
Integrating Semi-Join-Reducers into State-of-the-Art Query
Processors∗

Konrad Stocker1 Donald Kossmann2 Reinhard Braumandl1 Alfons Kemper1

1Universität Passau 2Technische Universit¨at München
D-94030 Passau, Germany D-81667 M¨unchen, Germany

〈lastname〉@db.fmi.uni-passau.de kossmann@in.tum.de

Abstract

Semi-join reducers were introduced in the late seventies as a means to reduce the communica-
tion costs of distributed database systems. Subsequent work in the eighties showed, however, that
semi-join reducers are rarely beneficial for the distributed systems of that time. This work shows that
semi-join reducers can indeed be beneficial in modern client-server or middleware systems – either
to reduce communication costs or to better exploit all the resources of a system. Furthermore, we
present and evaluate alternative ways to extend state-of-the-art (dynamic programming) query opti-
mizers in order to generate good query plans with semi-join reducers. We present two variants, called
Access RootandJoin Root, which differ in their implementation complexity, their running times, and
the quality of plans they produce. We present the results of performance experiments that compare
both variants with a traditional query optimizer.

1 Introduction

In the last few years, a series of new query processing techniques have been developed in order to speed
up the execution of queries in a distributed environment and/or to speed up the execution of decision
support queries in a data warehouse. One of the techniques which have been rejuvenated aresemi-
join reducers. The basic idea is to applyjoin predicatesearly in a plan in order to reduce the size of
intermediate query results and, thus, reduce the cost of other operations. In other words, the idea is to
apply the same join predicatestwiceor more often in a query plan.
Semi-join reducers were originally proposed in the late seventies [BGW+81, AHY83] in order to reduce
the communication costs of a distributed system. Obviously, semi-join reducers are only effective if
the (redundant) semi-joins are cheap and result in a significant reduction of the size of intermediate
query results. Studies in the early eighties showed that semi-join reducers were rarely attractive for the
distributed systems and query workloads considered at that time. Recent work, however, showed that
semi-join reducers (or similar techniques) are indeed attractive for specific kinds of queries, even in a
centralized system. Variants of semi-join reducers are, for example, attractive to process certain kinds
of star queries [SKB+98], top N queries [CK98], TID hash joins [MR94], or functional joins [BCK98].
Furthermore, we will show that semi-join reducers can be very attractive in modern client-server and
middleware systems.
One of the fundamental difficulties is to optimize plans with semi-join reducers because the search space
of possible plans with semi-joins is huge; much larger than the search space of plans without semi-
joins. The typical approach is to take advantage of semi-join reducers by optimizing queries in several
steps [YC84, YOL84, CY90]: (1) find anoptimal semi-join reducer for each base table; (2) optimize
the join order and methods for the (reduced) base tables. “Optimal” usually means to find semi-join
reducers such that the base tables are filtered as much as possible. Obviously, such an approach will not
produce good plans in most cases; it will over-eagerly generate plans with semi-join reducers and it will
sometimes select the wrong semi-join reducers because the best choice depends on the join order and join

∗This work was supported by the German Research Council (DFG) under contract Ke 401/7-1.

methods used. We, therefore, propose to extend a query optimizer and integrate semi-join reducer and
join-ordering, etc. into a single query optimization step. We propose two ways to extend a state-of-the-art
optimizer and thoroughly discuss the tradeoffs of these two ways.
The remainder of this paper is structured as follows. Section 2 gives examples and presents the results of
performance experiments that demonstrate the usefulness of semi-join reducers. Section 2 also describes
the search space of plans with semi-join reducers. In Section 3, the two ways to extend an existing
state-of-the-art dynamic programming [SAC+79] based optimizer are described. Section 4 summarizes
the results of performance experiments that compare these two approaches with state-of-the-art query
optimization without semi-join reducers. Section 5 describes query optimizer variants that can be used
for very complex queries. Section 6 discusses related work and Section 7 contains conclusions.

2 Motivating Examples and Search Space

In the following we present examples which demonstrate the profitable use of semi-joins in query evalu-
ation plans. The examples consider current (distributed) database systems using replication and caching
mechanisms. Though we concentrate on distributed client-server systems we show that semi-joins can
be profitable in centralized database systems, too. To show query plans we use a standard query tree rep-
resentation. Base tables are represented as leaves, and join operations are represented as internal nodes,
both annotated with site descriptions.

2.1 Benchmark Environment

In order to demonstrate the significance of our examples, we carried out running time experiments with
a ‘real-world’ distributed query engine [BKK99]. Cardinalities and sizes of the tables are presented in
Figure 1. The cardinality of every intermediate result and of the final result is 10.000. No indexes are
considered. Hash-joins are used with 500 KB buffer size. As a result, joins with Table A could be
performed without partitioning, whereas partitioning is required in all other cases (grace-hash joins). We
assume in the following that operators can be executed at client and server machines.

name cardinality size
A 1.000 0.1 MB

B – E 100.000 10 MB

Figure 1: Base Tables

2.2 Reducing Communication Costs in a Distributed System

First of all we address a more traditional application of semi-joins. The main reason for using semi-
joins in distributed database systems is to reduce inter-site communication. Projected attributes are sent
from one server to another. After performing semi-join reduction the reduced table is sent to the first
server [AHY83, Bra84]. But all these approaches are beneficial for traditional distributed systems only
in some cases [BG81].
Queries containing only functional joins (non-expansive joins1) produce only very small benefits or
no benefits at all in traditional symmetric systems by applying inter-site semi-joins. Some particular
examples with expansive joins are conceivable where the use of semi-joins is profitable.
Today, however, most distributed systems have a client-server architecture. We, therefore, concentrate
on this architecture. Client-server systems differ from traditional (symmetric) distributed database sys-
tems by their restricted communication between sites. Clients can communicate with servers, whereas
servers mutually cannot. Therefore running time benefits are much higher in client-server systems than
in traditional systems when using additional joins or semi-joins. As an example consider the following

1Definition of ‘expansive join’:|A � B| > max(|A|, |B|).

2

SQL query and allocation schema:

SELECT ∗
FROM A, B, C
WHERE A.a = B.a ∧ A.b = C.b ;

Server - Site 1 :{A, B}
Server - Site 2 :{A, C}

Although inter-sitesemi-join techniques are not applicable in this case, a reduction in communication
volume between Server 2 and the client by a factor of 10 can be achieved by using anintra-sitesemi-join.
Figure 2 shows this situation. Base tables are indexed with the site they are read from, and operators ared
indexed with the site they are executed at; e.g.�client indicates that the Join ist executed at the client. are
The given running times below the plans show a speed-up of 5 using ISDN communication links between
the client and the servers. Another set of experiments, with the client in Maryland (USA) and both servers
in Passau (Germany) connected via the Internet, produced similar results (648 sec to 140 sec).

�client

�1

B1

�� SS
A1

�� SS
C2

(a) traditional plan: 1632 sec

�client

�1

B1

�� SS
A1

�� QQ
�2

C2

�� SS
A2

(b) new plan: 322 sec

Figure 2: Client-Server System

2.3 Exploiting Machine Resources in a Distributed System

In this section we present an example for which additional joins lead to load balancing effects. In this
example, communication costs are neglected because a high speed LAN is used. Figure 3 shows the use
of additional joins to take advantage of (mostly unexploited) machine resources in distributed database
systems. Consider the following SQL query:

SELECT ∗
FROM A, B, C, D, E
WHERE A.a = B.a ∧ A.b = C.b ∧

A.c = D.c ∧ A.d = E.d ;

Server 1 :{A, B, C}
Server 2 :{A, D, E}

Using a traditional plan only one server executes joins, while the other server sends its tables to the client
and stays idle. The client waits until tuples arrive from Server 1 and has to execute two expensive joins.
In contrast, it is possible to exploit the computing resources of the second server also when an additional
join using the replica ofA is processed. The client only has to execute one join in this case. Figure 3
shows the results for two different configurations. In the first configuration, the client is as fast as the
servers; in the second configuration, the client machine is significantly slower thean the server machines.

Configuration A Configuration B
Server/Client: 86/86 MIPS Server/Client: 86/24 MIPS

traditional plan 161 sec 275 sec
new plan 101 sec 147 sec

2.4 Reducing Disk IO in a Centralized Database System

Benefits due to semi-join reducers can also be achieved in centralized database systems. Consider the
following example:

SELECT ∗
FROM A, B, C, D, E
WHERE A.b = B.a ∧ A.c = C.a ;

local Server :{A, B, C}
|A| = 100, |B| = |C| = 100.000,
|A �B| = |C �A| = 10.000

Figure 4 shows the measured results. Another case when additional semi-joins are profitable is their use
as prerecordered filters to expedite subsequent join operations (e.g.(A � B) � B). A similar technique
was studied in [Bra84].

3

�client

�client

�1

�1

A1

�� SS
B1

�� SS
C1

�� SS
D2

�� @@
E2

traditional plan

�client

�1

�1

A1

�� SS
B1

�� SS
C1

�� QQ
�2

�2

A2

�� SS
D2

�� SS
E2

new plan

Figure 3: Exploiting Machine Resources

�

�

B

 JJ

A

 JJ
C

traditional plan: 69 sec

�

�

B

 JJ

A

�� ZZ
�

C

 JJ

A

new plan: 45 sec

Figure 4: Centralized System

2.5 Search Space of Plans with Additional Joins and Semi-Joins

The search space of a traditional query optimizer is determined by a number of different parameters. Join
ordering, site selection and index selection have to be considered as well as choosing the most adequate
join variants (nested-loop, sort-merge, hash). Generally we will extend the conventional search space in
two directions: join-types used and join/semi-join orders.

2.5.1 Join and Semi-Join Operations

Consider the TablesA andB with attributesattr(A) andattr(B). The join predicates are denoted asp.
We distinguish three cases.

1. full-join ‘A �B’ (the standard join operation)

2. semi-join ‘A � B’. Only attr(A) remains after the join. A semi-join can be considered as a
generalized selection onA. Therefore|A �B| ≤ |A| holds.

3. thin-join ‘A �
thinb′ B’ denotes a generalized way of joining tables whereattr(A) and asubset

b′ ⊂ attr(B) is enclosed after the join. To preserve SQL duplicate semantics,b′ must contain the
key ofB2. To reduce tuple-width all non-key and non-predicate attributes ofB are projected.

In all cases, full-joins, semi-joins, and thin-joins can be implemented using any known join method (e.g.
nested-loop, sort-merge, hashing, etc.).

2.5.2 Join and Semi-Join Orders

Generally, we consider the complete search space of all possible join and semi-join combinations. The
use of semi-joins requires to allow multiple occurances of tables in query plans. Otherwise even simple

2A�thinb′ B can be denoted in relational algebra in the following way :Πattr(A)∪ b′(σp(A×B)) where∅ 6= b′ ⊂ attr(B).
If b′ does not contain the key ofB idempotenz property could be lost:A �

thinb′ B 6= (A�thinb′ B) �thinb′ B.

4

semi-join plans like(A � B) � B would not be possible. Plans likeA � B � B or A � B � B have
to be disregarded. Otherwise the search space grows infinitely large and enumerative algorithms do not
terminate. But this termination problem can be solved by enumerating onlyreasonableplans, which is
described in the following.

Avoiding Redundant and Unnecessary Joins and Semi-JoinsPlans likeA �B �B or A �B �B
should not be considered, because no new predicates are applied. To allow only join operations at node
n, which apply predicates not yet applied in a sub-tree ofn, solves the problem. However, because of the
anti-symmetric property of semi-join predicates (A�B andB �A must be distinguished) the predicate
space is three times as big as using only full-joins3.

It should be noted that this search space is much larger than the search space studied in previous
work [BGW+81]. Previous work only considered semi-joins in order to reduce the size of base-tables
before they are shipped to another site. For instance, the “new plan” of Figure 3 has not been considered
in previous work.

3 Generating Query Plans with Additional Joins and Semi-Joins

3.1 Overview

In this chapter we present and discuss in detail the algorithms we studied. We will present algorithms
which could be easily integrated into existing dynamic programming based optimizers. Our work differs
from previous work since we do not focus on special query classes [BG81, YOL84] but on different
search space and algorithm classes. For the purpose of presentation, we only consider select-project-join
queries (SPJ queries). We will also concentrate on full-joins and semi-joins in the following and ignore
thin-joins. Thin-joins, which are needed only in some particular cases (Figure 3), can be integrated in a
similar way.
Basically we will present two different approaches. The first approach – we call itAccess Root– can be
easily integrated into existing optimizers. Plans are enumerated where semi-joins are used for reducing
base-tables, not for reducing intermediate results. The second approach – we call itJoin Root– has
no restriction in applying semi-joins. Semi-joins can be applied at all query plan levels. This approach
requires some changes in the traditional enumeration algorithm.
Obviously, there are many further approaches conceivable; e.g. post processing steps after traditional
optimization, randomized algorithms, etc. Studying all these approaches is beyond the scope of this
paper. In Section 5, however, we will present and evaluate some heuristics.

3.2 Classic Dynamic Programming
Before we present theAccess RootandJoin Rootapproach, we will describe the classic dynamic pro-
gramming algorithm [SAC+79], which is used in most commercial state-of-the-art optimizers today.
Figure 5 gives the dynamic programming algorithm which will be enhanced later on. The algorithm
works in a bottom-up way as follows. First of all access-plans for all TablesRi are generated (Lines 1
to 4). Such plans consist of operators liketable scan(Ri) or index scan(Ri). They are inserted in a
table-structure ‘optPlan’ which is set-indexed. This phase is calledaccess-root phase. After that, in the
following join-root phase(Lines 5 to 13) building-blocks of ascending size are produced. First 2-way
joins by calling the joinPlans function on two access-plans, then 3-way join plans by combinations of all
2-way join plans and access-plans and so on up to n-way join plans.

3In some cases, plans likeA � (B � A) are profitable. For this reason the whole set of predicatesP could be expressed as
disjunct unionP = Pequi ∪̇Pleft semi ∪̇Pright semi. LetN be the set of nodes of a query plan. The termw(n → m) should
denote a path in the query plan fromn to m in data-flow direction (leave-node→ root-node). The set of predicates applied
at a noden is expressed byp(n) ⊆ P . The condition: ∀n1, n2 ∈ N ∧ w(n1 → n2) : p(n1) ∩ p(n2) = ∅ guarantees
‘reasonable’ joins and a finite search space. This condition must be modified when considering thin-joins because joining via
key attributes is then often necessary more than once.

5

Input: SPJ queryq on relationsR1, . . . , Rn

Output: A query plan forq
1: for i = 1 to n do {
2: optPlan({Ri}) = accessPlans(Ri)
3: prunePlans(optPlan({Ri}))
4: }
5: for i = 2 to n do
6: for all S ⊆ {R1, . . . , Rn} such that |S| = i do {
7: optPlan(S) = ∅
8: for all O ⊂ S do {
9: optPlan(S) = optPlan(S) ∪ joinPlans(optPlan(O), optPlan(S − O))
10: prunePlans(optPlan(S))
11: }
12: }
13: return optPlan({R1, . . . , Rn})

Figure 5: (Classic) Dynamic Programming Algorithm

The advantage of dynamic programming in contrast to full enumeration is that it discards inferior build-
ing blocks after every step. This approach is calledpruning. A (sub-) planA is inferior to PlanB, if
it is in relevant plan parameters at most as good but in at least one property worse thanB. The rele-
vant plan parameters are denoted asplan properties4. Only the best (comparable) plans are retained in
optPlan, such that only these plans will be considered as building-blocks in later steps. If two plans are
incomparable, both are retained in optPlan. For example,A sort-merge-joinB andA hash-joinB are
incomparable if thesort-merge-joinis more expensive than thehash-joinbecause thesort-merge-join
produces ordered results which might help to reduce the cost of later operations. Pruning should be
carried out as early as possible to avoid the unnecessary enumeration of inferior plans. In the algorithm
of Figure 5 allbushyplans are considered as an extension to the originally proposed left-deep variant by
Selinger [SAC+79]; most commercial query optimizers that are based on dynamic programming do the
same thing [GLSW94]. The complexity of this algorithm isO(3n) [OL90, VM96].

3.3 Access Root Variant

Figure 6 gives the modified variant of the dynamic programming algorithm shown above, where semi-
joins are enumerated to reduce base tables. By adding lines N1 to N11 semi-joins are applied at the
bottom-level of query plans immediately after the access-root phase. Semi-join plans are enumerated in
a conservative way: Use a ‘classic’ dynamic programming optimizer to generate bushy plans as usual
(Lines N1 to N8), but apply only semi-join operators instead of full-join operators (Line N5). Different
semi-join variants likenested-loop sjor hash sjcan be considered. The procedure called in line N9 tra-
verses the entire dynamic programming table (optPlan structure) and moves all plans to their appropriate
entries. For example, the planA � B enumerated in entry optPlan({A,B}) represents a subset ofA
and belongs therefore to entry optPlan({A}). Since many plans become comparable after moving, an
additional pruning is performed (Lines N10 to N11). Reducing the number of plans in these base entries
has an important effect on the algorithm’s running time (see Section 4). Lines 5 to 13 remain almost
unchanged. An adaption of cardinality estimation has to be done for correctness when considering semi-
joins5. It must be mentioned that not all imaginable access-root-style plans are enumerated using this
DP-based semi-join approach (see Section 3.3.2) .

3.3.1 Pruning Extension

While all plans contained in a standard DP-entry have the same result size this doesnot hold for plans
containing semi-joins. That’s why the pruning condition has to be modified to consider output cardinality
too. PlanP can be pruned against PlanQ only if |Q| < |P | in addition to all other pruning conditions

4examples: plan cost, relations contained, output attributes or sort order etc.
5For example, estimatedcard((A� B) �B) = estimatedcard(A �B) holds.

6

Input: SPJ queryq on relationsR1, . . . , Rn

Output: A query plan forq
1: for i = 1 to n do {
2: optPlan({Ri}) = accessPlans(Ri)
3: prunePlans(optPlan({Ri}))
4: }
N1: for i = 2 to n do // apply DP with semi-join operators
N2: for all S ⊆ {R1, . . . , Rn} such that |S| = i do {
N3: optPlan(S) = ∅
N4: for all O ⊂ S do {
N5: optPlan(S) = optPlan(S) ∪ SJjoinPlans(optPlan(O), optPlan(S − O))
N6: prunePlans(optPlan(S))
N7: }
N8: }
N9: TraversalandMovePlans(optPlan) // re-constitute optPlan - correctness
N10: for i = 1 to n do
N11: prunePlans(optPlan({Ri}))
5: for i = 2 to n do
6: for all S ⊆ {R1, . . . , Rn} such that |S| = i do {
7: optPlan(S) = ∅
8: for all O ⊂ S do {
9: optPlan(S) = optPlan(S) ∪ joinPlans(optPlan(O), optPlan(S − O))
10: prunePlans(optPlan(S))
11: }
12: }
13: return optPlan({R1, . . . , Rn})

Figure 6: Access Root Algorithm

(e.g. cost(Q) < cost(P)). For example, optPlan({A}) contains the PlanA and PlanA � B which are
incomparable because|A| > |A �B| but cost(A) < cost(A �B). Hence both plans must be retained.

3.3.2 Search Space

Plans like(A�B)� (C �B), which may be profitable, are not enumerated by the algorithm of Figure 6
because every table appears at most once in a reducing plan produced by dynamic programming. We
experimented with a differentAccess Rootvariant which is more complex to implement and which
does enumerate all possible semi-join reducers at the access-root level, and we saw that this variant has
significantly higher running time and results in only slightly better plans.

3.4 Join-Root Variant
While theAccess Rootapproach only considers a limited subset of possible and reasonable semi-join
plans, theJoin Rootapproach enumerates the complete search space of semi-join plans. Semi-joins are
applied to base tables as well as to intermediate results at all query plan levels (e.g.(A � B) � C).
Semi-join enumeration is fully integrated into the join-root phase, without a separate reduction phase.
Therefore some crucial algorithmic modifications have to be done: enumeration of non-disjoint subsets,
integration of a fix-point phase for plan completion and a consideration of anti-symmetric predicates to
cover the complete search space. A new kind of pruning technique was also developed because ordinary
pruning is not effective enough In the following we will discuss the algorithm presented in Figure 7 in
detail by presenting major concepts.

3.4.1 Enumerator Extension

First, access-plans are generated as in classic dynamic programming (Figure 5). The termtable-set
denotes the set of tables involved in a plan. While traditional dynamic programming enumerates disjoint
subsets of a table-set, theJoin Rootvariant also enumerates all pairs of non-disjoint subsets of a table-set
(Lines N1, N2, N3). Figure 8 gives an example for the entry optPlan({A,B,C}). On the left side disjoint

7

Input: SPJ queryq on relationsR1, . . . , Rn

Output: A query plan forq
1: for i = 1 to n do {
2: optPlan({Ri}) = accessPlans(Ri)
3: prunePlans(optPlan({Ri}))
4: }
5: for i = 2 to n do
6: for all S ⊆ {R1, . . . , Rn} such that |S| = i do {
7: optPlan(S) = ∅
8: for all O ⊂ S do {
N1: for all P ⊂ O do {
N2: optPlan(S) = optPlan(S) ∪ joinPlans(optPlan(O), optPlan((S − O) ∪ P), 0)
N3: optPlan(S) = optPlan(S) ∪ SJjoinPlans(optPlan(O), optPlan((S − O) ∪ P), 0)
10: prunePlans(optPlan(S))
N4: }
11: }
N5: timestamp = 0
N6: do {
N7: ∆ = ‘new plans with latest timestamp inS’
N8: for all O ⊆ S do {
N9: optPlan(S) = optPlan(S) ∪ joinPlans(∆, optPlan(O), timestamp+1)
N10: optPlan(S) = optPlan(S) ∪ SJjoinPlans(∆, optPlan(O), timestamp+1)
N11: prunePlans(optPlan(S))
N12: }
N13: timestamp++
N14: } while (∆ 6= ∅)
12: }
13: return optPlan({R1, . . . , Rn})

Figure 7: Join Root Algorithm

pairs of sets are presented, which are generated by dynamic programming (symmetric expressions are not
shown); on the right side the additional pairs of sets are shown, generated by the extended enumerator,
which adds all subsets of a left subset to the corresponding right subset. Thereby, we are able to generate
plans like(A�B)� (C �B) as well as(A�B)�C, which cannot be enumerated by theAccess Root
variant presented before.

{AB} � {C}, {AB}� {C}
{AC} � {B}, {AC}� {B}
{BC} � {A}, {BC}� {A}

traditional DP

{AB} � {AC}, {AB} � {BC}
{AC} � {AB}, {AC} � {BC}
{BC}� {AB}, {BC}� {AC}

additional enumerated in extended DP

Figure 8: Traditional DP vs. Extended DP

3.4.2 Fix-point Iteration

In some cases an additional fix-point iteration is necessary to getcomplete(sub-) plans. A (sub-) plan is
completeif it is result equivalent to a plan without semi-joins involving the same relations. Therefore a
fix-point iterationfor every optPlan entry is performed (Lines N5 to N14). Figure 9 gives an example of

�1

�2

A2

�� SS
B2

�� SS
B1

Figure 9: Fix-point Enumeration

a complete plan. The more semi-joins are applied in a left-deep building block, the higher the query plan
becomes, the more iterations in the fix-point phase are needed for completion. Due to correctness con-

8

ditions (Section 2.5) the iteration terminates. To avoid re-enumeration of plans, enumerated in iterations
before, time-stamps are added. Plans are initially marked with time-stamp “0” (Line N5).

3.4.3 Vertical Pruning

As well as in theAccess Rootalgorithm additional plan properties must be considered for pruning. Since
entries may contain plans with different output (e.g.A � B and A � B), the output attributes of a
plan must be considered; e.g.A � B may not be pruned in favour ofA � B becauseA � B produces
a different output. This property is not considered for pruning in the classic dynamic programming
algorithm, assuming that projections are pushed down.
One main problem of theJoin Rootvariant is that comparable plans may be located in different entries
of the dynamic programming table. For example consider the PlanA� (B �D) in optPlan({A,B,D}).
Comparable plans can be found in optPlan({A}), optPlan({A,B}), optPlan({A,C}), optPlan({A,D})
and optPlan({A,D}). Therefore,intra-entry pruning in the dynamic programming table is less signif-
icant, and we must also carry outinter-entry pruning. Thus, we have integrated an additional pruning
step that we refer to asvertical pruning. The idea is to compare (and prune) plans betweenall entries
which may contain comparable plans. We measured a running time speed-up of up to a factor of ten
using vertical pruning.

3.4.4 Anti-symmetric Predicates

Dealing with semi-joins requires to distinguish different kinds of predicates. Semi-join predicates cannot
be applied in a symmetric way like equi-join predicates, e.g.A � B 6= B � A. This anti-symmetric
behavior has some effects on the applicability tests during enumeration (Section 2.5.2). Furthermore,
in contrast to equi-joins, it may be advantageous to apply predicates several times in a query plan, e.g.
(A�B)� (B �A)). Traditional dynamic programming produces only plans in which each predicate is
applied only once.

3.4.5 Discussion

DISP1

�2

�2

A2

�� SS
B2

�� SS
C2

(a) traditional plan: 202 sec

DISP1

�1

�2

�2

A2

�� SS
B2

�� SS
C2

�� SS
C1

(b) optimal plan (Join Root): 77 sec

Figure 10: Influence of Tuple-with

There are some cases, where only theJoin Rootvariant is able to produce the best plan. Consider the
following SQL query:

SELECT ∗
FROM A, B, C
WHERE A.a = B.a ∧

A.b = C.b ∧
B.c = C.c ;

Server 1 :{C}, Server 2:{A, B, C}
|A| = |B| = 10K, tuple-size : 100 Byte
|C| = 100, tuple-size : 1000 Byte
σAB = σAC = σBC = 0.01

The termσXY denotes the selectivity of the join predicate ofX � Y . At first glance, it seems that the
whole query should be processed at Site 2 without any semi-joins (Figure 10a). However, the transfer
volume depends not only on the number of result tuples, but also on thetuple-width. Plan 10a transfers

9

the same number, but six times wider tuples than Plan 10b to the client. Plan 10b can only be produced by
the Join Root algorithm. These examples show that the limitedAccess Rootvariant is often not sufficient
for optimal plans, which can be found in the complete semi-join search space.

3.5 Selectivity and Cardinality Estimates

One difficult problem in query optimization is to find a correct or at least reasonable estimation of the
selectivity of a join predicate. Traditional methods produce satisfying results only under certain circum-
stances (independence, uniformity, etc.) and fail when more predicates are applied simultaneously or in
succession, because of correlations [vG93, SS94]. Even complex approaches do not produce satisfying
results in these case [Yao77, KTY82, MCS88, SS94, GP89]. The more successive semi-joins are applied
the higher the error in the estimating the result size becomes. That’s why we take a different approach in
our optimizer. We use the following conservative estimate:

|A �B| ≈ min(|A|, |A �B|)

With this formula, an upper bound for the result cardinality is estimated. In doubt, no semi-joins will be
used because the size of the semi-joins is overestimated. A more complex, statistic based computation
model might produce plans with more semi-joins.

4 Experiments and Results

In this section we present the results of more performance experiments that we carried out. We mea-
sured algorithm running time and a large range of qualitative aspects of the different algorithms. Various
benchmark parameters were changed to analyze the effects. Basically we studied the following parame-
ters:

• join-graph topology (CHAIN, STAR, etc.)

• allocation schema (centralized, distributed, # sites, # replica)

• query-complexity (# relations, # predicates)

• cardinality distribution, tuple-width variance

• network topologies (symmetric, hierarchical)

• query processing resources (client speed, server speed, network bandwith, etc.)

(a) chain (b) star (c) bone

Figure 11: Join Graphs

The optimizer was executed on a Sun Ultra with a 167 MHz SPARC processor on SUN Solaris 2.6. We
studied in general three query topologies shown in Figure 11. CHAIN and STAR topologies are well
known in literature. The BONE topology is new and represents a STAR topology with additional pred-
icates. For each topology we created 100 different settings for the cardinality of the base tables and the
selectivity of the join-predicates. These settings were made at random following the approach proposed
in [SMK97]. Using this approach, we were able to study a large range of different scenarios: queries with
small and large base tables, low selectivity queries that produce many results, high selectivity queries that
produce few results, and everything in between.
In the following we present the distilled results of our experiments. Abenefitdenotes a cost decrease of
a plan by using additional semi-joins.

10

1. Join Graph Topology:
This parameter has the most important influence on the magnitude of benefits. Different topologies
produce very different benefits. The more predicates contained the more advantageous theJoin
Rootapproach becomes.

2. Allocation Schema:
In centralized systems, only marginal benefits are achievable, substantial benefits can be achieved
in distributed systems with a high degree of replication.

3. Query Complexity:
The number of relations has a medium influence on the benefits. However, additional join-
predicates increase the benefits by semi-joins enormously. The running time of theJoin-Root
algorithm increases dramatically with the number of tables involved in a query.

4. Network topology:
Traditional symmetric communication paths lead to small benefits, whereas restricted client-server
hierarchical architecture result in large benefits. The lower the bandwith the higher the benefits of
using semi-join-reducers. Nevertheless, benefits can be achieved in any kind of network.

5. Query-Processing:
Light-weight implementations of semi-joins are important. TheJoin Rootalgorithm takes more
advantage from light-weight implementations thanAccess Rootdoes. The slower the client (resp.
the faster the servers) the higher the benefits.

We also measured the influence of cardinality distribution and high tuple-width variance in experiments.
We saw that varying these parameters had no significant effect on scaled cost. Only in some cases the
Join Rootvariant could take advantage from different tuple-widths. In the following we present running
time and quality of plan results in more detail.

4.1 Running Time Experiments

Before comparing plan quality of semi-join algorithms with ‘classic’ dynamic programming we want to
compare the running time of the proposed algorithms. Figure 12 gives an impression for the proportion
of the different running times for a fixed parameter setting. The number of relations was varied on a
STAR join topology in a client-server system with five servers and one client. It becomes clear that the
different algorithms vary significantly in their running time. The low running time of theAccess Root
algorithm allows to apply this variant even on complex queries. On the other hand, when considering
the complete semi-join search space, the application of theJoin Rootvariant is limited to less-complex
queries due to its high running time. Therefore we present some heuristic extensions forJoin Root(also
for Access Root) in Section 5 to process even complex queries.

0

1

2

3

4

5

6

7

8

9

10

5 6 7 8 9 10

av
er

ag
e

op
tim

iz
at

io
n

tim
e

[s
ec

s]

relations

dynamic prog.
accessroot

joinroot

Figure 12: Algorithm Runtime

11

4.2 Quality of Plans

We measured the quality of the plans produced by the alternative algorithm variants for different topolo-
gies. To validate the quality of plans, we used the optimizer’s cost model, which is an extension of the
cost model used in [SMK97]. First we applied theJoin Rootvariant to find the 100 optimal plans for
each query and then we applied classic dynamic programming and theAccess Rootvariant in order to
find out how much, on an average, their plans were more expensive than the optimal plans. For example
average scaled cost (avgSC)of 4.18 means that plans generated by classic dynamic programming are, on
an average, four times more expensive than the optimal plan generated byJoin Root. Maximum scaled
cost (maxSC)of 42.9 shows that at least one plan is even 42.9 times more expensive than the optimal plan
generated byJoin Root. As default we studied a 5-way join query in a client-server environment with
two servers (ISDN network). Varying other studied parameters like allocation schema, communication
speed, etc., which are not shown in Figure 13, lead to comparable results.

classic DP (¬ SJ) Access Root Join Root
avgSC (maxSC) avgSC (maxSC) avgSC (maxSC)

chain 1.65 (11.2) 1.0 (1.0) 1.0 (1.0)
star 4.18 (42.9) 1.0 (1.1) 1.0 (1.0)
bone 5.86 (107.6) 2.22 (12.5) 1.0 (1.0)

(a) join graph

classic DP (¬ SJ) Access Root Join Root
avgSC (maxSC) avgSC (maxSC) avgSC (maxSC)

bone (symmetric) 1.64 (6.29) 1.37 (2.69) 1.0 (1.0)
bone (client-server) 5.86 (107.6) 2.22 (12.5) 1.0 (1.0)

(b) network topology

Figure 13: Algorithm comparison

In summary, we found that the use of additional of semi-join reducers is reasonable in all scenarios and
environments. The use ofAccess Rootor Join Rootvariant depends strongly on the join graph.Access
Root, as a fast and easy implementation works well for many topologies and is feasible even for very
complex queries, whereasJoin Rootachieves the best results in all topologies and is applicable up to
medium query sizes. In the next section we show how the running time of the presented algorithms can
be reduced for complex queries by making use of heuristics.

5 Dealing with Complex Queries

In this section, heuristics are presented and evaluated which reduce the running times of theAccess
RootandJoin Rootapproach. Using these heuristics,Join Rootmay be applicable for more complex
queries and the running time of theAccess Rootalgorithm is almost as good as that of classic dynamic
programming. It need not be mentioned that the use of heuristics can always impact the quality of plans,
because optimal plans may not be considered by the heuristics.
Besides standard heuristics, which reduce the number of enumerated semi-join plans in a straightforward
way (e.g. choosing the ‘best’k semi-join plans), we also studied the application of Iterative Dynamic
Programming Algorithm (IDP), a new class of algorithms to optimize very complex queries [KS00].

5.1 Heuristics

Obviously, the additional enumerated semi-joins lead to an increased running time of the algorithms.
Hence we will try to find more restrictive criteria for the application of profitable semi-joins. In the
following we present and evaluate conceivable approaches. We studied an 8-way STAR query in a
client-server environment with two servers.

12

1. Best-of Variants: To reduce the number of enumerated plans, which depends basically on the
number of all plans in an entry of the dynamic programming table, the number of plans involving
semi-joins (semi-join plans for short) can be limited. Only the number of semi-join plans in base-
table entries of the dynamic programming table must be limited in theAccess Rootalgorithm,
whereas all entries have to be considered in theJoin Rootalgorithm. We studied two variants:

(a) choosek smallestsemi-join plans (least output tuples) and

(b) choosek cheapestsemi-join plans (least estimated cost)

These variants were choosen because, in general, small intermediate results (variant (a)) and little
cost overhead (variant b)) lead to the highest benefits. Figure 14 shows the results of variant (b).
The term ‘full’ denotes no limitation on the number of semi-join plans (k = ∞).

star-8 classic DP (¬ SJ) k = 1 k = 3 k = 10 full
avg. opt. time [secs] 0.4 1.0 2.0 2.1 2.2Access Root

avg. scaled cost 9.6 5.2 1.2 1.0 1.0

avg. opt. time [secs] 0.4 4.0 8.3 19.2 29.5Join Root
avg. scaled cost 9.6 5.9 1.2 1.0 1.0

Figure 14: Best-Of Heuristic (Cost)

It is interesting to note that keeping non-reduced plans is necessary. To consider only reduced
plans for enumeration like proposed in previous work (fully reducers) leads, in general, not to the
best query evalutation plan.

2. Base Tables:These heuristics only allow base-tables as semi-join partners. We denoteB as semi-
join partner inA � B. This heuristic produces acceptable plans (avg. scaled cost: 2.2) within a
short running time (Access Root: 1.1 sec). We studied also other restrictions on semi-join partners
like a limitation of their cost, but these restrictions do not produce good results.

3. Iterations: Figure 15 shows that limiting the number of iterationsi during fix-point computation
works very well. Even omitting the fix-point iteration altogether produces good results with a
much smaller running time.

star-8 classic DP (¬ SJ) i = 0 i = 1 full
avg. opt. time [secs] 0.4 15.03 26.5 29.5Join Root

avg. scaled cost 9.6 1.0 1.0 1.0

Figure 15: Iteration Heuristic

To sum up, we saw that the iteration heuristics and the best-of heuristics produce very good results within
a fraction of the full running time.

5.2 Iterative Dynamic Programming

Besides the presented standard heuristics we studied more sophisticated, adaptive approaches which pro-
duce as good plans as dynamic programming if dynamic programming is viable and as-good-as possible
plans if dynamic programming turns out to be not viable. The main idea ofIDP is to apply dynamic
programming several times in the process of optimizing a query; either to optimize different parts of a
plan separately or in different phases of the optimization process.IDP works essentially in the same
way as dynamic programming with the only difference thatIDP respects that the resources (e.g., main
memory) of a machine are limited or that a user or application program might want to limit the time spent
for query optimization. Due to a lack of space we refer the reader to [KS00] for a detailed description.
Figure 16 shows the running time/quality trade-off between alternative heuristics applied to theAccess
Rootalgorithm. Also an 8-way STAR query in a client-server environment with two servers was stud-
ied. Classic dynamic programming has a small running time but very high scaled cost (single filled

13

1

2

3

4

5

6

7

8

9

10

0 0.5 1 1.5 2 2.5
A

ve
ra

ge
 S

ca
le

d
C

os
t

Average Optimization Time [secs]

classic DP
AR & Cost-Limit

AR & IDP
AR & IDP & BestOf-Card

Figure 16: HeuristicsAccess Root

square). Whereas, limiting the cost of semi-join partners allows a more fine grained setting of the run-
ning time/quality trade-off (AR & Cost-Limit). Using Iterative Dynamic Programming instead of classic
dynamic programming for theAccess Rootalgorithm produces better results than most standard heuris-
tics. But for the best performance both approaches, IDP and a good standard heuristic like Best-Of Card,
should be combined (AR & IDP & BestOf-Card).
To summarize, the use of the proposed heuristics allows to apply both algorithms,Access RootandJoin
Root, even to complex queries despite the enormous increased search space. Using Iterative Dynamic
Programming instead of classic dynamic programming enables to produce almost optimal plans involv-
ing semi-joins within the running time of classic dynamic programming without semi-joins.

6 Related Work

Semi-join reducers were originally proposed in the late seventies [BGW+81, AHY83]. Replication was
not mentioned in that work, and modern architectures like client-server or middleware systems were not
considered at all. The work of that time focussed on finding optimal reduction schedules [HY79] – called
full reducers[BG81], whereas local processing costs were neglected [JK84, HY79, AHY83]. Also the
integration of proposed techniques into existing optimizers was not considered.
Most approaches proposed in the literature focussed on reduction of communication costs [HY79, AHY83].
In today’s systems with high-speed networks, communication is often not the limiting factor. These ap-
proaches do not work well for modern architectures like middleware systems, where communication
between servers is prohibited.
In addition, several approaches proposed at that time only work for certain classes of queries (e.g. tree
queries) [BC81]. However, using different optimizers for different query classes is not acceptable for
current database systems which need one optimizer for all queries. The algorithms proposed in this
paper can be easily integrated into such an optimizer.
To date, most approaches that make use of semi-join reducers work in three phases [YC84]: (1) the copy
identification phase, (2) the reduction phase, and (3) the assembly phase. These semi-join reducers are
only applied in the second phase and they are only applied to base-tables [YOL84]. We avoid this strict
separation in theJoin Rootalgorithm.
Another problem addressed in this paper is the estimation of the size of intermediate results in the pres-
ence of semi-join reducers. Descriptions of existing approaches in this area can be found in [Ric81,
KTY82, SS94, MCS88, PSC84, Chr84]. They are often very complex [GP89] and produce faulty results
[vG93] on both ends; i.e., the estimates can be much too high and much too low. In contrast, we proposed
a simple approach to estimate the size of the result of a semi-join (Section 3.5). Our approach can very
easily be integrated into an existing optimizer, without changing the cardinality estimation routines for
joins or other operators. Furthermore, our approach isconservative; i.e., it only errs on the high side.

14

7 Conclusion

In this paper we presented two new algorithms to integrate semi-join operations into existing state-of-the-
art optimizers, which are mostly based on dynamic programming. First, we presented several examples,
that demonstrate the usefulness of semi-join plans for today’s distributed environments. We measured
these examples in a real-world environment with a distributed query engine, using LANs, the Internet,
and ISDN. Afterwards, two algorithms to generate plans with semi-joins –Access RootandJoin Root
– were presented. Necessary adaptions (and their effects) of a classic dynamic programming optimizer
were described in detail. In particular, we showed how to estimate the cardinality of intermediate results
in the presence of semi-joins. In addition, we carried out extensive performance experiments to compare
the proposed algorithms with traditional query optimization.
Beside running time experiments, which gave an impression of additional cost by integration of semi-
joins, different quality effects were analyzed. Generally, we measured high benefits by the use of semi-
joins. We showed that the benefits depend on various parameters like query topology, network topology,
network capacity, and query processing capabilities. In particular, we showed that real-world heteroge-
neous client-server or middleware systems yields the highest benefits.
Both algorithms work well with typical query profiles. However, when queries become very complex, the
Join Rootrunning time of exploiting the full search space becomes prohibitively high. To cope with this
problem, we proposed different heuristic extensions for both algorithms. It became clear that running
time and quality of plans can be adjusted in a fine granular way by choosing more or less restrictive
heuristic parameters.
As future work, we plan to integratethin-joins into our optimizer, whereby only moderately increasing
the running time of query optimization. Furtheron, we are curious to see how this approach works with
other query types; e.g. group by, top N, queries with expensive predicates, etc.

References

[AHY83] P. Apers, A. Hevner, and S. B. Yao. Optimization algorithms for distributed queries.IEEE Trans.
Software Eng., 9(1), 1983.

[BC81] P. A. Bernstein and D.-M. W. Chiu. Using semi-joins to solve relational queries.Journal of the ACM,
28(1):25–40, January 1981.

[BCK98] R. Braumandl, J. Claussen, and A. Kemper. Evaluating functional joins along nested reference sets
in object-relational and object-oriented databases. InProc. of the Conf. on Very Large Data Bases
(VLDB), pages 110–121, New York, USA, August 1998.

[BG81] P. A. Bernstein and N. Goodman. Power of natural semijoins.SIAM Journal on Computing,
10(4):751–771, November 1981.

[BGW+81] P. Bernstein, N. Goodman, E. Wong, C. Reeve, and J. Rothnie. Query processing in a system for
distributed databases (SDD-1).ACM Trans. on Database Systems, 6(4):602–625, December 1981.

[BKK99] R. Braumandl, A. Kemper, and D. Kossmann. Database patchwork on the Internet (project demo
description). InProc. of the ACM SIGMOD Conf. on Management of Data, pages 550–552, Philadel-
phia, PA, USA, June 1999.

[Bra84] K. Bratbergsengen. Hashing methods and relational algebra operations. InProc. of the Conf. on Very
Large Data Bases (VLDB), pages 323–333, Singapore, Singapore, 1984.

[Chr84] S. Christodoulakis. Implications of certain assumptions in database performance evaluation.ACM
Trans. on Database Systems, 9(2):163–181, June 1984.

[CK98] M. Carey and D. Kossmann. Reducing the braking distance of an SQL query engine. InProc. of the
Conf. on Very Large Data Bases (VLDB), pages 158–169, New York, USA, August 1998.

[CY90] M.-S. Chen and P. S. Yu. Using join operations as reducers in distributed query processing. InPro-
ceedings of the Second International Symposium on Databases in Parallel and Distributed Systems,
pages 116–123, Dublin, Ireland, July 1990.

[GLSW94] P. Gassner, G. M. Lohman, K. B. Schiefer, and Y. Wang. Query optimization in the IBM DB2 family.
Technical Report RJ9734, IBM Almaden Research Center, March 1994.

15

[GP89] D. Gardy and C. Puech. On the effect of join operations on relation sizes.ACM Trans. on Database
Systems, 14(4):574–603, 1989.

[HY79] A. R. Hevner and S. B. Yao. Query processing in distributed database systems.IEEE Trans. Software
Eng., 5(3):177–187, 1979.

[JK84] M. Jarke and J. Koch. Query optimization in database systems.ACM Computing Surveys, 16(2):111–
152, June 1984.

[KS00] D. Kossmann and K. Stocker. Iterative dynamic programming: A new class of query optimization
algorithms.ACM Trans. on Database Systems, 25(1), March 2000. To appear.

[KTY82] L. Kerschberg, P. D. Ting, and S. B. Yao. Query optimization in a star computer network.ACM Trans.
on Database Systems, 7(4):678–711, December 1982.

[MCS88] M. V. Mannino, P. Chu, and T. Sager. Statistical profile estimation in database systems.ACM Com-
puting Surveys, 20(3):191–221, September 1988.

[MR94] R. Marek and E. Rahm. TID hash joins. InInternational Conference on Information and Knowledge
Management (CIKM), pages 42–49, Gaithersburg, Maryland, USA, 1994.

[OL90] K. Ono and G. Lohman. Measuring the complexity of join enumeration in query optimization. In
Proc. of the Conf. on Very Large Data Bases (VLDB), pages 314–325, Brisbane, Australia, August
1990.

[PSC84] G. Piatetsky-Shapiro and C. Connell. Accurate estimation of the number of tuples satisfying a con-
dition. In Proc. of the ACM SIGMOD Conf. on Management of Data, pages 256–276, Boston, USA,
June 1984.

[Ric81] P. Richard. Evaluation of the size of a query expressed in relational algebra. InProc. of the ACM
SIGMOD Conf. on Management of Data, pages 155–163, Ann Arbor, USA, 1981.

[SAC+79] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and T. Price. Access path selection in a relational
database management system. InProc. of the ACM SIGMOD Conf. on Management of Data, pages
23–34, Boston, USA, May 1979.

[SKB+98] K. B. Schiefer, J. Kleewein, K. Brannon, G. M. Lohman, and G. Fuh. IBM’s DB2 Universal Database
demonstration. InProc. of the Conf. on Very Large Data Bases (VLDB), page 703, New York, USA,
August 1998.

[SMK97] M. Steinbrunn, G. Moerkotte, and A. Kemper. Heuristic and randomized optimization for the join
ordering problem.The VLDB Journal, 6(3):191–208, August 1997.

[SS94] A. Swami and K. B. Schiefer. On the estimation of join result sizes. InProc. of the Intl. Conf. on
Extending Database Technology (EDBT), volume 779 ofLecture Notes in Computer Science (LNCS),
pages 287–300, Cambridge, United Kingdom, March 1994. Springer-Verlag.

[vG93] A. van Gelder. Multiple join size estimation by virtual domains. InProc. ACM SIGMOD/SIGACT
Conf. on Princ. of Database Syst. (PODS), pages 180–189, Washington, D.C., May 1993.

[VM96] B. Vance and D. Maier. Rapid bushy join-order optimization with cartesian product. InProc. of the
ACM SIGMOD Conf. on Management of Data, pages 35–46, Montreal, Canada, June 1996.

[Yao77] S. Yao. Approximating block accesses in database organizations.Communications of the ACM,
20(4):260–261, April 1977.

[YC84] C. Yu and C. Chang. Distributed query processing.ACM Computing Surveys, 16(4):399–433, De-
cember 1984.

[YOL84] C. T. Yu, Z. M. Ozsoyoglu, and K. Lam. Optimization of distributed tree queries.Journal of Computer
and System Sciences, 29(3):409–445, December 1984.

16

