure itself is non-optional. A
�transition� closure takes three parameters. The �rst one is a string giving the transition
a name. The name of the transition needs to be unique within the state-transition system.
See EBNF rule 3 for a description. The second parameter is a map as described by EBNF
rule 2. It has the two keys �from� and �to�. The values of these keys need to be strings
describing the name of the states the transition originates and leads to. The strings need
to match to states that have been previously de�ned within the body of a �state� closure.
This is done by rules 7 and 8 of the EBNF in Figure 5.1. The third parameter of the
�transition� closure is a closure which we call the body of the �transition� closure. The
content of the body is described by EBNF rule 5 in Figure 5.2. The body of a �transition�
closure always consist of the invocation of a �subtask� and a �dependencies� closure. The
�subtask� closure describes at most one atomic, non-atomic, or reserved change request
which is to be solved when doing the transition. This task is described by a call to an
unde�ned Groovy method. The name of this method describes the name of the change
request. Within the �subtask� closure �it� references the domain object the transition
system is associated to. This is described by rule 7 in Figure 5.2. The example given in
Listing 5.10 shows a method call to the Groovy method �install_AI_GES� in line 6. By
convention calls to an unknown method always have one parameter, a map. This map
needs to have at least a key called �on�. The �on� key holds a reference to the domain
object which will be set as the target of the newly created change request (compare class
diagram in Figure 2.4 in Section 2.5). Besides this reserved key value pair there can
be other key value pairs describing additional parameters of a change request. The key
value pairs modeling parameters of the HTN method can then be stored in the �params�
map of the created �AI_ChangeRequest� object.
The second closure invocation in the body of the �transition� closure is a call to the
�dependencies� closure. The body of this closure is de�ned in Subsection 5.2.3.

Comparison with the conceptual model

De�nition 4 of the conceptual model de�nes a transition t as a tuple t = (t_name, start,
goal, task, D). t_name, the name of the transition, matches the �rst parameter of the
�transition� closure. The start and goal state are covered by the second parameter of the
�transition� closure, the map with the reserved keys �from� and �to�. The whole �subtask�
closure invocation models task, the task to be solved when performing transition t. There
is only a minor di�erence to the conceptual model. In the conceptual model each domain
object has its own state-transition system, thus its own transitions and thus its own
dependencies. The DSL describes this in a more general way. State-transition systems
are matched to a set of domain objects. As dependencies are dependent on the type of a
domain object, there needs to be a construct to �nd out whether a dependency accounts
for a concrete instance of a state-transition system. This is done by an additional �valid�
closure belonging to a �dependency� closure as explained in Subsection 5.2.3. All in all,
the set of dependencies D from the conceptual model can be matched to the information
described by the �dependencies� closure.
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Advantages of the DSL

The part of the DSL introduced in this section has the advantage that it clearly separates
domain object behavior from hierarchical problem solving behavior. The behavior of do-
main objects is described by the sates and the transitions between them. By specifying an
atomic, non-atomic, or reserved change request in the �subtask� closure we can separate
hierarchical knowledge from behavior knowledge. If we want to know exactly how the �in-
stall� transition is achieved, we need to have a look at the methods or operators that treat
the �install_AI_GES� task. Note that if we chose to associate a non-atomic task with
the transition, there can be more than one method decomposing this task. This enables
us to specify a domain where di�erent domain objects have the same state-transition
systems but the transitions are achieved in di�erent ways. For example, all Grounded
Execution Services have the same state-transition system but the �stop� transition in a
database is di�erently re�ned from the �stop� transition in a central-instance. We do not
mix the re�nement strategies with the description of the behavior as it is done in other
approaches like [46]. This gives us great �exibility to describe state-transition systems
accounting for more than one domain object (compare Subsection 5.2.1) and di�erent
hierarchical re�nement behavior for the same transition. Both is clearly separated from
each other in the DSL and the conceptual model.

5.2.3. Describing dependencies

Dependencies are part of a transition and they need to be ful�lled in order to execute
a transition. Listing 5.11 shows the DSL describing the dependencies for the �install�
transition of a Grounded Execution Service. It �lls the body of the �dependencies� closure
left empty in Listing 5.10, line 8. The EBNF de�ning the syntax is shown in Figure 5.3.

Figure 5.3.: EBNF for dependencies

(1) Dependencies_closure = 'dependencies {' { Dependency_closure } '}' ;
(2) Dependency_closure = 'dependency{' Name_closure Valid_closure_dep

Subtasks_closure '}' ;
(3) Name_closure = 'name {' Name_closure_body '}' ;
(4) Name_closure_body = (* A string describing the name of the dependency. *) ;
(5) Valid_closure_dep = 'valid{' Valid_closure_dep_bo '}' ;
(6) Valid_closure_dep_bo = (* Groovy code returning a boolean value describing whether

the dependency is valid for the domain object belonging to
the transition system. The domain object is referenced by
the �it� identi�er. *);

(7) Subtasks_closure = 'subtasks {' Subtasks_closure_body '}' ;
(8) Subtasks_closure_body = (* Groovy code doing calls to reserved change request, i. e.,

the �Classical_Planning_problem� method. �it� within
the closure references the domain object the transition
system is associated to. *);

The body of the �dependencies� closure consists of n ∈ N0 �dependency� closure invo-
cations (compare EBNF rule 1 in Figure 5.3). According to EBNF rule 2, the body of
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Listing 5.11: DSL describing dependencies for the �install� transition

1 dependenc ies {
2

3 dependency {
4 name {" instal l_CI_before_DI"}
5 va l i d { i t . type == "DI"}
6 subtasks {
7 for ( AI_GroundedExecutionService c i : i t . get_SystemModel ( ) .
8 . get_all_AI_GES( "CI" ) ) { Classical_Planning_problem on : c i ,
9 goa l_state : " i n s t a l l e d " }
10 }
11 }
12

13 dependency {
14 name {" install_DB_before_CI"}
15 va l i d { i t . type == "CI"}
16 subtasks {
17 for ( AI_GroundedExecutionService c i : i t . get_SystemModel ( ) .
18 . get_all_AI_GES( "CI" ) ) { Classical_Planning_problem on : c i ,
19 goa l_state : " i n s t a l l e d " }
20 }
21 }
22

23 }

a �dependency� closure is a sequence of three non-optional closure invocations. First of
all, the �name� closure is invoked. It takes only one parameter, a closure that returns a
string. Compare rules 3 and 4 of the EBNF in Figure 5.3. This string models the name
resp. the textual description of the dependency. It needs to be unique within the state-
transition system. The second closure is the �valid� closure. It is similar to the �valid�
closure introduced in Subsection 5.2.1, Listing 5.8, line 3. The closure there decides
whether a state-transition system is valid for a domain object or not. The �valid� closure
invoked within the body of the �dependency� closure returns a boolean value. This value
determines whether the dependency holds in a state-transition system that is associated
to a concrete instance of a domain object. Within the closure �it� references this do-
main object. For example, the �rst �dependency� closure in Listing 5.11 in lines 3-11 is
only valid for state-transition systems associated to an �AI_GroundedExecutionService�
of type dialog-instance. This constraint is checked by examining the value of the at-
tribute �type� of the Grounded Execution Service. It needs to be set to �DI�. Thus,
the �install_CI_before_DI� dependency only accounts for �install� transitions in dialog-
instances. When the body of the �valid� closure in line 5 in Listing 5.11 is executed by the
planning algorithm, it passes the domain object the transition system is associated to, to
the closure as a parameter. The last closure in the body of the �dependency� closure is the
�subtasks� closure. It is described by EBNF rule 7 in Figure 5.3. Within the closure only
calls to a Groovy method describing a Classical Planning problem are allowed to be done.
Thus, only calls to the Groovy method �Classical_Planning_problem� are allowed to be

65



done. The method calls describe the Classical Planning problems that need to be solved
in order to execute the transition. The Groovy code written in the bodies of the �sub-
tasks� closures in Listing 5.11 is a little bit more complicated than the previous examples.
The �install_CI_before_DI� dependency uses a for loop in order to generate the new
dependency change requests (see lines 7-8 in Listing 5.11). As usual the identi�er �it� ref-
erences the domain object the transition system is associated to. Due to the value of the
�target� key (compare Subsection 5.2.1, Listing 5.8, line 1), we can be sure that the code is
only executed with �it� being an instance of class �AI_GroundedExecutionService�. Lets
assume calling the methods �get_SystemModel()� and �get_all_AI_GES(�CI�)� on any
�AI_GroundedExecutionService� in a row delivers a list containing all central-instance
services of an SAP system. Note that according to the UML class diagram in Figure 2.4
in Subsection 2.5 these method calls are well de�ned. We can iterate over this list and
create new change requests by doing calls to unknown methods.
Each call to the �Classical_planning_problem� method shown in lines 8-9 in Listing 5.3
describes a reserved change request. In the map passed to this method, the key �on�
describes the target of the change request. According to De�nition 3 a reserved change
request also holds a parameter that describes the goal state of the Classical Planning
problem. We specify this goal state by the value of the key �goal_state�. For example,
the goal state of the reserved change requests created in line 9 in Listing 5.11 is the �in-
stalled� state. All in all, lines 7-9 in Listing 5.11 describe a Classical Planning problem
for every dialog-instance present in the SAP system. Each of the problems demands to
set the state of a dialog-instance to �installed�.
All �dependency� closures and method calls to the unde�ned �Classical_Planning_prob-
lem� method in Listing 5.11 can be directly matched to entries in the tables shown in
Section 2.3. The �rst dependency given in the DSL is due to the entry in the �install�
row of Table 2.3. The second �dependency� closure originates from the �install� entry of
Table 2.2.

Comparison with the conceptual model

The conceptual model de�ned a dependency d as pair d = (d_name, Tasks). The
description d_name of a dependency can be directly mapped to the �name� closure.
Tasks, the set of reserved change requests to be solved in order to achieve dependency d,
is described by the calls to the `Classical_Planning_problem� method in the �subtasks�
closure. The �valid� closure from Listing 5.11 cannot be found in the conceptual model.
In the conceptual model each domain object has its own transition system, which has
its own transitions and each transition has its own dependencies. This means that each
dependency from the conceptual model belongs to exactly one transition system. In the
DSL a transition system can account for more than one domain object. Nevertheless,
not all dependencies should account for all of these domain objects as shown by the
example given in Listing 5.11. The �valid� closure speci�es for which domain objects the
dependency holds when a transition is executed. It is not needed in the conceptual model
due to the decisive mapping between dependencies and domain objects used there.
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Advantages of the DSL

The DSL for dependencies introduced in this subsection comes with several advantages.
First, we can specify di�erent dependencies for the same transition. The dependencies
only account if their �valid� closure is satis�ed over the domain object. This enables
us to specify one state-transition system for a set of domain objects that have di�erent
dependency behavior. In our example all services in the SAP domain have the same
transition system, i. e., the same basic behavior. But their behavior di�ers in the depen-
dencies the di�erent services need to take into account. The DSL of the hybrid approach
enables us to reuse the state-transition system and to describe the dependencies on a
�ner grained level. The example given in Listing 5.11 shows how di�erent dependencies
for domain objects with the same states and transitions can be speci�ed. We can reuse
the dependencies, states, and transitions as demanded by Requirement R10. Second, the
DSL and the hybrid approach o�er a semantical concept to specify dependencies. They
are speci�ed as Classical Planning problems. Dependencies are made explicit by referring
to the state of domain objects as demanded by Requirement R4 and R6.

5.3. A DSL to describe HTN methods

This section describes the DSL for HTN methods. Listing 5.12 gives an example of a
method that decomposes a change request called �stop_software� into a sequence of two
change requests �stop_AI_GES� and �backup_database�. Both have the same target as
the �stop_software� change request. Figure 5.4 shows the EBNF rules that describe the
syntax of a method.

Figure 5.4.: EBNF description for HTN methods

(1) Method = 'method(' CR_name_m ', target : ' Classname_method ') {'
Precondition_m Subtasks_clo_m '}' ;

(2) CR_name_m = (* a valid Java string representing the name of a non-atomic
change request that can be decomposed by the method. *);

(3) Classname_method = (* Name of the class the change request needs to have as a target
to do the decomposition. *);

(4) Precondition_m = 'precondition {' Precondition_m_b '}' ;
(5) Precondition_m_b = (* Groovy code returning a boolean value describing whether

this method can be applied to decompose the task the method is
applied to. The identi�er �it� within the closure references
the change request to decompose by the method. *);

(6) Subtasks_clo_m 'subtasks {' Subtasks_clo_m_bo '}' ;
(7) Subtasks_clo_m_bo 'sequential {' Method_tasks '}' |

'parallel {' Method_tasks '}' ;
(8) Method_tasks (* Valid Groovy code doing calls to atomic, non-atomic,

or reserved change requests. The identi�er �it�
references the change request the method is applied to. *);

An HTN method is de�ned by a �method� closure. This closure takes three param-
eters as described by EBNF rule 1 in Figure 5.4. The �rst one is a string describing
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Listing 5.12: DSL describing an HTN method

1 method ( " stop_software " , t a r g e t : AI_GroundedExecutionService ) {
2

3 precond i t i on { i t . get_target ( ) . type == "DB"}
4

5 subtasks {
6 s e qu en t i a l {
7 stop_AI_GES on : i t . get_target ( )
8 backup_database on : i t . get_target ( )
9 }
10 }
11

12 }

the name of the non-atomic change request the method can decompose. Listing 5.12
gives an example of a method that can decompose a non-atomic change request called
�stop_software�.
The second parameter is similar to the �rst parameter of the �transition_system� closure
as introduced in Listing 5.8 in Subsection 5.2.1. It is a map with key �target� and the
name of a class as its value. The planning algorithm uses this map for a sanity check.
Each �AI_ChangeRequest� object references a target object. An algorithm takes the
change request object and tries to �nd a method to decompose the task. The target
map speci�es the class which the object referenced by the target attribute needs to be
an instance of. In the given example the target of the change request needs to be an
instance of class �AI_GroundedExecutionService�. From an algorithmic point of view
it is not necessary to specify this class name. Nevertheless, it makes the writer of a
domain description aware of where �it� points to in the �sequential� or �parallel� closure
(lines 6-9), namely an instance of class �AI_GroundedExecutionService�, the target of
the change request.
The third parameter is a closure. According to rule 1 in Figure 5.4 the closure always
consists of calls to two non-optional closures, the �precondition� and the �subtasks� clo-
sure. Similar to the previous occurrences of a �valid� closure, the �precondition� closure
returns a boolean value, specifying whether the method can be applied to decompose
a change request depending on its target object. �it� within the closure references the
change request the method is applied to. The body of a �subtasks� closure consists ei-
ther of the invocation of a �sequential� or �parallel� closure. Compare rules 6-7 in the
EBNF de�ned in Figure 5.4. There are no restrictions as to which method calls are
allowed to be made in the body of one of the closures. Recall that there were restrictions
imposed for the method calls within a �dependency� closure in Subsection 5.2.3. The sub-
tasks described by method �stop_software� are �stop_AI_GES� and �backup_database�
(compare lines 7-8 in Listing 5.12). Both change requests do not have parameters. The
target of the new child change requests is set to the same target as the target of the
�stop_software� change request, which is decomposed by the method. Note that it is
possible to access the parameters of the �stop_software� change request within the body
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of the �precondition� and the �sequential� / �parallel� closure. Because �it� references
the �stop_software� change requests, its parameters can be accesses by examining its
�params� attribute. Thus, we can describe preconditions depending on the values of the
parameters of the change request.
As we do not o�er uni�cation capabilities, the DSL needs to o�er additional computa-
tional constructs to describe di�erent possible decompositions implied by one method.
For example, consider a method that deploys a virtual machine on a physical machine.
As there are many possibilities how to deploy the VM on the di�erent machines, we need
to describe di�erent decompositions by which the high-level task can be achieved. In
logic based HTN planners this is done by uni�cation which binds parameters of a task to
di�erent values. The planner then tries to satisfy the subtasks described by any of these
bindings. To model this in an object oriented knowledge base, we introduce the �try_all�
closure. The �try_all� closure can be invoked within the body of the �sequential� / �par-
allel� closure. Within the body of the �try_all� closure the identi�er �it� references the
change request to decompose. The body of the �try_all� closure can generate many
change requests. One of these change requests needs to be satis�ed in order to �nish the
task described by the �try_all� closure.

Listing 5.13: �try_all� closure describing alternatives in the decomposition

1 subtasks {
2 s e qu en t i a l {
3 t ry_a l l {
4 CR1 on : i t . get_target ( )
5 CR2 on : i t . get_target ( )
6 }
7 CR3 on : i t . get_target ( )
8 }
9 }

Listing 5.13 shows a �subtasks� closure of a method that makes use of the �try_all�
closure. The decomposition described is sequential. The �subtasks� closure describes a
decomposition into two change requests. First of all either �CR1� or �CR2� needs to be
successfully resolved. After that, change request �CR3� needs to be solved. All in all, the
�subtasks� closure says that either �CR1�, �CR3� or �CR2�, �CR3� needs to be achieved
in order to successfully decompose the high-level task.

Comparison with the conceptual model

De�nition 7 de�nes a method m as a triple m = (m_task_name,m_pre, m_decomp).
m_task_name describes the name of the task which can be decomposed by the method.
It directly matches to the �rst parameter of the �method� closure. m_pre is de�ned as
a precondition evaluated over the target of the change request. This matches the �pre-
condition� closure in the body of the method. The DSL goes a step further than the
conceptual model by introducing the �target� map (see line 1 in Figure 5.12, second pa-
rameter of �method� closure). The algorithm only evaluates the precondition if the target

69



of the change request is a subclass of the provided class name. This is not more powerful
than what has been described in the conceptual model. The DSL uses a compound pre-
condition that �rst checks whether the domain object is an instance of a certain class and
then evaluates the �precondition� closure over the object. As m_pre from the conceptual
model is an arbitrary precondition evaluated over the target, every compound precondi-
tion (class selector + �precondition� closure) from the DSL adheres to the precondition of
a conceptual model. Thus, every DSL combination of a target class and a �precondition�
closure can be expressed as a precondition consistent with the conceptual model.
The other direction holds, too. Every precondition m_pre evaluated over the target of
the change request can be written as a DSL precondition consisting of a class selector
statement and a �precondition� closure. No matter whether m_pre consists of class se-
lection statements or not, it is always possible to set the target attribute to �Object� and
directly use m_pre as the body of the �precondition� closure. Thus, the DSL has the
same expressiveness as the conceptual model when de�ning preconditions.
The last element from the triple, m_decomp, is a decomposition to solve the top-level
task. It can be directly matched to the �subtasks� closure.

5.4. A DSL to describe HTN operators

This section describes how HTN operators are formalized in the DSL. Listing 5.14 shows
the DSL describing an operator. The example follows the EBNF given in Figure 5.5.

Figure 5.5.: EBNF describing HTN operators

(1) Operator = 'operator(' CR_name_atomic ', target : '
Classname_action ') {' Precond_o Effects_o '}' ;

(2) CR_name_atomic = (* A string describing the name of the atomic change request
the operator can be applied to. *);

(3) Classname_action = (* Name of a class the atomic change request needs to
have as a target to apply the operator. *);

(4) Precond_o = 'precondition{' Precond_o_body '}' ;
(5) Precond_o_body = (* Groovy code returning a boolean value describing whether

this operator can be applied to the atomic task.
The identi�er �it� within the closure references the atomic
change request the operator is applied to. *);

(6) Effects_o = 'e�ects {' Effects_o_body '}' ;
(7) Effects_o_body = (* Groovy code changing the model. The identi�er �it�

references the domain object, which is the target of the atomic
change request. *);

An operator in the hybrid approach gives a semantics to an atomic task. It describes
how the knowledge base is altered by the atomic change request. The HTN operator
is described by a closure called �operator�. Its parameters are very similar to the ones
of a method (compare Subsection 5.3). They are described by EBNF rule 1 in Figure
5.5. The �rst parameter is a string representing the name of the atomic change request
the operator can be applied to (compare rule 2 in Figure 5.5). As with methods, the
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Listing 5.14: DSL describing an HTN operator

1 operator ( "stop_AI_GES" , t a r g e t : AI_GroundedExecutionService ) {
2

3 precond i t i on { i t . get_target ( ) . s t a t e == " running "}
4

5 e f f e c t s { i t . get_taget ( ) . stop ( )}
6

7 }

second parameter describes the class the target of the atomic change request needs to
be an instance of in order to apply the operator. The body of the �operator� closure
consists of calls to a �precondition� and an �e�ects� closure. The �precondition� closure
from Listing 5.14, line 3 has the same syntax as the �precondition� closure already known
from methods.
The second closure that is called within the body of the �operator� closure is the �e�ects�
closure. Its syntax is described by EBNF rules 6 and 7 in Figure 5.5. The �e�ects�
closure takes a closure as a parameter describing the code to implement the e�ects of
the operator on the model. Whenever the algorithm comes across an atomic change
request, it searches for an operator to implement the change request. It will then exe-
cute its �e�ects� closure in order to make the changes persistent to the knowledge base.
Within the �precondition� and �e�ects� closures, �it� references the change request the
operator is applied to. In the given example the operator calls the �stop()� method on
the �AI_GroundedExecutionService� which is the target of the �stop_AI_GES� change
request.

Comparison with the conceptual model

The conceptual model de�nes an operator op as a triple op = (op_task_name, op_pre,
e�ects) where op_task_name is the name of the operator. It is implemented by the �rst
parameter of the �operator� closure. op_pre is modeled by the target map, the second
parameter given to the �operator� closure, and the �precondition� closure. This follows
exactly the same idea which is used to describe the combined precondition of methods. In
addition to that, the same observations regarding the expressiveness of the preconditions
of the conceptual model and the combined preconditions of the DSL are holding. The
last element e�ects from the triple describes the e�ects of the operator when applied to
an atomic change request. It can be directly mapped to the �e�ects� closure.
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6. The hybrid HTN/Classical Planning
approach

This chapter introduces the algorithm of the hybrid approach and explains advanced
concepts like dependencies among tasks and consistency of plans. We start by explaining
the model describing the knowledge base of the planner in Section 6.1. It contains the
contents de�ned by an instance of the DSL. The planner uses the model for planning
together with the previously introduced model of the infrastructure in Section 2.5. Having
introduced the model, we explain the algorithm of the hybrid approach by means of
language independent pseudo code in Section 6.2. After that, we give an example in
Section 6.3 showing how the algorithm solves a planning problem. Finally, we cover
more advanced topics like dependencies between change requests, consistency of plans,
and the detection of plan inconsistencies in Section 6.4.

6.1. Model of the knowledge base de�ned by the DSL

This section explains the structure of the knowledge base used by the planner. It puts the
concepts the DSL can express in an object oriented model. The planner uses this model
together with the model describing the infrastructure and change requests as introduced
in Subsection 2.5 to do the planning. Figure 6.1 shows the UML class diagram describing
the knowledge base of the planner.
The �KnowledgeBase� class aggregates the operators, the state-transition systems, and

the methods that are de�ned by the DSL describing the planning domain. The �Method�
class describes an HTN method in the Hybrid Planning domain. It holds an attribute
�description� which stores the description / name of the method. This name equals the
string speci�ed in the �rst parameter of the �method� closure in Listing 5.12 in Section 5.3
(in case of the given example method its value matches �stop_software�). The �target�
attribute of the �Method� class holds the name of a class. The change request that is to be
decomposed by this method needs to have a target which is an instance of this class. In the
example for a method given in Section 5.3 the value is �AI_GroundedExecutionService�.
A method described by the DSL also consists of a �precondition� closure. The attribute
�precondition_body� holds the body of this closure. In case of the provided exam-
ple method in Listing 5.12 in Section 5.3 it is the closure �{it.get_target().type ==
�DB�}�. Because the decomposition described by the method is sequential, the value
of attribute �is_sequential� is set to true. The closure �subtasks_closure_body� stores
the body of either the �sequential� or �parallel� closure. In case of the example given
in Section 5.3 it is the closure �{stop_AI_GES on : it.get_target() backup_database
on : it.get_target()}�. In addition to the attributes, the class provides methods to
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Figure 6.1.: UML class diagram describing the knowledge base of the planner
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evaluate the closures at planning time. The method �evaluate_precondition()� takes an
�AI_ChangeRequest� and evaluates the closure stored in �subtasks_closure_body� over
this change request. Thus, the algorithm can decide whether a method can be applied
to decompose a given change request. Furthermore, the �create_subtasks()� method can
be used to create the subtasks of a change request when applying the HTN method to it.
This is done by executing the closure �subtasks_closure_body� with the change request
passed to it. It returns a list of lists of change request, where each list holds one possible
decomposition of the method applied to the change request. The �Operator� class is
similar to the �Method� class thus its description is omitted.
A �KnowledgeBase� also aggregates many �TransitionSystem� objects, each represent-
ing the data described by a �transition_system� closure. For example, the attribute
�valid_closure_body� holds the body of the �valid� closure. In case of the example
given in Listing 5.8 in Subsection 5.2.1 its value is the closure �{true}�. The �evalu-
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ate_closure_body()� method enables us to evaluate this closure over an �Infrastructure-
Component� in order to �nd out whether the transition system can be associated with
the domain object. A transition system consists of many �State� and many �Transition�
objects. The attribute �subtask_closure_body� in the �Transition� class stores the body
of the �subtask� closure, i. e., the one shown in lines 5-6 in Listing 5.10 in Subsection 5.2.2.
Be aware that the class also o�ers a method to create the subtasks from this closure. A
�Transition� aggregates many �Dependency� objects, each modeling a dependency nested
within a �transition� closure as shown in Listing 5.11 in Subsection 5.2.3. The attributes
of the �Dependency� class are pretty straight forward. The method �accounts_for()� uses
the body of the �valid� closure to decide whether a dependency accounts for a particular
domain object. The �create_subtasks()� method is similar to the one used in a �Tran-
sition� object. It creates the subtasks described by the dependencies by executing the
�subtasks_closure_body� closure.
All in all, the class diagram in Figure 6.1 puts the concepts described by the DSL into
an UML class diagram which describes the characteristics of the knowledge base. It does
not only store the contents described by the DSL but adds methods that can be used by
a Groovy implementation of the planner to conveniently do the planning.

6.2. The algorithm of the hybrid approach

This section introduces the algorithm of the hybrid approach by means of language
independent pseudo code. First, we explain a hybrid approach planning method in
Subsection 6.2.1 which delegates the planning task either to the HTN or Classical planner.
After that, the HTN Planning algorithm is explained in Subsection 6.2.2 followed by the
algorithm of the Classical planner in Subsection 6.2.3.

6.2.1. Hybrid approach top-level algorithm

This subsection gives an overview of the top-level planning method of the hybrid ap-
proach. It delegates a planning task either to an HTN planner or a Classical planner
depending on the type of the �rst task passed to the function.

Algorithm 1 : Hybrid_Planner(< t1, ..., tn >,O,M)
1: if n = 0 then
2: return <>
3: else

4: if t1 is atomic || t1 is non-atomic then
5: return HTN_Planner(< t1, ..., tn >,O,M)
6: else

7: return Classical_Planner(< t1, ..., tn >,O,M)
8: end if

9: end if

Algorithm 1 shows the pseudo code of the �Hybrid_Planner()� method. It takes three
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parameters, an ordered sequence of tasks < t1, ..., tn >, n ∈ N0, a set of HTN operators
O, and a set of HTN methods M . If there are no tasks to plan for, then the algorithm
returns the empty plan in line 2. Otherwise, there is at least one task to plan for. We then
need to check whether the �rst task is an atomic or non-atomic change request. In the
latter case, the HTN planner is called on the same planning problem and its generated
plan is returned in line 5. Otherwise, t1 is a reserved change request describing a Classical
Planning problem which needs to be solved by the Classical Planner. Thus, we return
the plan given back by the invocation of the Classical planner in line 7.
The �Hybrid_Planner()� method can be used if we do not exactly know whether the �rst
element in the task queue is an HTN or Classical Planning task. It will then delegate
the call to the appropriate planner. Nevertheless, the HTN and Classical planner also
delegate a call to the other planner if they cannot plan for the �rst task in the queue.

6.2.2. HTN Planning algorithm

This subsection introduces the HTN algorithm used by the hybrid approach on a high-
level. We introduce the algorithm using pseudo code. The HTN planner works together
with the Classical planner in order to solve a planning problem in the hybrid approach.
Be aware that the following description of the algorithm is only declarative, i. e., it is
only stated what to do but not how to do it.
Algorithm 2 shows the pseudo code of the HTN algorithm. It follows the principle

ideas of the Classical partial-order Simple Task Network (STN ) depth-�rst search algo-
rithm introduced in [22]. Like the �Hybrid_Planner()� method, the �HTN_Planner()�
method is called with the same parameters. These comprise a set of tasks to plan for,
i. e., atomic, non-atomic, or reserved tasks, a set of operators O, and a set of methods
M . Be aware that normally a knowledge base is passed to the planning method, too. We
do not do this because according to our domain model (see Figure 2.4 in Subsection 2.5)
a task holds a reference to a target object belonging to the knowledge base. In addition
to that, we assume that the knowledge base as described in Subsection 6.1 is globally
available within both planning methods.
If the list of change requests to plan for is empty, we return the empty plan in line 2
in Algorithm 2. In case there is at least one element in the list of passed tasks we need
to check whether the �rst one, i. e., t1, is a reserved change request. If so, we need to
call the Classical planner and return the plan computed by it because this planner deals
with reserved change requests. In case t1 is a non-atomic / atomic task we need to dis-
tinguish whether to plan for a method decomposition or the application of an operator.
We �rst explain the behavior of the algorithm when planning for a method decomposition.

Behavior regarding non-atomic change requests

The pseudo code describing the planning for non-atomic tasks is shown in lines 8-22 in
Algorithm 2. To decompose the non-atomic change request t1, we need to �nd a method
that can decompose t1. M , the set of methods, is passed to the HTN Planning method
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Algorithm 2 : HTN_Planner(< t1, ..., tn >,O,M)
1: if n = 0 then
2: return <>
3: end if

4: if t1 is reserved change request then
5: return Classical_Planner(< t1, ..., tn >,O,M)
6: end if

7: if t1 is non-atomic then
8: Let M ′ ⊆ M be the set of methods applicable to t1.
9: if M ′ =<> then

10: return failure
11: end if

12: Pick a method m ∈ M ′ non-deterministically to do the decomposition.

13: Let Subtasks be a set of sets, where each set S =< s1, ..., sk >, k ≥ 0, S ∈
Substasks holds one possible sequence of subtasks that need to be achieved in
order to achieve t1.

14: Let snap be a snapshot of the current knowledge base.
15: for S =< s1, ..., sk > ∈ Subtasks do
16: plan ← Hybrid_Planner(< s1, ..., sk > ◦ < t2, ..., tn >,O,M)
17: if plan! = failure then
18: return plan
19: end if

20: revert to snapshot snap.
21: end for

22: return failure
23: else

24: Let O′ ⊆ O be the set of operators applicable to t1.
25: if O′ =<> then

26: return failure
27: end if

28: Pick an operator o ∈ O′ non-deterministically.
29: Apply the e�ects described by operator o to the model.
30: plan ← Hybrid_Planner(< t2, ..., tn >,O,M)
31: if plan = failure || (t1 ◦ plan) is inconsistent then
32: return failure
33: else

34: return t1 ◦ plan
35: end if

36: end if
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as a parameter. M ′ ⊆ M is the set of methods applicable to t1 (line 8). A method
m ∈M is called applicable to a task t1 if the following three conditions are met:

• The description of t1, i. e., the name of the non-atomic change request, equals the
description of method m.

• The target of the non-atomic change request t1 is an instance of the class described
by the target attribute of method m.

• The precondition of m is satis�ed by the parameters and the target of t1.

If M ′, the set of methods that can be applied to decompose t1, is empty, failure is re-
turned in line 10. This is usual HTN behavior as known by other HTN planners like
SHOP2 [37] where non-atomic tasks that cannot be decomposed are regarded as a failure.
If M ′ is not empty we nondeterministically choose a method m ∈ M to decompose t1
in line 12. Be aware that we do not try another method if the decomposition using m
fails. Thus, the presented version does not consider backtracking on failure. Note that
by leaving backtracking aside the shown version of the HTN planner is not complete thus
violating Requirement R3 from Section 2.6. However, the backtracking technique [12]
can be easily added by introducing an additional loop over the methods in M ′ resulting
in a complete HTN planner.
Traditional HTN planners over a logic-based knowledge base, e.g. SHOP2 [37], use uni-
�cation to bind multiple values to the parameters of a change request. This is particular
useful when a non-atomic task is decomposed by a method in always the same children
but with di�erent parameters given to the child change request. Uni�cation can be built
over a logic based knowledge base but is particular di�cult to implement over an ob-
ject oriented knowledge base. Our answer to this problem is the previously introduced
�try_all� closure in Section 5.3 which creates many tasks out of which one has to be
successfully solved. The set Subtasks in line 13 is a set of sets, where each set holds a
sequence of tasks which needs to be achieved in order to achieve t1. Planning succeeds
if there is at least one sequence of tasks in Subtasks which achieves a successful decom-
position of t1.
Before trying any of the possible decompositions described by m, a backup, also called
a snapshot, of the knowledge base needs to be done. It enables us to return to the saved
state of the planning domain if one possible decomposition did not result in a successful
decomposition. The concept of snapshots was introduced by [10]. We assume that we
can do snapshots at any time. The snapshot taken in line 14 is named snap.
The for loop between lines 15 and 21 tries to solve t1 by applying di�erent decomposi-
tions to t1 described by the same method. It calls the `Hybrid_Planner()� algorithm in
line 16 on a new list consisting of the subtasks of the non-atomic change request and the
rest of the tasks that were originally passed on the invocation of the �HTN_Planner()�
method. The subtasks are added at the beginning of the list, because we �rst have to
completely solve the subtasks of t1. If the recursive invocation in line 16 returns a valid
plan, we can return it in line 18. Otherwise, we need to revert the model to snapshot
snap (line 20) and need to try another decomposition in the next loop. If none of the
decompositions returns a valid plan, failure is returned in line 22.
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Behavior regarding atomic change requests

If t1 is an atomic change request, the if statement in line 7 in Algorithm 2 evaluates to
false and the else block in lines 24-35 is executed. In order to successfully plan for an
atomic change request, we need to �nd a set of operators O′ ⊆ O that can be applied to
the atomic change request t1 (line 24). Similar to a method, an operator o ∈ O can be
applied to an atomic task t1 if:

• The description of t1, i. e., the name of the atomic task, equals the description of
operator o.

• The target of t1 is an instance of the class described by the target attribute of
operator o.

• The precondition of o is satis�ed by the parameters and the target of t1.

The algorithm returns failure if there are no applicable operators in O′ (line 25). Other-
wise, an operator o ∈ O′ is picked non-deterministically. We can then apply the e�ects
of the operator o to the model. The e�ects are described by the body of the �e�ects�
closure of an operator. As soon as the e�ects are made persistent to the domain objects
we can call the �Hybrid_Planner()� method on the rest of the remaining tasks in line 30.
If the plan returned does not match failure, we can add t1 to this plan but only if t1
is not in con�ict to the atomic tasks that are already part of the plan. To keep matters
simple, we do not examine plan consistency here but defer the examinations to Section
6.4.

6.2.3. Classical Planning algorithm

This subsection introduces the planning algorithm of the Classical planner part of the
hybrid approach. The Classical planner is called whenever a Classical Planning problem
is to be solved, i. e., a reserved change request is at the beginning of the task queue.
Algorithm 3 shows the pseudo code of the Classical planner algorithm.
The �Classical_Planner()� method takes the same input parameters as the HTN plan-

ner method introduced in Subsection 6.2.2. The parameters are a sequence of tasks
< t1, ..., tn >, n ∈ N0, a set of HTN methods M , and a set of HTN operators O. The
basic idea behind the Classical planner used within the hybrid approach is that it solves
a slightly extended Classical Planning problem [22] within the decomposition tree of an
HTN problem. As HTN problems can trigger Classical Planning problems and Classical
Planning problems describe a mixture of HTN and Classical Planning problems again, a
full integration between both approaches exists.
The Classical Planning method �rst needs to examine whether the passed sequence of
tasks is empty in line 1 in Algorithm 3. If there is nothing to plan for, line 2 returns
the empty plan. Otherwise, t1, the �rst task in the sequence, needs to be examined. Be-
cause the Classical planner only plans for reserved change requests, the �HTN_Planner()�
method needs to be called if t1 is an atomic or non-atomic change request (compare lines
4-6 in Algorithm 3). In case the control �ow continues to line 7, t1 is a reserved change
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Algorithm 3 : Classical_Planner(< t1, ..., tn >,O,M)
1: if n = 0 then
2: return <>
3: end if

4: if t1 is atomic || t1 is non-atomic then
5: return HTN_Planner(< t1, ..., tn >,O,M)
6: end if

7: Let target be the target of t1, goal the goal state speci�ed by t1, sts the transition
system of t1, and current the current state of sts.

8: if t1 violates any other reserved change request then
9: return failure
10: end if

11: if goal = current then
12: return Hybrid_Planner(< t2, ..., tn >,O,M)
13: end if

14: Be T a set of transitions of sts leading from current to goal, preferably the shortest
path.

15: Class_Planning_Problem =<>
16: task_to_solve_old = null

17: for transition t ∈ T do

18: Let D be the set of all dependencies described for transition t.
19: Let D′ ⊆ D be the set of all valid dependencies for transition t.
20: All_dependency_tasks =<>

21: for dependency d ∈ D′ do
22: Let CRS =< cr1, ..., crn >, n ≥ 0 be the set of all reserved change requests

described by dependency d.
23: All_dependency_tasks = All_dependency_tasks ◦ CRS
24: end for

25: Be task_to_solve the task to be solved when executing transition t

26: Add_dependencies_to_children(All_dependency_tasks, task_to_solve,
task_to_solve_old)

27: Class_Planning_Problem = Class_Planning_Problem ◦
All_dependency_tasks ◦ task_to_solve

28: task_to_solve_old = task_to_solve

29: end for

30: return Hybrid_Planner(Class_Planning_Problem◦ < t2, ..., tn >,O,M)
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request. As explained in De�nition 3 of the conceptual model given in Section 4.3, a
reserved change request is a well de�ned change request. It has one �xed parameter
describing the goal state the transition system linked to the target of the reserved change
request needs to be brought to. This parameter is extracted in line 7. Furthermore,
current is the current state of this transition system.
After that, we need to verify whether the reserved change request t1 violates any other
reserved change request out of the set of reserved change requests that have been planned
for already. If so, failure needs to be returned. In the case no reserved change request
is violated, the control �ow continues to line 11. We do not describe here how possible
violations look like and how they can be handled. To keep matters simple this is done
in Section 6.4.
If no other reserved change requests are violated, we need to check whether the transi-
tion system is already in the goal state, i. e., goal = current. In this case t1 is trivially
satis�ed and a recursive call to the �Hybrid_Planner()� on < t2, ..., tn >, the remaining
sequence of tasks, is done. If the control �ow continues to line 14 in Algorithm 3, there
is at least one transition in sts to be taken in order to reach the goal state de�ned in
goal. This means, we need to construct a plan that changes the state of sts. To compute
the set of transitions from current to goal state, a single-pair shortest path problem
needs to be solved. For example, the Floyd-Warshall algorithm [21] can be used prior
to planning to solve the all-pairs shortest path problem in O(|S|3), where S is the set of
states of the state-transition system. Alternatively, Dijkstra's algorithm [14] can be used
to compute the shortest path between the current state and every other state in up to
O(log(|S|) + |T |) where S is the set of states and T the set of transitions. The sequence
T in line 14 of Algorithm 3 holds the transitions belonging to the shortest path from
current to goal.
In line 15 the variable Class_Planning_Problem is initialized. After the for loop
shown in lines 17-29 ends, Class_Planning_Problem holds all the tasks that need to
be solved in order to solve the Classical Planning problem described by t1. This includes
reserved change requests described by the dependencies linked to a transition as well as
the atomic, non-atomic, or reserved change request described by the task linked to the
transition. Class_Planning_Problem collects these change requests for each transi-
tion. In lines 17-29 the algorithm iterates over all transitions in T , the transitions of
the shortest path. Within one iteration, D in line 18 is the set of dependencies linked
to transition t in state-transition system sts. Remember that a dependency belonging
to a transition accounts depending on the domain object the transition system belongs
to. Thus, we have to compute D′ ⊆ D, the set of dependencies accounting for transition
t. A dependency d ∈ D accounts for a state-transition system sts if its �valid� closure
is satis�ed over domain object target (see line 7 for the initialization of target). For
each dependency d accounting for transition t we then calculate the reserved change re-
quests that are described by the dependency. This is done in the for loop shown in lines
21-24. The ordered set CRS =< cr1, ..., crn >, n ∈ N0, describes the reserved change
requests that need to be ful�lled in order to solve dependency d. In line 23 we add
CRS to the list All_dependency_tasks. All_dependency_tasks aggregates all depen-
dency tasks for transition t. When the for loop ends in line 24, All_dependency_tasks

80



holds all reserved change requests described by all valid dependencies of transition t.
Thus, it holds all the Classical Planning problems that need to be solved in order to
do transition t. The Classical Planning problems are described by reserved change re-
quests in All_dependency_tasks. The execution of a transition is linked to solving a
task. This task, i. e., an atomic, non-atomic, or reserved change request is assigned to
task_to_solve. Finally, we can assemble the set of tasks that need to be accomplished
in order to execute transition t. These tasks include the dependency tasks stored in
All_dependency_tasks and the task linked to the transition stored in task_to_solve.
This is done in line 27. When planning for the next transition, the algorithm also has to
remember the previous value of task_to_solve in order to establish proper dependencies
between the tasks de�ned by di�erent transitions. These dependencies are established in
line 26 where the auxiliary method �Add_dependencies_to_children()� is called. Adding
the right temporal dependencies among the children is a non-trivial issue. To keep mat-
ters simple here, we explain in Subsection 6.4.3 which temporal constraints need to be
set among the subtasks of a reserved change request.
After the iteration over all transitions of the shortest path ends in line 29, Class_
Planning_Problem holds all tasks that are needed in order to bring sts from current
state to goal state. Thus, the Hybrid planner is called on the tasks contained in
Class_Planning_Problem and the original task list not including t1. This will trigger
Classical Planning problems �rst if there were dependencies for the �rst transition and
then an atomic, non-atomic, or reserved change request to implement the transition.

6.3. Example of the hybrid approach algorithm

This section gives an example of the algorithm of the hybrid approach described in Section
6.2. We assume that the planning domain consists of three instances of �AI_Grounded-
ExecutionService�, a database described by an instance of �AI_GES_DB�, a central-
instance (�AI_GES_CI�), and a dialog-instance which is an instance of �AI_GES_DI�.
Their current state is �running� which is described by their �state� attribute inherited
from the superclass �InfrastructureComponent� as shown in Figure 2.4 in Subsection 2.5.
The state-transition system for an �AI_GroundedExecutionService� is described in List-
ing A.1 in Appendix A. The listing also describes the methods and operators used in the
example. We refer to it when necessary.
Due to readability reasons we abbreviate calls to the method �Hybrid_Planner()� by
�HYP()�, to method �Classical_Planner()� by �CLP()�, and to �HTN_Planner()� by
�HTP()�. The top-level change request to be solved in the given example is a reserved
change request, i. e., a change request describing a Classical Planning problem. It de-
mands to set the state of the database to �installed�, the state in which it is stopped
(compare the DSL in Appendix A for the states of an AI_GroundedExecutionService).
Due to the dependencies accounting in the domain as explained in Section 2.3, the dialog-
instance and the central-instance need to be stopped �rst. In addition to that, we want
to do a backup of the tables of a database, after it has been stopped. We abbreviate
change requests in the form CRname(target, param1, ..., paramn) where CRname is the
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description of the change request, target the target of the change request, and parami,
i ∈ N0, are the parameters of the change request. If the change request is a reserved
change request, then CRname does not hold the description of the atomic or non-atomic
task but the value CPP for Classical Planning problem. Thus, the high-level task to
solve can be written as �CPP(db,�installed�)�, describing a Classical Planning problem
which demands to set the state of the database to �installed� (compare Appendix A for
the description of the states of an AI_GroundedExecutionService). Thus we call the �Hy-
brid_Planner()� method with a list of tasks only containing the �CPP(db,�installed�)�
task:

HYP(<CPP(db,�installed�)>, O, M)

This call is redirected to

CLP(<CPP(db,�installed�)>, O, M)

because the �rst task t1 is a reserved change request that is planned for by the Classical
planner (compare Algorithm 1 in Subsection 6.2.1). t1 is the task CPP(db,�installed�).
Within Algorithm 3 in Subsection 6.2.3 target is set to �db�, goal is set to �installed�, and
current holds the value �running� because the database is currently in state �running�.
t1 does not violate other reserved change requests. Thus, the body of the if statement in
line 9 is not executed. In the remainder of this section we always assume that reserved
change requests are never in con�ict to each other. In addition to that, the example is
constructed such that the reserved change requests are not in con�ict to each other. We
explain in Section 6.4.3 in more detail how con�icting reserved change requests can be
identi�ed. The goal state is not already reached, thus line 12 is not executed. The short-
est path is stored in T , i. e., T holds the value �<�stop�>� because the shortest path from
state �running� to �installed� consists only of the stop transition. To verify the shortest
path see the de�nition of the state-transition system in Appendix A. Thus, the for loop
in lines 17-29 is only executed once. In its only run t holds transition �stop� (line 17). D
is the set of all dependencies described for transition t. Lines 81-102 in Listing A.1 in Ap-
pendix A show that there are two dependencies de�ned for transition �stop�, thus D holds
the value �<�stop_CI_before_DB�, �stop_DI_before_CI�>�. D′ ⊆ D contains only
�stop_CI_before_DB� because only this dependency is valid over a database. To see
this compare the �valid� closures of the two dependencies in lines 85 and 95 in the DSL in
Appendix A. Only the body of the �valid� closure of dependency �stop_CI_before_DB�
evaluates to true over a database. Thus d in line 21 in Algorithm 3 in Subsection 6.2.3
can only hold the �stop_CI_before_DB� dependency. The set CRS contains the re-
served change requests described by dependency d. As we can see in lines 87-89 in the
DSL in Appendix A, these change requests are described by Classical Planning prob-
lems over all central-instances. These demand to set the state in each central-instance
to �installed�. Because there is only one central-instance, which we call �ci� here, CRS
holds the value �<CPP(ci,�installed�)>�. By solving this Classical Planning problem we
can resolve the preconditions that are necessary to execute transition t, the �stop� transi-
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tion of the database. Line 23 in Algorithm 3 initializes All_dependency_tasks with the
value �<CPP(ci,�installed�)>�. This variable aggregates all change requests described by
all valid dependencies of transition t. In line 25 of the pseudo code task_to_solve is
initialized with the task linked to transition t, i. e., the �stop� transition. As it can be
seen in line 78 of the DSL description in Appendix A, this task is the �stop_software�
task. Thus, task_to_solve holds the value �stop_software(db)�. Finally, line 27 in the
Classical planner algorithm de�nes the Class_Planning_Problem as

<CPP(ci,�installed�), stop_software(db)>

This leads to the new plan de�ned by the call to the Hybrid planner in line 30 of the
pseudo code:

HYP(<CPP(ci,�installed�), stop_software(db)>, O, M)

Because t1, the �rst task in the list of tasks, is a reserved change request, the Hybrid
planner delegates the planning to the �Classical_Planner()� method. This leads to:

CLP(<CPP(ci,�installed�), stop_software(db)>, O, M)

The behavior of the Classical planner is the same as before when CPP(db,�installed�)
was processed. t1 is now the CPP(ci,�installed�) task. The shortest path T is computed
as <�stop�> again. The for loop in lines 17-29 in Algorithm 3 in Subsection 6.2.3 is only
executed once. The set of dependencies D holds the same dependencies as before be-
cause we are looking again at the �stop� transition of an �AI_GroundedExecutionService�.
But now D′, the set of valid dependencies, is di�erent from before. As it can be seen
in lines 81-102 in the DSL in Appendix A, the dependency �stop_DI_before_CI� is
now valid because the �valid� closure evaluates to true over a central-instance. Depen-
dency �stop_CI_before_DB� only accounts for databases and is thus not contained in
D′. All in all, D′ holds the value �<�stop_DI_before_CI�>�. Line 22 computes the
subtasks described by all dependencies. In our case only the subtasks for dependency
�stop_DI_before_CI� are computed. Lines 97-99 in the DSL in Appendix A show the
code to create the new reserved change requests. The code in the body of the �subtasks�
closure creates a reserved change request for every dialog-instance. This reserved change
request demands the state of the dialog-instance to be set to �not_installed�. Because
there is only one DI present in the model, CRS holds �<CPP(di,�installed�)>� in line 22.
The task_to_solve is again the �stop_software� task but now with the central instance
as target. Thus, Class_Planning_Prob holds the value

<CPP(di,�installed�), stop_software(ci)> after the for loop in line 29

This leads to the following recursive call in line 30:

HYP(<CPP(di,�installed�), stop_software(ci), stop_software(db)>, O, M)
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Because t1 is a reserved change request, the Hybrid planner delegates the planning to
the Classical planner again. This leads to the new invocation:

CLP(<CPP(di,�installed�), stop_software(ci), stop_software(db)>, O, M)

Again, the shortest path is computed as T=<�stop�> because the dialog-instance is
in state running, too. But now D′, the set of all dependencies valid for transition �stop�
is empty. The DSL does not describe a valid dependency for the transition �stop� of
a dialog-instance. All the bodies of the �valid� closures of the dependencies evaluate
to false over a dialog-instance because the type attribute of a dialog-instance holds the
value �DI�. This leads to an empty All_dependency_tasks set when the for loop in
lines 21-24 ends. task_to_solve holds the �stop_software(di)� task again. In line 27,
Class_Planning_problem only holds the task �stop_software(di)� because there were
no dependency tasks computed. This leads to the following recursive invocation in line
30 in Algorithm 3 in Subsection 6.2.3:

HYP(<stop_software(di), stop_software(ci), stop_software(db)>, O, M)

The �rst task is not a reserved change request any more, but a non-atomic change
request. Due to this reason the Hybrid planner directs the planning to the HTN planner
for the �rst time:

HTP(<stop_software(di), stop_software(ci), stop_software(db)>, O, M)

Algorithm 2 in Subsection 6.2.2 describes the HTN algorithm. t1 is a non-atomic
change request because there is no operator with the description �stop_software� de�ned
in the DSL in Appendix A. Consequently, the if statement in line 7 is true andM , the set
of methods, holds �<stop_software(1), stop_software(2), backup_database>�. Where
�stop_software(1)� is the �rst �stop_software� method shown in lines 143-154 in the DSL
and �stop_software(2)� is the one shown in lines 156-165. M ′ is the set of methods appli-
cable to t1. Only �stop_software(2)� is applicable due to two reasons. First, the target of
the �stop_software� change request, i. e., the dialog-instance, is an instance of a subclass
of the abstract class �AI_GroundedExecutionService� (compare target key in line 156 of
the DSL in Appendix A which demands this). Second, the body of the �precondition�
closure (see lines 158-159 of the DSL in Appendix A) evaluates to true over domain ob-
ject �di�. Thus, the algorithm can only pick m=�stop_software(2)� in line 12. Subtasks
in line 13 in Algorithm 2 in Subsection 6.2.2 describes all possible decompositions of t1
by method m. As it can be seen in the DSL (line 163), t1 is decomposed into one task,
the �stop_AI_GES(di)� task. Substituting t1 by this task leads to the new recursive call:

HYP(<stop_AI_GES(di), stop_software(ci), stop_software(db)>, O, M)

The �rst task t1 is now an atomic task, delegating the processing to the HTN planner:
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HTP(<stop_AI_GES(di), stop_software(ci), stop_software(db)>, O, M)

There is only one applicable operator for �stop_AI_GES� described in lines 186-192 in
the DSL in Appendix A. It is applicable because the current state of the dialog-instance
is still running. This operator is picked by the HTN algorithm in line 28 in Algorithm
2. Its e�ects are applied to the knowledge base. The e�ects are described in line 190
of the DSL. The body of the �e�ects� closure executes the method �stop()� implemented
by every subclass of �AI_GroundedExecutionService�. We assume that the implemented
�stop()� method automatically adjusts the �state� attribute of the domain object. Oth-
erwise, we would have to set the attribute manually in the body of the �e�ects� closure.
Finally, we get the following plan:

<stop_AI_GES(di)> ◦ HYP(<stop_software(ci), stop_software(db)>, O, M)

Note that the �rst task is not part of the planner invocation any more because it is
already an operator part of the plan. The call to the Hybrid planner is again redirected to
the HTN planner which decomposes the task into the atomic task �stop_AI_GES(ci)�.
The same operator as with the previous task is then used to implement the changes to
the knowledge base. This leads to the plan:

<stop_AI_GES(di), stop_AI_GES(ci)> ◦ HYP(<stop_software(db)>, O, M)

The dialog-instance and the central-instance are now both in state �installed�. The
Hybrid planner redirects the call again to the HTN planner which now deals with the
�stop_software(db)� task. It is a non-atomic change request. M holds three methods,
�stop_software(1)�, �stop_software(2)�, and �backup_database�. Only �stop_software(1)�,
matching the method shown in lines 143-154 in the DSL in Appendix A, can be applied.
It describes two subtasks �stop_AI_GES(db)� and �backup_database(db)� that are sub-
stituted for t1 leading to the new plan:

<stop_AI_GES(di), stop_AI_GES(ci)> ◦
HYP(<stop_AI_GES(db), backup_database(db)>, O, M)

The invocation is again redirected to the HTN planner. t1 holds the atomic task
�stop_AI_ GES(db)�. The set of applicable operators only consists of the �stop_AI_GES�
operator, shown in lines 186-192 in the DSL in Appendix A because there is no other
operator matching this description. The changes described by this operator are made
persistent to the knowledge base, i. e., the method �stop()� is executed on the database
(compare �e�ects� closure in line 190 in the DSL). This leads to the following plan:

<stop_AI_GES(di), stop_AI_GES(ci), stop_AI_GES(db)> ◦
HYP(<backup_database(db)>, O, M)
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The call is redirected to the HTN planner because �backup_database(db)� is a non-
atomic change request. This leads to the new invocation:

<stop_AI_GES(di), stop_AI_GES(ci), stop_AI_GES(db)> ◦
HTP(<backup_database(db)>, O, M)

The HTN algorithm shown in Algorithm 2 in Subsection 6.2.2 initializes t1 with the
�backup_database(db)� task. M ′, the set of applicable methods to decompose t1, only
consists of the �backup_database� method shown in lines 169-180 in the DSL in Appendix
A. The database, the target of the change request, is an instance of class �AI_GES_DB�.
It is in state �installed�, i. e., the precondition of the method is satis�ed. Furthermore,
the name of the change request and the method are matching. We assume that the
method �get_tables()� returns the List �<�table1�,�table2�>� when called on database
�db�. Under this assumption the variable Subtasks in line 13 in Algorithm 2 in Subsec-
tion 6.2.2 holds the value �< <backup_table(db,�table1�), backup_table(db,�table2�)>
>�. The for loop in lines 15-21 is only executed once because Subtasks only contains
one set. Finally, the following recursive call is done in line 16:

<stop_AI_GES(di), stop_AI_GES(ci), stop_AI_GES(db)> ◦
HYP(<backup_table(db,�table1�), backup_table(db,�table2�)>, O, M)

The call to the Hybrid planner is redirected to the HTN planner. The �backup_table�
task is an atomic task. There is only one operator with description �backup_table� de-
�ned, the one in lines 218-224 in the DSL in Appendix A. The precondition is satis�ed
because the database is in state �installed�. The HTN algorithm makes the changes to the
knowledge base persistent by executing the �backup_table()� method on the database.
The string describing the name of the table is given to the method as a parameter (see
line 222 of the DSL). The name of the table to backup can be accessed by the �params�
map of the change request because it is a parameter of this change request. The behavior
of the algorithm regarding the second �backup_table� task is the same. In the end the
following plan is delivered:

<stop_AI_GES(di), stop_AI_GES(ci), stop_AI_GES(db)> ◦
<backup_table(db,�table1�), backup_table(db,�table2�)>

6.4. Temporal constraints and plan consistency

This section explains the temporal constraints included in a plan, how they are main-
tained during task decomposition, and how a plan can be checked for consistency regard-
ing these constraints. With temporal constraints we mean a binary relation over change
requests expressing which change request needs to be �nished before another one can
be started. De�nition 11 in Subsection 4.3, which de�nes a plan, already gave a de�ni-
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tion of such a relation. The introduced happens_before relation part of plan describes
which atomic change requests need to be �nished before another one can be started. The
happens_before relation is only de�ned over atomic change requests. For the remainder
of this section we relax the happens_before relation to an after relation which does
not only formalize temporal constraints between atomic change requests, but between all
three kind of change requests. after is de�ned as follows:

De�nition 12 (after relation)

Let CRS = {cr1, ..., crn}, n ∈ N0, be the set of all change requests. Then after is
de�ned as:

after ⊆ CRS × CRS,

such that (cri, crj) ∈ after, i ≤ n, j ≤ n, i 6= j if cri needs to be �nished before crj
can be started.

The after relation needs to be kept updated by the HTN and the Classical planner
to keep track of the temporal dependencies. Lets assume that both planning methods
keep this relation updated and a successful decomposition of a task into atomic change
requests is achieved. We can then receive the happens_before relation of the plan (com-
pare De�nition 11) by restricting the after relation to all tuples (a, b), such that a and
b are atomic change requests.

The remainder of this section is organized as follows: First of all, we explain the tem-
poral constraints involved in HTN task decomposition in Subsection 6.4.1. In Subsection
6.4.2 we explain the temporal constraints that need to be checked or added when a new
action is added to a plan. Finally, Subsection 6.4.3 explains which temporal constraints
need to be added when the Classical planner decomposes reserved change requests.

6.4.1. Maintaining temporal constraints during task decomposition

This subsection explains how temporal constraints are maintained during HTN task
decomposition. The HTN pseudo code introduced in Algorithm 2 in Subsection 6.2.2
does not explain how the algorithm keeps track of temporal dependencies. Especially in
line 13, where the subtasks are created, it is not mentioned which temporal constraints
account among these subtasks and other change requests part of the decomposition tree.
Figure 6.2 shows the �rst part of an example explaining how the after relation introduced
in De�nition 12 is adapted during task decomposition.
The example in Figure 6.2 shows the decomposition of the high-level task a into three

subtasks. Be aware that the shown change request objects are a simpli�cation of the
�AI_ChangeRequest� class introduced in Figure 2.4 in Subsection 2.5. Because a is
a non-atomic change request, its �type� attribute holds the value �non-atomic�. It is
decomposed into the three tasks b, c, and d. The �rst and the last one are non-atomic
change requests and c is an atomic change request. The curved arrow over the lines
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Figure 6.2.: Decomposition tree after expansion of change request a

a: AI_ChangeRequest

type = "non-atomic"

b: AI_ChangeRequest

type = "non-atomic"

c: AI_ChangeRequest

type = "atomic"

d: AI_ChangeRequest

type = "non-atomic"

leading to the children symbolizes a sequential decomposition, i. e., a totally ordered
method is used to decompose a. The arrows between b and c as well as c and d describe
the after relation. Be aware that the after relation comprises atomic and non-atomic
change requests. Because the parent node a is not part of the after relation we do not
need to consider additional constraints when creating the subtasks. We assume that the
arrows above are added to the after relation when the Subtasks are assembled in line
13 in the HTN pseudo code in Algorithm 2 in Subsection 6.2.2. Figure 6.3 shows the
situation after b has been decomposed into e and f , two parallel atomic subtasks.

Figure 6.3.: Decomposition tree after expansion of change request b

a: AI_ChangeRequest

type = "non-atomic"

b: AI_ChangeRequest

type = "non-atomic"

c: AI_ChangeRequest

type = "atomic"

d: AI_ChangeRequest

type = "non-atomic"

e: AI_ChangeRequest

type = "atomic"

f: AI_ChangeRequest

type = "atomic"

In the case of a parallel decomposition it is not necessary to add a temporal constraint
between e and f because they can be executed in parallel. But we need to take the
dependencies into account the parent b is participating in. Before the decomposition,
(b, c) ∈ after accounts. As e and f are children of b, (e, c) ∈ after and (f, c) ∈ after
accounts, too. The after relation is symbolized by the arrows in Figure 6.3. Be aware
that if parent b were part of the after relation in the way that ∃ x ∈ CRS such that
(x, b) ∈ after, then we had to adapt the after relation in the second argument. This
is not the case in Figure 6.3 because there is no incoming arrow in b. The next task
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expanded by the HTN algorithm is node d because c is an atomic change request. Figure
6.4 shows the decomposition tree after the expansion of change request d.

Figure 6.4.: Decomposition tree after expansion of change request d

a: AI_ChangeRequest

type = "non-atomic"

b: AI_ChangeRequest

type = "non-atomic"

c: AI_ChangeRequest

type = "atomic"

d: AI_ChangeRequest

type = "non-atomic"

e: AI_ChangeRequest

type = "atomic"

f: AI_ChangeRequest

type = "atomic"

h:AI_ChangeRequest

type = "atomic"

g: AI_ChangeRequest

type = "non-atomic"

Change request d in Figure 6.4 is decomposed into two parallel tasks, g and h. Thus,
(g, h) is not added to the after relation. The parent node d is involved in the relation
(c, d) part of the after relation. This can be seen by the arrow in Figure 6.4 leading from
c to d. As g and h are children of d, (c, h) and (c, g) are added to the after relation.
Only g is a non-atomic change request which needs to be decomposed further. The result
of its decomposition is shown in Figure 6.5.

g is decomposed into i and j by a method describing a sequential decomposition. Thus,
(i, j) needs to be added to after. In addition to that, we need to look at the parent's
involvement in the after relation. The only pair in after containing g is (c, g). Because
i and j are children of g, they also need to obey the constraints imposed on their parent.
Consequently (c, i) and (c, j) are added to after which is shown by the arrows between
the participating change requests in Figure 6.5.

The �nal plan can be derived from the decomposition tree and the after relation by re-
stricting the after relation to pairs of atomic change requests. The set of atomic change
requests in Figure 6.5 is {e, f, c, i, j, h} and the after relation, restricted to atomic change
requests, is {(e, c), (f, c), (c, i), (c, j), (i, j), (c, h)}. The set of atomic change requests and
the restricted after transition on them is called a plan for change request a. Be aware
that such a plan is consistent with De�nition 11 in Section 11. The plan is visualized
in Figure 6.6. It can be received from Figure 6.5 by removing every arrow leading from
or to a non-atomic change request (this equals the restriction of the after relation to
atomic tasks). In addition to that, non-atomic tasks and the lines connecting a task with
its parent task need to be removed .
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Figure 6.5.: Decomposition tree after expansion of change request g

a: AI_ChangeRequest

type = "non-atomic"

b: AI_ChangeRequest

type = "non-atomic"

c: AI_ChangeRequest

type = "atomic"

d: AI_ChangeRequest

type = "non-atomic"

e: AI_ChangeRequest

type = "atomic"

f: AI_ChangeRequest

type = "atomic"

h:AI_ChangeRequest

type = "atomic"

i: AI_ChangeRequest

type = "atomic"

j: AI_ChangeRequest

type = "atomic"

g: AI_ChangeRequest

type = "non-atomic"

Figure 6.6.: Final plan consisting of atomic tasks and after relation

c: AI_ChangeRequest

type = "atomic"

e: AI_ChangeRequest

type = "atomic"

f: AI_ChangeRequest

type = "atomic"

h:AI_ChangeRequest

type = "atomic"

i: AI_ChangeRequest

type = "atomic"

j: AI_ChangeRequest

type = "atomic"
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From the plan shown in Figure 6.6 we can also easily derive a possible execution order
of the change requests. A change request cr can be executed if ¬∃cr′ ∈ CRs, such that
(cr′, cr) ∈ after and cr′ has not been �nished yet. To �nd these change requests we
need to look for atomic change requests in Figure 6.6 that have no incoming arrows or
only arrows from change requests whose execution is already �nished. Change requests
e and f ful�ll this requirement. They can be executed in parallel. After both have been
�nished, c can be executed because it only has incoming arrows from �nished change
requests. After c is �nished, i and h can be executed in parallel. As soon as i is �nished,
j can be executed (still in parallel to h).

Note that there is a slight di�erence between how the after relation is stored in the
conceptual model and how it is represented in the UML diagram shown in Figure 2.4 in
Subsection 2.5. In the conceptual model we describe temporal constraints using a binary
relation called after (see De�nition 12 in Section 6.4). In the UML model the after
relation is described by the �after� references of class �AI_ChangeRequest�. Because the
pseudo code presented in Section 6.2 is based on this UML model, there is no explicit
formalization of the after relation in the pseudo code. In the UML model every change
request only knows about the temporal constraints it participates in. This is in contrast
to the after relation which provides a global view on temporal constraints.

6.4.2. Plan extension and plan consistency

This subsection explains what needs to be considered when adding an atomic change
request to a plan and how plan consistency can be checked. Both is done by the HTN
planner when t1 is added to the old plan plan in line 31 in the HTN algorithm in
Subsection 6.2.2 and the resulting plan is checked for consistency. In this subsection
we look at both issues. First of all we explain which temporal constraints need to be
considered when a new action is added to the plan. After that, we explain how the new
plan can be checked to contain only consistent temporal constraints.

Adding an atomic task to a plan

Adding a new atomic task to a plan, i. e., a set of atomic tasks and a happens_before
relation over them as de�ned by De�nition 11 in Section 4.3, might not be as trivial as
it seems to be at �rst sight. An atomic task which is to be added to the plan is part
of parallel and / or sequential decompositions as described in Subsection 6.4.1. The
action which is added to the plan is part of such a combination of sequential and parallel
decompositions. Because we assume that these dependencies are automatically captured
as explained in Subsection 6.4.1 we do not need to consider them when the action is
added to the plan. But there are also other temporal constraints imposed on an action
than the ones de�ned by the decomposition through parallel or sequential tasks . Figure
6.7 provides an example of these constraints.
It shows the decomposition of the top level change request a into the parallel change

requests b and e. Both are non-atomic tasks. They are decomposed by sequential methods
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Figure 6.7.: Unspeci�ed temporal relationships between parallel subtasks
a: AI_ChangeRequest

type = "non-atomic"

c: AI_ChangeRequest

type = "atomic"

d: AI_ChangeRequest

type = "atomic"

f: AI_ChangeRequest

type = "atomic"

g: AI_ChangeRequest

type = "atomic"

b: AI_ChangeRequest

type = "non-atomic"

e: AI_ChangeRequest

type = "non-atomic"

h: InfrastructureComponent i: InfrastructureComponent

(compare the curved arrows below nodes b and e) into the atomic change requests c, d
and f , g. The arrows between c, d as well as f , g describe the after relation as de�ned
in De�nition 12 in Section 6.4. In addition to that, the decomposition tree is augmented
by the targets of the change requests. i, an instance of class �InfrastructureComponent�
is the target of change requests d and g. Furthermore, h is the target of the atomic
change requests c and f . As both change requests can be executed in parallel (there is
no arrow between c and f), there are two parallel change requests targeting the same
domain object. The same accounts for the atomic tasks d and g both targeting i. They
can be executed in parallel after c and f have been �nished. Normally we would demand
from the domain expert not to write methods that are inconsistent. They are inconsistent
because the designer of the knowledge base speci�ed that b and e can be solved in parallel
but some of their children are targeting the same domain objects.
This leads to possibly unsound plans. To see this examine the atomic change request f .
It is planned for in a state of the knowledge base in which c has already changed target h.
But the plan which is returned by the algorithm allows us to execute f in parallel with
c which is in contrast to how the planner planned for action f . Normally this is not a
problem if parallel actions target di�erent domain objects because then the preconditions
of one action do not rely on the e�ects of another action. In this case we do not need to
add additional temporal constraints. But if two actions can be executed in parallel and
they target the same domain object, a temporal relationship re�ecting the order how the
planner planned for it needs to be added. Otherwise, we are facing unsound plans.
Generally the following needs to be done when adding an action t1 to the plan in line
31 in Algorithm 2 in Subsection 6.2.2: For every cr ∈ plan we need to verify whether cr
and t1 are targeting the same domain object. If they do so and (t1, cr) is not part of the
transitive closure of the after relation, i. e., t1 and cr can be executed in parallel, then
we need to add this constraint to the after relation. Regarding our proposed model of
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an �AI_ChangeRequest� this means that we need to add cr to the �after� references of
change request t1. The other way round holds for t1 whose �before� reference needs to
be updated.
De�nition 13 describes what it means to add an atomic task to an already existing plan
in terms of the conceptual model:

De�nition 13 (adding an atomic task to a plan)

Let p, p = ({cr1, ..., crn}, after), cri = (cr_namei, cr_oi, cr_paramsi), i ∈
{1, ..., n} be a plan as described in De�nition 11 in Section 4.3. Let cr0 =
(cr_name0, cr_o0, cr_params0) be the atomic change request to add to plan p.
Then p′ = cr0 ◦ p is de�ned as:

p′ = ({cr0, cr1, ..., crn}, after′), such that
after′ = {(cr0, cri)| i ∈ {1, ..., n} ∧ (cr_o0, cr_oi) /∈ after ∧ cr_o0 = cr_oi} ∪

after

Plan consistency

After the new atomic change request has been added to the old plan in line 31 in Al-
gorithm 2 in Subsection 6.2.2, the new plan needs to be checked for consistency. In the
conceptual model a consistent plan is de�ned as follows:

De�nition 14 (consistent plan)

A plan p = (CR, happens_before) as de�ned in De�nition 11 in Section 4.3 is called
consistent if the graph G = (V,E) where V = CR and E = happens_before does not
have a cycle.

A plan is consistent if its happens_before relation does not have a cycle. The
happens_before relation can be derived from the after relation by restricting it to
pairs of atomic change requests. If the happens_before relation has a cycle, then there
is a cyclic dependency which cannot be resolved. Thus, there is no execution sequence
of tasks that ful�lls the dependencies. For example, consider the decomposition given
in Figure 6.7. The algorithm conducts a �rst-depth search. The last recursive call done
by the planner is to the atomic change request g when line 30 in Algorithm 2 in Sub-
section 6.2.2 is executed. This results in the concatenation of the empty plan (∅, ∅) and
g leading to the plan ({g}, ∅). Later f is added to this plan. When adding f to the
plan (f, g) is added to the after relation because all dependencies of f are added. This
leads to the new plan ({f, g}, {(f, g)}). We do not need to add additional constraints
because g is targeting a di�erent domain object than f . The new plan is consistent
because it is cycle free. The next action to add from Figure 6.7 is d. But d targets
the same domain object as g, namely i. If d and g where part of the after relation
this would not matter. Unfortunately they are not and can thus still be executed in
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parallel. When adding d to the plan we thus also need to add (d, g), an additional con-
strained as demanded by De�nition 13, to the after relation. This leads to the new plan
({d, f, g}, {(f, g), (d, g)}). The plan is consistent because it does not contain a cycle in its
after relation. On adding c to the plan, we need to add (c, d) to the happens_before re-
lation of the plan. Furthermore f , which is already in the plan, targets the same domain
object as c. As (c, f) /∈ after, this pair needs to be added, too. This leads to the �nal
plans ({c, f, g}, {(f, g), (d, g), (c, d), (c, f)}). The �nal plan is circle free. Be aware that
this is done behind the scenes when lines 31-35 are executed in Algorithm 2 in Subsection
6.2.2.

6.4.3. Dependencies for reserved change requests

In the previous sections we only examined how dependencies are maintained during task
decomposition (Subsection 6.4.1) and how additional dependencies need to be added
when plans are concatenated in Subsection 6.4.2. In addition to that, we have looked at
plan consistency in Subsection 6.4.2. We have not yet examined how temporal constraints
are set when reserved change requests are solved. This is particularly important because
this gives a semantics to the Classical Planning problems we solve within the HTN
tree. Figure 6.8 shows an exemplary decomposition of a reserved change request and the
dependencies accounting among its children.

Figure 6.8.: Dependencies between the subtasks of a reserved change request

db: InfrastructureComponent

a: AI_ChangeRequest

"not installed"

type = "reserved"
params["goal_state"] =

ci: InfrastructureComponent

dependency CR task linked to transition

d: AI_ChangeRequest

"not installed"

type = "reserved"
params["goal_state"] =

c: AI_ChangeRequest

"stop_software"

type = "non-atomic"
description =

"installed"

type = "reserved"
params["goal_state"]=

b: AI_ChangeRequest e: AI_ChangeRequest

"uninstall_AI_GES"

type = "atomic"
description =

task linked to transitiondependency CR

tasks for transition "uninstall"tasks for transition "stop"

The example given in Figure 6.8 is similar to the example provided in Section 6.3.
The top-level change request given there is a reserved change request demanding to stop
the database. The �AI_ChangeRequest� a given in Figure 6.8 goes a step further. It
demands to set the state of the database to �not installed�, i. e., it demands to uninstall
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the database. Note that the �params� map of change request a holds a key �goal_state�
describing the goal of the Classical Planning task. We assume that the database is
currently in state �running�. Thus, two transitions need to be executed to reach the �not
installed� state, the �stop� and then the �uninstall� transition. The Classical Planning
algorithm shown in Algorithm 3 in Subsection 6.2.3 determines the subtasks as follows:
First, it looks up the valid dependencies for transition �stop�. As it can be seen in the
DSL in lines 75-102 in Appendix A, there is one valid dependency for this transition
in a database. This dependency describes a Classical Planning problem (lines 87-89)
demanding to set the state of the dialog-instance to �installed�, i. e., the state where it
is stopped. This is expressed by change request b. After that, the task linked to the
transition is planned for. Line 78 in the DSL shows that this is the �stop_software�
task. It is represented by change request c. The algorithm repeats the same thing for
the �uninstall� transition. It looks up the valid dependencies and creates the children
described by them. Only one dependency, the one shown in lines 114-122, is valid for
the transition �install� of a database. It demands to set the state of the central-instance
to �not installed�. Task d represents this change request. After that, the task linked to
the �uninstall� transition is added. In this case it is an atomic task described in line 109
of the DSL and shown in the �AI_ChangeRequest� e in Figure 6.8. The dashed arrows
between the tasks mark the targets of the change requests.
The Classical Planning algorithm given in Subsection 6.2.2 does not state how the after
relation is de�ned among these subtasks. For each transition the algorithm determines
a set of �dependency� subtasks, i. e., subtasks de�ned by the dependencies linked to a
transition, and the task linked to the transition. Compare Figure 6.8 to see which change
requests are dependency change requests and which ones are the tasks linked to either
transition �stop� or �unistall�.
On processing a reserved change request, the following dependencies need to be set:

• For each change request de�ned by a dependency, i. e., a dependecy CR, there
needs to be a sequential constraint to the �task linked to the transition� that follows
them. For example, change request b in Figure 6.8 is a dependency change request
because it is described by a dependency linked to transition �stop�. It has an arrow
leading to c which is the task linked to the transition. The same accounts for the
arrow leading from d to e because d is a dependency change request of transition
�uninstall� and e is the task linked to the �uninstall� transition.
If there were more than one dependency change request belonging to a transition,
then each of these would have an arrow to the task linked to the transition. Be
aware that there are no sequential constraints between the reserved change request
describing the dependencies of one transition. Thus, change requests resolving
dependencies for the same transition are considered to be executed in parallel.

• If the reserved change request demands to execute more than one transition then
there is an arrow from the task linked to the previous transition to every change
request belonging to the following transition. For example, in Figure 6.8 two transi-
tions, �stop� and �uninstall�, need to be executed. c is the task linked to transition
�stop�. �unistall� is the subsequent transition to �stop�. d and e implement the
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�uninstall� transition. Thus, there is an arrow from c to d and from c to e. This
is necessary in order to guarantee the sequential execution of the change requests
that belong to di�erent transitions.

The �Add_dependencies_to_children()� method called in line 26 in Algorithm 3 in
Subsection 6.2.3 sets the dependencies as described above. Algorithm 4 summarizes the
previous �ndings describing the �Add_dependencies_to_children()� method.

Algorithm 4 Add_dependencies_to_children(T, t_to_solve, t_old)
1: for t ∈ T do

2: add (t, t_to_solve) to after relation
3: end for

4: if t_old! = null then
5: for t ∈ (T ∪ {t_to_solve}) do
6: add (t_old, t) to after relation
7: end for

8: end if

Algorithm 4 is called for every transition by Algorithm 3. It takes three parameters, all
dependency tasks linked to the transition (set T ), the task which is directly linked to this
transition (t_to_solve), and t_old, the task linked to a possibly existing previous transi-
tion. For example, consider the change request a given in Figure 6.8. For transition �stop�
Algorithm 4 is called with the parameters {b}, c, and null: {b} contains all dependency
tasks of transition �stop�, c is the task linked to the transition, and null denotes there is
no transition advancing the �stop� transition. The for loop in lines 1-3 in Algorithm 4
adds (b, c) to the after relation, i. e., the arrow between b and c in Figure 6.8. The fol-
lowing if statement evaluates to false. When the for loop in lines 17-29 in Algorithm 3 in
Subsection 6.2.3 is executed with t = uninstall, the �Add_dependencies_to_children()�
function is called with {d}, e, and c as parameters. The set {d} holds all dependency
tasks valid for the �uninstall� transition in a database, e is the task linked to the transi-
tion, and c is the task of the previous �stop� transition. Algorithm 4 adds (d, e) to the
after relation when lines 1-3 are executed. Now the if statement in line 4 evaluates
to true because there has been a previous transition before �uninstall�. In lines 5-7 the
algorithm iterates over every t ∈ T ∪ {t_to_solve} = {d} ∪ {e} = {d, e} and adds them
in pairs with c to the relation. All in all, (c, d) and (c, e) are added to the after relation.
To sum it all up, the algorithm creates constraints such that all dependency change re-
quests for a transition are executed before the task linked to the transition is executed.
If there is more than one transition that needs to be taken in order to solve the Classical
Planning problem, additional temporal constraints are added between the task imple-
menting the previous transition and all tasks belonging to the subsequent transition.
Thus, we can ensure that tasks are executed in the order transitions occur in the state-
transition system. Be aware that the algorithm uses a �rst-depth search and respects
this order.
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Detecting violation of reserved change requests

Reserved change requests are di�erent from atomic and non-atomic change requests be-
cause they describe Classical Planning problems. Two reserved change requests might
occur in parallel, leading to plans that allow to change the state of the same transi-
tion system in parallel. These inferences lead to unsound plans. It is thus desirable to
ban reserved change requests that occur in parallel and change the same state-transition
system. More formally we de�ne in the terms of the conceptual model:

De�nition 15 (con�icting reserved change request)

Two reserved change requests cr1 = (cr_name1, cr_o1, cr_params1) and cr2 =
(cr_name2, cr_o2, cr_params2) are called con�icting if

• cr1 and cr2 have the same target domain object, i. e., cr_o1 = cr_o2.

• (cr1, cr2) /∈ after ∧ (cr2, cr1) /∈ after, i. e., cr1 and cr2 can occur in parallel.

The Classical Planning algorithm shown in Algorithm 3 in Subsection 6.2.3 checks
if the reserved change request, which is planned for, violates another reserved change
request already part of the decomposition tree. Because the after relation does not only
contain constraints between atomic change requests, but also between change requests
of other types, it also contains an order over the reserved change requests. We can thus
directly verify whether De�nition 15 holds. If the change request con�icts with another
reserved change request then we return failure, otherwise planning is continued. The
pseudo code shown in lines 8-10 in the Classical Planning algorithm in Subsection 6.2.3
performs the checks according to De�nition 15.
Be aware that due to our de�nition of con�icting change requests every plan containing
reserved change requests that target the same domain object and can be executed in
parallel are considered as not valid. Looking at the decomposition, which is generally
applied to reserved change requests as shown in Figure 6.8, this means the following:
When the �Classical_Planner()� method is called on change request b it checks whether
it is in con�ict with another reserved change request. The only reserved change request
that has been touched by the planner before and can be executed in parallel to b is
a because there is no arrow between a and b. Because a and b are targeting di�erent
domain objects there is no con�ict between the two change requests. When the planner
plans for d it needs to check relations to a and b. Only a can be executed in parallel to
d. But they are not in con�ict to each other because a is targeting the database and d
the central instance (compare Figure 6.8).
Be aware that reserved change requests part of the transitive parent / child relation (e.g.
b and a) do not have a temporal constraint between them. Applying De�nition 15 to
these pairs results in the fact that two reserved change requests cr1, cr2, where cr2 is
the descendant of cr1, are not allowed to be in con�ict with each other. This means the
descendant cr2 of a reserved change request cr1 is not allowed to change the state of the
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same state-transition system as its ancestor. This is perfectly �ne because otherwise,
we would produce unsound plans by contradicting the intention of a higher-level change
request. This one might already try to achieve a speci�c state in a domain object.
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7. Related work

This chapter provides an overview of important related work in the context of the hybrid
approach. Related work can be roughly categorized into two areas. The �rst comprises
related work done on hybrid HTN approaches that combine HTN with other planning
approaches, mainly Operator-based Planning. These approaches are introduced in Sec-
tion 7.1. The second area comprises related work done in the �eld of IT change request
planning. Relevant works from this �eld are introduced in Section 7.2.

7.1. Related Hybrid HTN Planning approaches

This section gives an introduction to related work regarding hybrid HTN Planning ap-
proaches. We can distinguish between di�erent kinds of hybrid HTN planning techniques.
The �rst area comprises hybrid approaches that combine Hierarchical Task Network Plan-
ning [37], [16] with Operator-based Planning [40]. These approaches o�er both, Classical
and HTN Planning capabilities. The second kind of hybrid approaches are Hybrid Plan-
ning approaches that are not comprised of two di�erent planning approaches, but of data
structures from di�erent approaches. Such approaches can be considered as hybrid, too.

Chien and his coworkers [9], [8] introduced a hybrid approach which combines HTN
Planning with Operator-based Planning. It has been applied to two di�erent planning
domains, the automatic generation of scripts for image processing [9] and the automatic
generation of tracking plans of communication antennas [8]. We �rst examine the ap-
proach used for image processing.

The MVP/VICAR planner [9], [7] is meant to generate scripts in a language for im-
age processing, called VICAR. These scripts are based on high-level image processing
requests. According to [9] there are two main reasons for the introduction of the hybrid
approach. First, a pure Operator-based planner was not able to plan for the big search
space without adding additional control knowledge. Second, analysts of the image pro-
cessing domain think hierarchically about how to decompose a complete image processing
request into a sequence of more simpler steps. These observations match partly with our
motivation for the introduction of a hybrid approach. The domain of change request
planning is undoubtedly an hierarchical domain in which high-level change requests are
decomposed into �ner-grained change requests. This is similar to the problem solving
strategies applied in the VICAR domain. In contrast to VICAR, we do not introduce a
hybrid approach because we su�er from an exploding search space. We introduce Hy-
brid Planning because a pure HTN approach comes at certain drawbacks like decreased
knowledge base readability and maintenance. Instead, a hybrid approach consisting of
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HTN and Classical Planning improves the readability, maintainability, and reuseability
of our knowledge base.
There are also di�erences how the two planning approaches are linked together. The
MVP/VICAR planner starts with a high-level planning goal which is further decom-
posed by HTN methods. The decomposition either ends with atomic goals, i. e., primi-
tive tasks, or with goals describing an Operator-based Planning problem. These goals are
then solved by an Operator-based planner. Finally, the di�erent plans are integrated to
one global plan. Thus, Chien's approach can trigger Operator-based Planning problems
from HTN Planning problems. Our approach is di�erent in the way that we also allow
to trigger HTN Planning problems from Classical Planning problems. This is important
to our planning domain because the change of the state of a domain object can involve
more complex tasks that need further re�nement. This also means that we have to en-
rich the original Classical Planning approach by additional concepts, leaving the paths
of well explored Classical Planning approaches. This is a drawback compared to Chien's
approach which still can make use of the �ndings regarding Operator-based Planning. By
triggering HTN Planning problems from Classical Planning problems and vice versa we
gain the freedom to switch between both representations at every hierarchical level of the
decomposition tree. This is especially useful for expressing constraints in our planning
domain that involve solving an hierarchical task network that is most easily speci�ed by
a Classical Planning problem.
Chien also argues in favor of a separation of the Hierarchical Task Network planner and
the Operator-based planner. We do not separate these two approaches. Both access the
same knowledge base. We even go a step further by reducing the Classical Planning
problem to an HTN problem. Classical Planning problems are solved within the HTN
decomposition tree. This leads to a closely coupled integration of HTN and Classical
Planning resulting in great �exibility when switching the planning approach everywhere
within the decomposition tree. This is especially important in our domain, where Clas-
sical Planning problems need to be solved as part of an hierarchical planning task, e. g.,
when it comes to resolve constraints.

Chien et al. [8] also constructed a planner similar to MVP/VICAR, the DPLAN plan-
ner. It is a planning system that can generate antenna tracking plans for radio science
telecommunications antennas. It was developed after VICAR and uses the same algo-
rithmic principle. Thus, lots of the evaluation given on the MVP/VICAR algorithm also
accounts for DPLAN. The planner creates an antenna tracking plan based on high-level
service requirements, e. g., an uplink to a device in space, and on available hardware
equipment. Similar to MVP/VICAR it applies a hybrid HTN/Operator-based Planning
approach where Operator-based Planning is done in the leaf nodes of the decomposition
tree. HTN is chosen due to its abilities to express more complex order constraints than
Operator-based Planning can do. The domain of change request planning is similar to
this one where more complex order constraints are given that cannot be based on simple
pre- and post conditions like in Operator-based Planning. In addition to that, we tend
to think about change requests hierarchically. The motivation to introduce Classical
Planning in our approach comes from the fact that lots of our domain objects can be
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considered to have a state. Thus, we introduce it for convenience reasons. Our moti-
vation for Classical Planning is di�erent to Chien's who uses Operator-based Planning
because some problems of the DPLAN planning domain do not have an hierarchical na-
ture. The DPLAN planner uses HTN for the decomposition of abstract tasks, i. e., tasks
in the DPLAN domain which are independent of the underlying hardware. The planner
applies Operator-based Planning for more speci�c directives, e. g., when the hardware
has been chosen. Similar to this we apply HTN to decompose abstract change requests.
Di�erent to DPLAN, we nearly exclusively use Classical Planning to resolve constraints
in our domain. But the use of Classical Planning within our approach is not limited to
this. It can also be used as part of an HTN decomposition when it just might be easier
to specify a subtask of a higher-level task that demands to bring a domain object into a
well de�ned state. All in all, MVP/VICAR and DPLAN are both operating in a domain
that demands a hybrid approach.

Having done the work on MVP/VICAR and DPLAN, Estlin et al. [18] summarized
the �ndings from Chien's two projects. They argue in favor of a hybrid HTN/Operator-
based approach as described in MVP/DPLAN for hierarchical domains with implicit
constraints, i. e., constraints that cannot be easily expressed by pre- and post conditions,
and demand for generality to express planning problems. As our domain of change re-
quest planning has an hierarchical structure, too, we can con�rm their justi�cations for
HTN. Because we use Classical Planning, a simpler form of Operator-based Planning, in
our hybrid approach, we cannot directly match the mentioned advantages of Operator-
based Planning to our domain. Compared to [18] we use Classical Planning as part of our
hybrid approach because it enables us to give our domain objects a state. Furthermore,
we can easily describe constraints by referencing to the states of domain objects, i. e., by
specifying a Classical Planning problem.

Further research regarding a hybrid HTN/Operator-based approach bas been done by
Kambhampati et al. [30]. Their work focuses on providing a principled framework for
a hybrid HTN/Operator-based approach. It focuses mainly on the theoretical aspects
of hybrid HTN/Operator-based Planning. The work on a hybrid approach is motivated
by the existence of partially hierarchical planning domains, i. e., planning domains where
not everything can be pressed into an hierarchical order. According to [30] there needs to
be the possibility to plan in an Operator-based fashion in such domains. Early studies of
our work have shown that we can describe our problem domain completely in HTN but
this comes at the price of clarity and maintainability of the knowledge base as mentioned
before. Using Classical Planning makes our domain description easier to understand.
In [30] the hybrid HTN approach is developed on top of a previously de�ned formalization
for Action-based Planning. Be aware that our approach develops a solution for Classical
Planning problems which is directly integrated into the decomposition tree of an HTN
approach. Thus, we provide an example how to solve Classical Planning problems, i. e.,
search through a restricted state-transition system, within an HTN decomposition tree.
Kambhampati [30] agrees with Chien's work [8], [9] that on a high-level HTN Planning is
used until tasks cannot be decomposed any further by methods. Afterwards, Operator-
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based reasoning is used to solve tasks not yet satis�ed. In our work we extend this in
such a way that the solution to Classical Planning problems describes a task network to
be solved. In the simplest case the solution to a Classical Planning problem can be a task
network only containing atomic tasks modeling Kambhampati's and Chien's approaches.
Be aware that we can mimic their approaches if the domain described by Operator-based
Planning can be formalized as a restricted state-transition system.

Another hybrid approach di�erent to ours and the previous ones is GraphHTN [34], [33]
by Lotem, Nau, and Handler. It is not a hybrid HTN/Operator-based Planning approach
but a pure HTN Planning algorithm doing task re�nement with the help of an additional
data structure. This data structure is developed in the Graphlan [6] approach and is
extended for the purpose of HTN Planning in [34] resulting in the GraphHTN approach.
While our work and the ones of Chien and Kambhampati consider hybrid approaches in
the sense that they support multiple di�erent planning approaches, GraphHTN can be
considered as a hybrid approach that uses ideas of data structures brought forward in
other planning algorithms. However, GraphHTN can only do HTN Planning and thus
does not fall within our perception of hybrid approaches.

7.2. Related Change Management approaches

This section gives an overview of related work done in the area of IT change request plan-
ning. Lots of related work deals with Change Management in general. Change request
planning is an important part of Change Management. We mostly focus on the plan-
ning approaches proposed in the related works because this is the main theme of our work.

One of the �rst systems that automated the construction of change plans is IBM
CHAMPS by Keller et al. [31]. Similarities between CHAMPS and our approach is the
strong focus on dependencies. Our approach supports a well de�ned semantics for depen-
dencies according to which the planner can reason. Compared to CHAMPS, we mainly
focus on dependencies on a higher software level, e. g., on application server instances,
instead of single servlets deployed into an application server. Nevertheless, our model of
dependencies is capable of expressing low level dependencies, too.
Besides these similarities there are also some di�erences. First of all, CHAMPS does
planning and scheduling of tasks while our approach only focuses on planning. By intro-
ducing Temporal Constraint Networks [13], [46], we can extend our approach to reason
about the deadline and duration of tasks, too. An external scheduler can then sched-
ule the atomic change requests according to these constraints. CHAMPS automatically
generates dependencies from deployment descriptors and software artifacts. Planning is
then done according to these dependencies. Our approach is based on the view that
dependencies need to be speci�ed by a domain expert aware of the system's software and
hardware that is planned over. Our approach enables the speci�cation of dependencies
on all granularity levels while CHAMPS focuses on low level dependencies. In addition
to that, CHAMPS exclusively plans according to dependencies. There is no notion of
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hierarchical task re�nement or the possibility to specify best practice knowledge from
IT Change Management by work�ows. Our approach supports work�ow description by
HTN method speci�cation and task re�nement. The �planning� approach introduced in
[31] cannot be considered as a planning approach from an Arti�cial Intelligence point
of view because it is not aware of the current state of the world and how actions do
change it. It does not take the preconditions and e�ects of actions into account. Thus,
CHAMPS does not guarantee the soundness of plans.

Cordeiro et al. [11] proposed a template-based approach to formalize, preserve, and
reuse experiences gained regarding IT changes. Their work on ChangeLedge introduces
the idea of request- and plan templates. A request template speci�es the characteristics of
a high-level Request for Change (RFC ). In the hybrid approach request templates can be
expressed by the notion of a high-level HTN method with well de�ned parameters. Plan
templates describe a preliminary plan implementing an RFC / request template. This
plan describes large-grained steps required to accomplish the RFC. Plan templates can
be modeled in our approach by HTN methods that further decompose high-level tasks,
i. e., request templates.
Although the focus of [11] is the knowledge reuse, an algorithm for task re�nement is
proposed. Compared to CHAMPS [31] Cordeiro et al. propose an algorithm based on
task re�nement. However, the re�nement is limited compared to our approach. The al-
gorithm proposed by Cordeiro et al. takes an RFC and searches for a preliminary change
plan, i. e., a plan template, to implement the RFC. After that, planning is done exclusive
by solving dependencies. Although Cordeiro et al. suggest the nesting of templates, the
proposed algorithm does not take this into account. Thus, it is not possible to switch
between planning according to dependencies and task re�nement at every step in the
planning process. This means that task re�nement based on work�ow descriptions can
only be performed on the highest level by �nding a suitable plan template. After that,
the activities of the plan template are re�ned according to dependencies and not due to
hierarchical problem solving behavior. Our approach is capable to plan for decomposition
of tasks and resolution of dependencies at every hierarchy level of the plan interchange-
ably.
In addition to that, Cordeiro's approach makes it necessary that an operator speci�es
the mapping of parameters between an RFC and the plan template. Thus, similar to
CHAMPS, ChangeLedge does not present an automated planning approach that can be
executed without human intervention. The focus of our work is on eliminating human
intervention to automate infrastructure and service management. Similar to CHAMPS,
ChangeLedge has no AI Planning background. The planner is not capable of reasoning
about the e�ects and preconditions of actions. The planner can not detect inconsistencies
speci�ed by an IT practitioner in plan templates, e. g., when two parallel actions change
the same domain object. Thus, from an AI Planning point of view, the algorithm pro-
posed by Cordeiro et al. is not sound. Our algorithm detects this and outputs a sound
sequential plan.

Aware of the drawbacks of their previous approach [11], which does not take precon-
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ditions and e�ects of actions into account, Cordeiro et al. [10] proposed a new algorithm
that takes the e�ects of actions into account. After CHAMPS [31] and their �rst work on
ChangeLedge [11], it can be seen as a �rst approach into the direction of an AI Planning
algorithm. The proposed solution is based on the templates and architectural models in-
troduced in their previous work. Again the �rst re�nement is done by the plan template
and then re�nement is done based on dependencies. Thus, work�ow and hierarchical
problem solving behavior can only be speci�ed in the �rst re�nement step. After that,
re�nement planning not induced by dependencies becomes impossible. According to [10]
a plan is totally re�ned if all dependencies are satis�ed. Cordeiro's work does not take
into account that task re�nement might not be always de�ned by dependencies. Espe-
cially work�ow behavior does not necessarily need to be based on dependencies. Instead,
our approach enables the speci�cation of hierarchical problem solving behavior at every
hierarchy level. In addition to that, solving dependencies can be part of this hierarchy
or new work�ow behavior can be triggered by solving dependencies. In the hybrid ap-
proach dependencies and hierarchical problem solving behavior are clearly separated by
di�erent concepts in the knowledge base. Cordeiro's algorithm delivers unsound plans
under certain circumstances. If two actions are planned for in parallel and change the
same domain object, then there are no mechanisms to prevent the parallel execution of
these actions. As mentioned before, the planning approach proposed in this work is still
sound because an additional temporal constraint is added. Unfortunately [10] does not
explain how the changes to the underlying model are described. All in all, Cordeiro's
second approach extends the algorithm described in [11] such that it changes the knowl-
edge base during planning, although it is not stated how this is done exactly. Our work
proposes Groovy and the concept of closures to describe changes to an object oriented
knowledge base.

Trastour et al. [46] recently applied HTN Planning to the domain of IT change re-
quest planning. They propose ChangeRe�nery, an automated planning approach based
on HTN Planning. It is the �rst work that applies methods from AI Planning to change
request planning. Compared to Cordeiro's [10] previous work on change request plan-
ning, Trastour's approach now incorporates planning based on hierarchical re�nement on
all levels and based on best practices described by work�ows.
Trastour's work [46] very much focuses on providing a generic architecture that captures
models, policies, and best practices of the IT change planning domain. Compared to
our work, they propose an approach in which an IT practitioner guides the decomposi-
tion by choosing di�erent applicable HTN methods. Our approach focuses on planning
without human intervention. While Trastour et al. mainly focus on providing a general
architecture, we show how the planning domain can be described by clearly separating
behavior of domain objects from hierarchical problem solving behavior. Our research is
based on the drawbacks emerging from a pure HTN domain description as it is applied
in their work.
From an algorithmic point of view the HTN Planning approaches used in our work and
Trastour's are very similar. Minor di�erences exist regarding the management of tempo-
ral constraints. While Trastour et al. [46] use Simple Temporal Networks [13] to reason
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about deadlines and duration of actions, we only reason about actions in the form that
some actions need to be completed before another one can be started. We apply a sim-
pler model for temporal constraints because by using Classical Planning within the HTN
approach we need a simple theoretic model to express the temporal relationships implied
by Classical Planning. Nevertheless, our approach can be adapted to incorporate Simple
Temporal Networks [13] to reason about the duration and deadlines of actions. From
an algorithmic point of view ChangeRe�nery and our approach di�er in the fact that
our algorithm incorporates HTN and Classical Planning. This gives us the possibility
to plan in an hierarchical fashion over a domain that is very much driven by the states
of domain objects. This makes our domain description easier to maintain because we
clearly separate behavior of domain objects from hierarchical problem solving strategies.
In addition to that, we describe dependencies not as HTN tasks but as Classical Planning
problems. We consider this to be a more natural perception of constraints in IT change
management.
Additional di�erences regard the implementation of the planner. While Trastour et al.
use the Hibernate Query language to query their underlying model for domain objects,
we directly write Groovy code in our DSL to query our model. Thus, we are not limited
to the capabilities of a query language because we can write our own query language
by providing appropriate methods in our model. In addition to that, we do not try to
mimic an uni�cation approach as known from logic knowledge bases. Instead, we provide
our own computational constructs to describe multiple bindings over an object oriented
model.
All in all, Trastour's approach di�ers from ours in the way that we provide a Hybrid
Planning approach that takes states of domain objects into account. This enables us to
make dependencies between domain objects explicit. Furthermore, the hybrid approach
uses knowledge bases that clearly separate between domain object behavior, hierarchical
task solving behavior, and dependencies. This leads to a more readable, maintainable,
and adaptable domain speci�cation than in a pure HTN approach.

Although not directly related to IT change request planning we want to mention that
Machado [35] et al. proposed a solution to revert parts of a change plan if some of its
actions fail during execution. Our work and the related work done in IT change planning
assumes that the execution of change plans does not fail. If one assumes that the execu-
tion of change plans can fail, then there needs to be support to rollback all the actions
belonging to one transaction.

There has also been lots of research regarding the scheduling of actions of a change
plan. As we only focus on change plan generation, a deeper overview of related work
in this area is not within the scope of this work. Readers interested in an overview of
scheduling work in the context of IT change request planning may be referred to the
related work section in [46].
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8. Conclusion and future work

In this work we have described the drawbacks of a pure HTN approach when planning
over a hierarchical domain whose domain objects have a state. The planning domain
of IT change requests is such a domain. Although a pure HTN approach is capable
of describing this domain, its usage comes with various drawbacks. First, hierarchical
problem solving strategies are mixed with the behavior description of domain objects.
This leads to an implicit coding of state-transition systems into HTN methods. Second,
dependencies relating to the state of domain objects are not made explicit in a pure HTN
approach. This leads to decreased maintainability, extendability, and reuseability of an
HTN knowledge base.
To overcome these problems we have proposed a hybrid HTN / Classical Planning ap-
proach which copes well with the characteristics of hierarchical domains where the behav-
ior of domain objects is best described by state-transition systems. Using our approach,
we can describe the knowledge base in a modular way because domain object behavior,
hierarchical re�nement of tasks, and description of dependencies are clearly separated
from each other. This increases the quality of the knowledge base. The approach o�ers
great opportunity to describe hierarchical re�nement of tasks and keep the notion of
states of domain objects at the same time. In addition to that, we have shown how an
dynamic object oriented language like Groovy can be used to do planning over an object
oriented model.

Because we have introduced a new planning approach, topics linked to the general
context of Change Management were not in the focus of this work. Further research in a
holistic architecture that uses the hybrid approach planning algorithm is necessary. We
also simpli�ed the temporal constraints accounting between tasks to a partial order in
order to achieve simple rules how to describe temporal constraints between tasks de�ning
a Classical Planning problem. Thus, reasoning about deadlines and durations of change
requests was out of the scope of this work. It still needs to be learned how reasoning
about deadlines and task duration can be brought together with temporal dependencies
imposed when solving a Classical Planning problem.

Our immediate next steps are to evaluate the algorithm using an implementation based
on Groovy. In addition to that, we plan to extend the case study beyond SAP systems,
e. g., to Alfresco [1] or TikiWiki [45], both Open Source Content Management systems,
to prove the broader applicability of the hybrid approach. We are con�dent that our
perception of software and infrastructure elements as state-transitions systems and of
dependencies referencing states in transition systems copes with the challenges posed
by new applications. We also plan to extend our approach using Temporal Constraint

106



Networks [13] and to use scheduling techniques to schedule the generated plans according
to the temporal constraints. Finally, we want to examine how the hybrid approach can
pro�t from an re�nement of state-transition systems. We are aiming at an re�nement of
states such that states of a high-level transition system are re�ned by a transition system
itself. This enables us to describe large, complex systems as state-transition systems
whose behavior is based on �ner grained transition-systems. Combining this with an
hierarchical re�nement of transitions could turn out to be a powerful approach to plan
for IT change requests.
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A. Appendix

Listing A.1 describes the planning domain underlying the example given in Section 6.3.
The DSL describes a state-transition system for �AI_GroundedExecutionServices� (lines
1-137), three HTN methods (see lines 143-180), and �ve HTN operators in lines 184-224.
The syntax of the DSL is explained in Section 5.2.

Listing A.1: Pseudo code to plan for the �resolve_dependency� change request

1 t rans i t ion_system ( ta r g e t : AI_GroundedExecutionService ) {
2

3 va l i d {true}
4

5 s t a t e s {
6 s t a t e {" no t_ in s ta l l ed "}
7 s t a t e {" i n s t a l l e d "}
8 s t a t e {" running "}
9 }
10

11 t r a n s i t i o n s {
12

13 t r a n s i t i o n ( " i n s t a l l " , [ from : " no t_ in s ta l l ed " , to : " i n s t a l l e d " ] ) {
14

15 subtask {
16 install_AI_GES on : i t
17 }
18

19 dependenc ies {
20

21 dependency {
22 name {" instal l_CI_before_DI"}
23 va l i d { i t . type == "DI"}
24 subtasks {
25 for ( AI_GroundedExecutionService c i : i t . get_SystemModel ( ) .
26 . get_all_AI_GES( "CI" ) ) { Classical_Planning_problem on : c i ,
27 goa l_state : " i n s t a l l e d " }
28 }
29 }
30

31 dependency {
32 name {" install_DB_before_CI"}
33 va l i d { i t . type == "CI"}
34 subtasks {
35 for ( AI_GroundedExecutionService db : i t . get_SystemModel ( ) .
36 . get_all_AI_GES( "DB" ) ) { Class ical_Planning_problem on : db ,
37 goa l_state : " i n s t a l l e d " }
38 } // end sub t a s k s
39 } // end dependency
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40 } // end dependencies
41 } // end t r a n s i t i o n
42

43

44 t r a n s i t i o n ( " s t a r t " , [ from : " i n s t a l l e d " , to : " running " ] ) {
45

46 subtask {
47 start_AI_GES on : i t
48 }
49

50 dependenc ies {
51

52 dependency {
53 name {"start_DB_before_CI"}
54 va l i d { i t . type == "CI"}
55 subtasks {
56 for ( AI_GroundedExecutionService db : i t . get_SystemModel ( ) .
57 . get_all_AI_GES( "DB" ) ) { Class ical_Planning_problem on : db ,
58 goa l_state : " running " }
59 }
60 }
61

62 dependency {
63 name {"start_CI_before_DI"}
64 va l i d { i t . type == "DI"}
65 subtasks {
66 for ( AI_GroundedExecutionService c i : i t . get_SystemModel ( ) .
67 . get_all_AI_GES( "CI" ) ) { Classical_Planning_problem on : c i ,
68 goa l_state : " running " }
69 } // end sub t a s k s
70 } // end dependency
71 } // end dependencies
72 } // end t r a n s i t i o n
73

74

75 t r a n s i t i o n ( " stop " , [ from : " running " , to : " i n s t a l l e d " ] ) {
76

77 subtask {
78 stop_software on : i t
79 }
80

81 dependenc ies {
82

83 dependency {
84 name {"stop_CI_before_DB"}
85 va l i d { i t . type == "DB"}
86 subtasks {
87 for ( AI_GroundedExecutionService c i : i t . get_SystemModel ( ) .
88 . get_all_AI_GES( "CI" ) ) { Classical_Planning_problem on : c i ,
89 goa l_state : " i n s t a l l e d " }
90 }
91 }
92

93 dependency {
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94 name {"stop_DI_before_CI"}
95 va l i d { i t . type == "CI"}
96 subtasks {
97 for ( AI_GroundedExecutionService d i : i t . get_SystemModel ( ) .
98 . get_all_AI_GES( "DI" ) ) { Classical_Planning_problem on : di ,
99 goa l_state : " no t_ in s ta l l ed " }
100 } // end sub t a s k s
101 } // end dependency
102 } // end dependencies
103 } // end t r a n s i t i o n
104

105

106 t r a n s i t i o n ( " u n i n s t a l l " , [ from : " i n s t a l l e d " , to : " no t_ in s ta l l ed " ] ) {
107

108 subtask {
109 uninstall_AI_GES on : i t
110 }
111

112 dependenc ies {
113

114 dependency {
115 name {"uninstall_CI_before_DB"}
116 va l i d { i t . type == "DB"}
117 subtasks {
118 for ( AI_GroundedExecutionService c i : i t . get_SystemModel ( ) .
119 . get_all_AI_GES( "CI" ) ) { Classical_Planning_problem on : c i ,
120 goa l_state : " no t_ in s ta l l ed " }
121 }
122 }
123

124 dependency {
125 name {"uninstal l_DI_before_CI"}
126 va l i d { i t . type == "CI"}
127 subtasks {
128 for ( AI_GroundedExecutionService d i : i t . get_SystemModel ( ) .
129 . get_all_AI_GES( "DI" ) ) { Classical_Planning_problem on : di ,
130 goa l_state : " no t_ in s ta l l ed " }
131 } // end sub t a s k s
132 } // end dependency
133 } // end dependencies
134 } // end t r a n s i t i o n
135

136 } // end t r a n s i t i o n s
137 } // end trans i t i on_sys tem
138

139

140

141 // methods :
142

143 method ( " stop_software " , t a r g e t : AI_GroundedExecutionService ) {
144

145 precond i t i on { i t . get_target ( ) . type == "DB"}
146

147 subtasks {
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148 s e qu en t i a l {
149 stop_AI_GES on : i t . get_target ( )
150 backup_database on : i t . get_target ( )
151 }
152 }
153

154 }
155

156 method ( " stop_software " , t a r g e t : AI_GroundedExecutionService ) {
157

158 precond i t i on { i t . get_target ( ) . type == "CI" | |
159 i t . get_target ( ) . type == "DI" }
160

161 subtasks {
162 s e qu en t i a l {
163 stop_AI_GES on : i t . get_target ( )
164 }
165 }
166

167 }
168

169 method ( "backup_database" , t a r g e t : AI_GES_DB) {
170

171 precond i t i on { i t . get_target ( ) . s t a t e == " i n s t a l l e d "}
172

173 subtasks {
174 s e qu en t i a l {
175 for ( S t r ing table_name : i t . get_target ( ) . ge t_a l l_tab le s ( ) )
176 { backup_table on : i t . get_target ( ) , name : table_name }
177 }
178 }
179

180 }
181

182

183

184 // opera tor s :
185

186 operator ( "stop_AI_GES" , t a r g e t : AI_GroundedExecutionService ) {
187

188 precond i t i on { i t . get_target ( ) . s t a t e == " running "}
189

190 e f f e c t s { i t . get_taget ( ) . stop ( )}
191

192 }
193

194 operator ( "start_AI_GES" , t a r g e t : AI_GroundedExecutionService ) {
195

196 precond i t i on { i t . get_target ( ) . s t a t e == " i n s t a l l e d "}
197

198 e f f e c t s { i t . get_taget ( ) . s t a r t ( )}
199

200 }
201
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202 operator ( " install_AI_GES" , t a r g e t : AI_GroundedExecutionService ) {
203

204 precond i t i on { i t . get_target ( ) . s t a t e == " not_ in s ta l l ed "}
205

206 e f f e c t s { i t . get_taget ( ) . i n s t a l l ( ) }
207

208 }
209

210 operator ( "uninstall_AI_GES" , t a r g e t : AI_GroundedExecutionService ) {
211

212 precond i t i on { i t . get_target ( ) . s t a t e == " i n s t a l l e d "}
213

214 e f f e c t s { i t . get_taget ( ) . u n i n s t a l l ( )}
215

216 }
217

218 operator ( "backup_table" , t a r g e t : AI_GES_DB) {
219

220 precond i t i on { i t . get_target ( ) . s t a t e == " i n s t a l l e d "}
221

222 e f f e c t s { i t . get_target ( ) . backup_table ( i t . get_prams ( ) [ "name" ] ) }
223

224 }
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