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Abstract

In a recentpaper, weproposedaddingaSTOP AFTER clauseto
SQLto permitthecardinality of a queryresultto beexplicitly lim-
ited by querywriters andquerytools. We demonstratedtheuse-
fulnessof havingthis clause, showedhowto extenda traditional
cost-basedqueryoptimizerto accommodateit, anddemonstrated
via DB2-basedsimulationsthat largeperformancegainsarepos-
siblewhenSTOP AFTER queriesare explicitly supportedby the
databaseengine. In this paper, wepresentseveral new strategies
for efficiently processingSTOP AFTER queries. Thesestrate-
gies,basedlargely on the useof range partitioning techniques,
offer significantadditional savingsfor handlingSTOP AFTER
queriesthat yield sizeableresult sets. We describeclassesof
querieswhere such savingswould indeedarise and presentex-
perimentalmeasurementsthatshowthebenefitsandtradeoffs as-
sociatedwith thenew processingstrategies.

1 Intr oduction

In decisionsupportapplications,it is not uncommonto
wish to posea query and then to examine and process
at most somenumber(N) of the result tuples. In most
databasesystems,until recently, applicationscouldonly do
this by usinga cursor, i.e., by submittingthe entirequery
andfetchingonly thefirst N results.Obviously, thiscanbe
very inefficient, leadingto a significantamountof wasted
queryprocessing.In a recentpaper[CK97], we proposed
adding a STOP AFTER clauseto SQL to enablequery
writersto limit thesizeof aquery’sresultsetto aspecified
numberof tuples;relatedSQL extensionshave beenpro-
posedin [KS95, CG96]. TheSTOP AFTER clauseessen-
tially providesa declarative way for a userto say”enough
already!”in thecontext of anSQLquery, enablingthesys-
tem to avoid computingunwantedresultsin many cases.
In ourpreviouswork weshowedtheusefulnessof thenew
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clause,discussedhow a cost-basedqueryoptimizercanbe
extendedto exploit it, andusedDB2-basedsimulationsto
demonstratethe largeperformancegainsthat arepossible
whenSTOP AFTER querysupportis explicitly addedto
thedatabaseengine.

In this paper, we build upon our previous work by
presentingseveral new strategies for efficiently process-
ing STOP AFTER queries.Althoughwe discussedSTOP
AFTER query processingin generalin [CK97], the ma-
jor focusof our initial attentionwason optimizingqueries
whereN is relatively small (e.g., “top ten” queries). An
exampleof a typical query that our previously proposed
processingschemeswill handlewell is:

SELECT e.name, e.salary
FROM Emp e
WHERE e.age > 50
ORDER BY e.salary DESC
STOP AFTER 10;

This queryasksfor thenamesandsalariesof thetenmost
highly-paidolderemployeesin thecompany. Ourprevious
schemeswill alsowork well for primary-key/foreign-key
join queriessuchas:

SELECT e.name, e.salary, d.name
FROM Emp e, Dept d
WHERE e.age > 50
AND e.works in = d.dno
ORDER BY e.salary DESC
STOP AFTER 10;

This queryasksfor the employees’departmentnamesas
well as their namesand salaries. For queriessuch as
these, it is possiblefor the query processorto manage
its sorted,cardinality-reducedintermediateresultsusinga
main memoryheapstructure,therebyavoiding large vol-
umesof wastedsortingI/O ascomparedto processingthe
querywithout aSTOP AFTER clauseandthendiscarding
theunwantedemployeeinformation.

In caseswherethe stoppingcardinalityN is large,our
original approacheswould eachend up sorting and then
discardinga significantamountof data—albeitearly (i.e.,
before the join in the exampleabove), which still leads
to a significantsavings comparedto the naive approach.
The strategies presentedin this paperseekto avoid this
wastedeffort aswell. Our new strategiesarebasedupon
borrowing ideasfrom existingqueryprocessingtechniques



suchasrangepartitioning(commonlyusedin parallelsort-
ing� and parallel join computations),RID-list processing
(commonlyusedin text processingandsetqueryprocess-
ing), andsemi-joins(commonlyusedin distributedenvi-
ronmentsto reducejoin processingcosts). As we will
show, adaptingthesetechniquesfor usein STOP AFTER
queryprocessingcanprovidesignificantadditionalsavings
for certainimportantclassesof queries. We have imple-
mentedthe techniquesin the context of an experimental
queryprocessingsystemat the University of Passau,and
we will demonstratetheefficacy of our techniquesby pre-
sentingmeasurementsof queryplansrunningthere.

Before proceeding,it is worth noting that proprietary
SQL extensionsclosely related to our proposedSTOP
AFTER clausecan be found in current products from
a numberof major databasesystemvendors. In addi-
tion, mostof themincludesomedegreeof optimizersup-
port for getting the first query resultsback quickly (e.g.,
heuristicallyfavoringpipelinedqueryplansoverotherwise
cheaper, but blocking, non-pipelinedplans). For exam-
ple, Informix includesa FIRST ROWS optimizerhint and
a FIRST n clausefor truncatingan SQL query’s result
set.Similarly, MicrosoftSQLServerprovidesanOPTION
FAST n clauseand a session-level SET ROWCOUNT n
statementfor thesepurposes.IBM’ s DB2 UDB systemal-
lows usersto includeOPTIMIZE FOR n ROWS and/or
FETCH FIRST n ROWS ONLY clauseswhen entering
an SQL query. OracleRdb (originally a DEC product)
addeda LIMIT TO n ROWS clauseto SQL, while Or-
acle Server makes a virtual ROWNUM attribute part of its
query resultsto supportcardinality limits; including the
predicateROWNUM <= n in the WHERE clauseof an
SQLquerytellsOracleServer to stopreturningresultrows
after n rows have beenproduced. RedBrick supportsa
SET ROWCOUNT n commandaswell asan SQL exten-
sion calledRANK(col) which both imposesa resultor-
derandallows processingto be stoppedearly; addingthe
clauseWHEN RANK(col) < n toaquerytellsRedBrick
to returntheresultrowsthatrankamongthefirstn column
valueswith respectto the indicatedcolumn. (In theevent
of a tie, RedBrickpermitsmultiple resultrows to have the
samerankvalue.) Finally, severalof thesesystemsappar-
ently passstoppinginformationto operationssuchasSort
sothat they canoptimizefor thedesirednumberof results
when merging sortedruns. Unfortunately, to the bestof
ourknowledge,thereis nopublishedinformationavailable
that describeshow any of thesesystems’SQL extensions
areimplemented.

Theremainderof thispaperis organizedasfollows: We
presentbackgroundmaterialin Section2, wherewebriefly
summarizethe query operatorsand kinds of query plans
introducedin our previouswork, review the basicideaof
rangepartitioningasa queryprocessingstep,andprovide
anoverview of theexperimentalenvironmentusedto pro-
duce the performanceresultspresentedin later sections
of the paper. In Section3 we introduceour new range-
basedtechniquesfor processingSTOP AFTER queriesand

presentexperimentalresultsthat demonstratetheir bene-
fits andhighlight their associatedperformanceissuesand
tradeoffs. We focus on basictop N selectionqueriesin
Section3, while in Section4 we explain how rangetech-
niquescanbeutilized for processingqueriessuchastop N
percentageselections,selectionsinvolving STOP AFTER
subqueries,andjoins. In Section5 we show how RID-list
andsemi-jointechniquescanbeappliedto STOP AFTER
queries.Finally, we presentour conclusionsandour plans
for futurework in Section6.

2 Background
Thegeneralstructureproposedfor STOP AFTER queries
(andsubqueries)in [CK97] is asfollows:

SELECT ... FROM ... WHERE ...
GROUP BY ... HAVING ...
ORDER BY

�
sort specification list �

STOP AFTER
�
value expression �

The STOP AFTER clause’s <value expression>
evaluatesto a scalarinteger valueto indicatethe number
of resulttuplesdesired;it maybea constant,anarithmetic
expression,or even an uncorrelatedscalarsubquery. The
semanticsof theSTOP AFTER clausearestraightforward
to explain: Let N be the integer stoppingcardinality that
<value expression> evaluatesto. After computing
the restof the query, the systemis to returnonly the first
N tuplesof the result (in the specifiedORDER BY order,
if any) to therequestinguseror applicationprogram.Note
that this producesthesameresultsasthecursor-basedap-
proachusedby applicationprogramstoday, but the pres-
enceof the STOP AFTER clauseprovidesthe queryop-
timizer and runtime queryprocessingsystemwith cardi-
nality informationthatcanbeexploitedto reduce(or even
eliminate,in somecases)wastedwork.

2.1 STOP AFTER Query Processing

To processSTOP AFTER queries,weproposedextending
thedatabasesystem’s collectionof algebraicqueryopera-
tors with a new logical queryoperator, the Stopoperator.
Thisoperatorproducesthetopor bottom� tuplesof its in-
put streamin a specifiedorderanddiscardstheremainder
of thestream.Like otherlogical queryoperators(suchas
Join), Stophasseveral alternative physicaloperatorsthat
canimplementit in thecontext of queryplans.

We defined two physical Stop operatorsin [CK97]:
Scan-Stop, for usewhentheStopoperator’sstreamof input
tuplesis alreadyorderedappropriately, andSort-Stop, for
usewhentheStopoperator’s input streamis not yet rank-
ordered. Scan-Stopis extremelysimple; it is a pipelined
operatorthat simply requestsandthenpasseseachof the
first � tuplesof its inputstreamalongto its consumer(i.e.,
to theoperatorabove it in thequeryplan). In contrast,the
Sort-Stopoperatorhandlesthecasewheretheinputstream
is not alreadysorted;it mustthereforeconsumeits whole
inputstreamin orderto producethetop (or bottom) � out-
put tuples. When � is relatively small,Sort-Stopcanop-
eratein mainmemoryusinga priority heap[Knu73]. The
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Figure1: TraditionalPlansfor Query1

first � tuplesof its input are insertedinto the heap,and
eachremainingtuple is then incrementallytestedagainst
theheap’scurrentmembershipboundto determinewhether
or not it warrantsinsertioninto theheapof thetop (or bot-
tom) � tuples.For largervaluesof � , externalsortingis
requiredto computethedesiredSort-Stopresults;we sim-
ply usedan ordinaryexternalSort operatorfollowedby a
Scan-Stopoperatorin suchcasesin [CK97].

For illustrationpurposes,considera slightly moregen-
eral versionof the first examplequeryfrom the Introduc-
tion (wewill call thisQuery1 in thefollowing):

Query1: SELECT *
FROM Emp
WHERE age > 50
ORDER BY salary DESC
STOP AFTER N;

Figure1 depictsthreeof thepossibleexecutionplansthat
canbeconstructedfor this queryby combiningoneof our
physicalStopoperatorswith other, pre-existingqueryoper-
ators.Thefirst plan,theClassicSort-Stopplan,usesatable
scan(tbscan) operatorto find employeesin theappropri-
ateagerangefollowedby a heap-basedsort-stop(N)
operatorto limit theresultsto the � highestpaidolderem-
ployees.This plan is viableaslong as � is smallenough
for the heapto indeedbe a main memorystructure. The
secondplan, ConventionalSort, insteadusesan external
sort on salary followed by a scan-stop(N) to ob-
tain thedesiredresult.Thiswouldbethepreferredplanfor
large � in the absenceof a salary index. Of course,
planssimilar to thesetwo, but with an Emp.age index
scanusedto producethe inputs to the Stop-relatedoper-
ators,arepossibleaswell. The third plan in Figure1, the
Traditional Index-Scanplan,would alsobecomeviable in
thepresenceof anindex onEmp.salary. Thisplanper-
forms an index scan(in descendingorder) on the salary
index, usesthe resultingrecordids (RIDs) to fetch high-
salariedemployeesandappliestheage predicateto them,
andthenusesa scan-stop operatorto selectthe top �
resultssincethe index scanproducesits outputin the de-
siredsalary order. This third plandoesvery well if the
salaryindex is a clusteredindex or � is small. If � is
large and the index is unclustered,however, it would do
toomany randomI/Osto becost-effective,especiallyif the
age predicateis highly selective (in which casemany of
the high-salariedemployeesfound usingthe index would
subsequentlybeeliminated).

We introducedtwo policiesto governtheplacementof
Stopoperatorsin queryplansin [CK97]. Onewasa Con-
servativepolicy, which insertsStopoperatorsas early as
possiblein a queryplan subjectto the constraintthat no

tuple that might endup participatingin the final � -tuple
queryresultcanbediscardedby aStopoperation.We also
proposedanAggressivepolicy thatseeksto introduceStop
operatorsin a queryplan even earlier, placinga Stopop-
eratorwherever it canfirst provide a beneficialcardinality
reduction. The Aggressive policy usesresultsizeestima-
tion to choosethe stoppingcardinality for the Stopoper-
ator; at runtime,if the stoppingcardinalityestimateturns
out to have beentoo low, thequeryis restartedin orderto
get themissingtuples. This is accomplishedby placinga
restart operatorin thequeryplan;thisoperator’s job is
to ensurethat,above its point in theplan,all � tupleswill
begenerated.Thus,if its input streamrunsout beforeall
� tuplesare received, it will “restart” the querysubplan
beneathit to obtainthemissingresults.

2.2 RangePartitioning

Rangepartitioningis awell-known techniquethathasbeen
appliedwith much successto numerousproblemsin the
parallel databasealgorithm area[DG92]. One success-
ful exampleis parallelsorting[DNS91b], while anotheris
load-balancedparalleljoin computation[DNSS92]; yetan-
otherexampleis the computationof so-calledbandjoins
[DNS91a]. The basic idea of rangepartitioning is ex-
tremely simple—thedata is divided into separatelypro-
cessablebucketsby placingtupleswith attributevaluesin
one rangeinto bucket #1, tupleswith attribute valuesin
the next rangeinto bucket #2, andso on. In the caseof
parallel sorting,eachnodein a k-nodedatabasemachine
partitionsits datainto k buckets in parallel,basedon the
sortingattribute(s),streamingeachbucket’scontentsto that
bucket’s designatedreceiver nodewhile the datais being
partitioned.At theendof thisprocess,theindividualbuck-
etscanbe sortedin parallelwith no further inter-nodein-
teraction.Figure2 illustratesthis process.Successfulpar-
titioning in this mannerproducesvirtually linear sorting
speedup,andsampling(or histogram)techniquescanaid
in the determinationof a good set of partition boundary
values[DNS91b] at relatively low cost.

In Section3, we will proposeand analyzethe useof
severalpossiblepartitioning-basedapproachesfor improv-
ing theefficiency of STOP AFTER queryprocessing.We
will cover the detailslater, but the basicideais simple—
the relevant datacan be range-partitionedon the query’s
ORDER BY attribute into a numberof buckets. Thebuck-
etscanthenbeprocessedoneata timeuntil � resultshave
beenoutput;bucketsthat arenot accessedin this process
neednever besortedat all. This providesa way to imple-
mentaStop(N)operationthatscalesbeyondmainmemory
sizeswithout requiringfull sortingof the input stream.In
addition,wewill seethatin certaincontexts,additionalsig-
nificantsavingsarepossible,e.g.,casesinvolving usesof a
STOP AFTER clausein a subquery.

2.3 Experimental Envir onment

As we work our way through the presentationof the
proposednew approachesfor executing STOP AFTER
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queries,we will be presentingresultsfrom performance
experimentsthat demonstratethe tradeoffs relatedto the
approachesand that quantitatively explore the extent to
which they areableto reducethe costsof STOP AFTER
queries. Like Query 1 above, our test querieswill be
queriesoverasimpleemployeedatabasewith thefollowing
self-explanatoryschema:

Emp(eno, works in, age, salary, address)
Dept(dno, budget, description)

Our instanceof thisemployeedatabaseis fairly small,with
a 50 MB Emp tableanda 10 MB Dept table. We kept
the databasesmall in orderto achieve acceptablerunning
times and becausewe had somewhat limited disk space
available for performingour experiments. The Emp ta-
ble has 500,000tuples which are generatedas follows:
eno is set by counting the tuples from 1 to 500,000,
while works in, age, andsalary areset randomly
using a uniform distribution on their particulardomains;
address simply padsthe tupleswith “garbage”charac-
tersto ensurethateachEmp tuple is 100 byteslong. The
domainof works in is, of course,the sameas that of
Dept.dno (describedbelow), thedomainof age is inte-
gersin therangefrom 10to 60sothatabout100,000Emps
(20%)areolderthan50,andthedomainof salary is in-
tegersin the rangeof 1 to 500,000.Our testdatabasehas
nocorrelations;asanexamplerelevantto ourexperiments,
a youngEmp is justaslikely to havea highsalary asan
old Emp is.

TheDept tablehas100,000tupleswhicharegenerated
asfollows: dno is setby countingtheDept tuplesfrom
1 to 100,000;budget is setto 10,000for all Depts, and
description padstheDept tuplesout to 100bytes.

In termsof indexes,our testdatabasehasclusteredB �
tree indexes on the primary key attributes of the tables
(i.e.,eno anddno) becauseclusteredindexeson primary
keys are relatively common. To study planssuchas the
TraditionalIndex-Scanplan of Figure1, we alsohave an
Emp.salaryB � tree;naturally, thisindex is unclustered.

Ourexperimentshavebeenperformedonanexperimen-
tal databasesystemcalled AODB [WKHM98]. AODB
is essentiallya textbook relational databasesystemthat
usesstandardimplementationsfor sorting,variouskindsof
joins,group-byoperations,andsoon. WeextendedAODB

with implementationsfor thescan-stop, sort-stop
(using 2-3 trees to organize the heap [AHU83]), and
restart operatorsdescribedabove; we alsoaddedsup-
port for the forms of rangepartitioning describedin the
next section.We ranAODB on a Sunworkstation10 with
a 33MHz SPARC processor, 64MB of mainmemory, and
a 4 GB disk drive that is usedto storecode,thedatabase,
andtemporaryresultsof queries.Theoperatingsystemis
Solaris2.6,andweusedSolaris’directI/O feature;thisdis-
ablesoperatingsystemcachingin a mannersimilar to raw
disk devices. Sinceour databaseis small, we limited the
sizeof thedatabasebuffer poolproportionally, to 4 MB, in
thosecaseswherewe do not explicitly sayotherwise.Of
these4 MB, wealwaysgaveat least100KB to eachopera-
tor thatreadsor writesdatato disk in orderto enablelarge
block I/O operationsandavoid excessivediskseeks.

3 Range-BasedBraking Algorithms
We now turn our attention to the developmentof new
techniquesfor processingSTOP AFTER querieswith less
effort—i.e., techniquesfor reducing the “stopping dis-
tance” of an SQL query engine. The primary tool that
we will be using is rangepartitioning. In this section,
we presentseveralalgorithmsthatusethis tool to help the
engineto limit wastedwork, therebyfinishing soonerfor
STOP AFTER queries;we refer to theseas“range-based
braking” algorithms. We start by describingquery plan
componentsthatcanrealizethealgorithmsandillustrating
themusinga typical examplequery. We thenstudytheir
performance,andwe closethis sectionby explaininghow
to chooseanappropriatenumberof partitionsandaneffec-
tivesetof partitionsizes.

3.1 Range-BasedBraking

As mentionedearlier, theproblemof extractingthetop (or
bottom) � elementsfrom alargedataset,where� is large
as well, can be dealt with by first range-partitioningthe
datainto a numberof bucketson the query’s rankingat-
tribute(s)andthenprocessingthe resultingbucketsoneat
a time until all � elementshave beenoutput. As an ex-
ample,consideragainQuery1 of Section2.1, which se-
lectsthenamesandsalariesof the � highestpaidemploy-
eesover 50 yearsold. Let ussupposewe have a corpora-
tion with 100,000olderemployees(asin our testdatabase)
andthat � is 10,000.We could,for instance,partitionthe
company’s old employeesinto threebuckets—thosewith
salariesover $250,000per year, thosewho earnbetween
$50,000to $250,000annually, andthosewhoearnlessthan
$50,000. Supposethat we do this and find that the first
(highestsalary)partitionendsupwith 1,000tuples,thesec-
ondwith 12,000tuples,andthethird with 87,000tuples.If
this is thecase,weneednotsortthetuplesin thelastparti-
tion, asthe10,000employeesin theanswersetclearly lie
in thefirst two partitions.

While the basicideaof range-basedbrakingis simple,
there are several possiblevariationson this themewith
costsandbenefitsthat dependon the natureof the query



beingprocessedandthedatabeingaccessed.Oneimpor-
tant� option hasto do with how the partitionsarehandled:
they can either be materialized(i.e., storedas temporary
tables),or they canberecomputedondemandfrom thein-
put data. In addition,thesetwo optionscanbe combined
to producea hybridapproachthatmaterializessomeof the
partitions(thosethatarelikely to beaccessed,e.g.,thefirst
two partitionsabove) andrecomputesthe reston demand
(theonesthatareunlikely to beaccessed).

To provide for these different options, we propose
addingseveral new query operatorsto the executionen-
gine. The first is a part-mat operator, which takes a
partitioningvector as a parameterand usesit to scanits
inputdataandwrite it to disk in a specifiednumberof par-
titions basedon the splitting valuesgiven in thepartition-
ing vector. The secondis a part-scan operatorthat is
usedto scantheresultingpartitionsone-by-one.Thethird
new operatoris apart-reread operator, which takesa
setof predicatesthatdescribethemembershipcriteria for
every partition (e.g., � salary > 250,000, 50,000
< salary 	 250,000, salary 	 50,000 
 ) and
materializesa partition’s tuplesby reading(or re-reading)
its input streamfrom the beginning. The final new query
operatoris apart-hybrid operator, which materializes
a specifiednumberof its highest(or lowest)rankedparti-
tionsandcomputesthecontentsof theotherpartitionsonly
ondemand.Wewill furtherillustratehow eachof theseop-
eratorsworks,anddiscusstheir performancetradeoffs, by
usingtheexampleplanspresentedin thenext subsection.

3.2 Range-Based“Top N” Query Plans

To demonstratehow thedifferentvariationsof range-based
brakingactuallywork, let us turn onceagainto Query1,
ourfavoriteSTOP AFTER queryexample.Figure3 shows
threepossiblepartitioningplansfor processingQuery1 in
theabsenceof any usefulindexes. (We will discussSTOP
AFTER queryprocessingwith indexesin Section5.1.)The
first plan, labeledMaterialize, takes the approachof ma-
terializing all of the employeepartitionsandthensorting
(only) thoseneededto yield � results. The executionof
this plan is demand-drivenandbestexplainedby looking
at what happensas result tuples are requestedfrom the
scan-stop(N) operatorat thetopof theplan.Whenthe
first resulttupleis requested,thescan-stop(N) opera-
tor attemptsto obtainandproduceits first result,soit asks
therestart(N) operatorfor a tuple,which in turn asks
thesort operatorunderneathit for a tuple.Thesort op-
eratorrespondsbyconsumingandsortingall of thetuplesit
cangetbeforegettingan“end-of-input”indicationfromthe
part-scan operatorbeneathit. Thepart-scan oper-
atorobtainstuplesby scanningthefirst partitionproduced
by its child, thepart-mat operator, whichmaterializesa
full setof partitionswith all of theold employeesby par-
titioning theresultof its input (comingfrom theemployee
tablescan)beforeallowing the part-scan to proceed.
Whenthepart-scan finishesscanningthefirst partition,
it returnsan“end-of-input”signalto thesort, whichsorts

part−mat

restart(N)

scan−stop(N)

sort(salary)

part−scan

tbscan(Emp,age>50)

part−reread

sort(salary)

restart(N)

scan−stop(N)

tbscan(Emp,age>50)

restart(N)

scan−stop(N)

sort(salary)

part−scan

tbscan(Emp,age>50)

part−hybrid

Materialize Reread Hybrid

Figure3: RangePartitioningPlansfor Query1

the partition andthenincrementallypassesthe resultsfor
thefirst partitionto thescan-stop(N) operatorthrough
therestart(N) operator. Whentherestart(N) op-
eratorreceives“end-of-input,” it sendsarestartsignalback
down the tuple pipeline; when this signal is received by
thepart-scan operator, it respondsby moving on to the
next partition,andso on. The result is that the partitions
createdby thepart-mat operatoraresorted,oneby one,
until thescan-stop(N) at the top hasproduced� re-
sults.Partitionsnotneededto achievethatgoalremainun-
sorted,therebysaving on sortingcostascomparedto the
ConventionalSortplanof Figure1.

The secondpartitioning plan shown in Figure 3, the
one labeledReread, doesnot materializeits partitionsas
temporaryfiles. Instead,it computesandsortsthe parti-
tions on demandby feedinga sort operatorone parti-
tion at a time from apart-reread operator. Again, the
plan is controlledat the top by a scan-stop(N) anda
restart(N) operator. In this case,eachtime a parti-
tion is computedandsorted,theemployeetablescanwill
berepeated;thishappensbecausethepart-reread op-
eratorrespondsto a restartsignalby re-initializing its in-
put operator(i.e., the tablescanin the example)or its in-
put operatortree (for morecomplex queryplans),which
thenstartsover from thebeginning. Theexecutionof this
queryplan is otherwisesimilar to thatdescribedabove,so
hopefully its control and dataflow detailsare now clear.
Theadvantageof theRereadplanfor our favorite queryis
that it savesthecostof writing andre-readingthemateri-
alizedpartitions;notethat this canincludepartitions,like
thelargethird partitionin our earlierexample,thatarenot
neededat all to obtainan � -tupleresultset. On theother
hand,it hasto re-scantheemployeetablefor eachpartition
that it doesuse,so thereis a readcostassociatedwith the
write/readsavings that this approachinvolves. The final
partitioningplanwhich is shown in Figure3, labeledHy-
brid, attemptsto combinetheadvantagesof theothertwo
planswhile avoiding their disadvantages.In particular, it
is structuredin sucha way that it materializesits first few
partitionsbut recomputestheremainingones.

3.3 “Top N” SelectQueries

At this point, we have a collection of five query plans
that all could be usedto processour favorite query in
the absenceof indexes: the ClassicSort-Stopand Con-
ventionalSort approachesof [CK97], shown in Figure1,
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andthepartition-basedMaterialize,Reread,andHybridap-
proaches,which we just introduced,andwhich areshown
in Figure 3. To investigatethe quantitative tradeoffs be-
tweenthefiveapproaches,weconstructedeachof thequery
plans and conducteda seriesof experimentsusing our
testemployeedatabaseandthe AODB system,which are
both describedin Section2.3. Figure4 shows the overall
Query1 responsetime resultsthatwe obtainedby experi-
mentingwith stoppingcardinalityvaluesrangingfrom 1 to
100,000(i.e., from oneup to all of the“old” employees).

TheConventionalSortplanhasthe worstperformance
throughoutmostof Figure4 becauseit sortsall of thedata
beforeit is able to identify the top � results. The per-
formancefiguresfor this planthusalwaysincludethecost
of a two-phasesortof 10 MB, which takesapproximately
two minutesin our testenvironment.Thecostincreasefor
largervaluesof � aredueto the � -dependenceof thefinal
merge phaseof the sort; for ����� , only the first page
of eachrun is read, while for � �������! "���#� all pages
of all runs are readand merged. The ClassicSort-Stop
plan providesmuchbetterperformancethanthe Conven-
tional Sort planaslong asit is applicable;its curve stops
at �$�����! "�#��� becauseits sortedheapstructureno longer
fits in thebuffer pool beyondthatpoint. The relative per-
formanceseenfor theseapproachesis essentiallyjust as
predictedin [CK97].

We now turn to the threepartition-basedapproachesin
Figure 4. In this experiment,we assumethat the opti-
mizer’s selectivity estimatorhasaccessto accuratedistri-
bution data;this meansthat we assumethat partitionsare
“ideally” sized(anotionthatwewill examinemoreclosely
in thenext subsection).Asaresult,all partition-basedplans
endupwith justover � tuplesin theirfirst partition.Look-
ing at theperformanceresultsfor Query1, we seethat the
Materializeplanendsupbeingtheworstperformeramong
the threepartitioningplansbecauseit alwaysmaterializes
10 MB of temporarypartitiondata,muchof which is sub-
sequentlynot needed.Despitethis cost,though,it outper-
formstheConventionalSortplanfor all valuesof � except
�%�&�����! "�#��� (wheretheir performancebecomesessen-
tially thesame).Theothertwo partitioningapproachesend
up providing the bestoverall performancefor this query;

bothsortonly therequiredamountof datahere,neitherma-
terializesany excessdatain this case,andno excessscans
occur, either. Thesetwo partitioningplansevenoutperform
theClassicSort-Stopplanfor small � ; they usequicksort
to sort their first (andonly) partition, which makes them
slightly lesscostlyherethanClassicSort-Stop,whichuses
its heaptoordertheresults.Finally, as � increases,thedif-
ferencesbetweenthe differentapproachesdiminishesbe-
causeall of themendup sortingthesameamountof data
when � reaches100,000.

3.4 Partitioning and SafetyPadding

The precedingexperimentprovidesquite a bit of insight
into therelativeperformanceof ourold andnew Sort-Stop
processingschemesfor a basictop � query; however, it
assumedperfectpartitioning.Beforewe acceptits results,
we needto explore thesensitivity of the partitionedplans
to thenumberandsizesof partitionsused.We needto do
so for two reasons.First, we needto understandhow to
choosethe partitioningparametersfor eachtype of plan.
Second,we needto find out how costlypartitioningerrors
aresoweknow how to padthepartitionsizesfor safety;in
practicethesevalueswill beselectedbasedon a combina-
tion of databasestatisticsandoptimizerestimates,andthey
will thereforebeimperfectlychosen.

Figure5 showstheresultsof aseriesof experimentsthat
differ in two waysfrom theoneswe just lookedat. Here,
we have fixed � at 20,000anddecreasedthe buffer pool
sizeby a factorof aboutseven to 600KB (i.e., 150 pages
of 4 KB). We usean even smallerbuffer pool hereso as
to stresstheneedfor partitioning;this is similar to scaling
up thesizeof theemployeetable,but keepsthecostof the
experimentswithin reason.The x-axis in Figure5 is the
numberof partitionsutilized, andthey-axis is theoverall
queryresponsetime (asbefore).In this graph,thenumber
of partitionsis variedwith a “perfectcut”, meaningfor '
partitionsandaquerystoppingcardinalitysettingof � , we
have ')(*� “winner” partitionswith �,+!-.')(/��0 tuplesin
eachoneplusone“loser” partitionwith theleftover tuples
in it. For comparisonandbaseline-settingpurposes,in ad-
dition to showing the performanceof the threepartition-
basedplans, the graphalso shows the timing resultsfor



theConventionalSortplan (which do not vary since � is
fix1 ed);theClassicSort-Stopis notapplicableheresinceits
heapwill not fit in theavailablebuffer memory.

Theresultsshown in Figure5 provideclearinsightsinto
how eachof thepartition-basedplansshouldbedealtwith
with respectto choosingthe numberof partitions. The
Rereadapproach,asonewould obviously expect, is very
sensitive to the numberof partitionsused;to avoid costly
re-reads,two partitions(onewinner, oneloser)is theopti-
mal choice.TheMaterializeapproachperformsbestwhen
thewinnertuplesarepartitionedinto memory-sizedpieces
so thateachpartitioncanbesortedin memoryin a single
pass;this is thecasein thefigurewith five (or more)par-
titions. TheHybrid approachhasa similar optimal point,
for thesamereason;it outperformsMaterializeby about20
seconds’worthof responsetimesinceit doesnotmaterial-
ize the80,000losertuples.

Figure6 showstheresultsof aseriesof experimentsthat
exploresthequestionof whathappensto thedifferentpar-
titioning planswhen the winner/losercut-point (which is
thex-axis in thefigure)hasbeenincorrectlyestimated;let
uscall this cut-point 2 from now on. Thegoalof this ex-
perimentis to obtaininsightsthatwe canuseto guidethe
sizingof partitions(e.g.,sowe know which directionit is
betterto err in). As before,the queryusedfor the exper-
imentshereis Query1, the buffer pool sizeis 150 pages,
and �3�54��! "�#��� . Learningfrom the resultsof Figure5,
Rereadhasonewinner andoneloserpartition in this ex-
periment,whereasMaterializeandHybrid furtherpartition
thewinnertuplesinto memory-sizedpieces.

When 2 is set too low, Figure6 shows that all of the
algorithmsgetinto fairly big trouble.This is becausesome
of thewinnertuples,whichbelongin thequeryresult,end
up beingplacedinto the large loserpartition. In this case,
RereadandHybrid bothhave to re-scantheentire50 MB
employee table to get at thesetuples, while Materialize
mustsort even the large loserpartition. Under thesecir-
cumstances,the ConventionalSort plan is ableto beatall
threeof the partitioning plans. Materializeperformsthe
worstherebecauseit doesa greatdealof expensive read-
ing andwriting, andthisendsupactuallybeingmorecostly
thanasecondsequentialscanof theemployeetable.

When 2 is settoo high, Figure6 shows that the parti-
tioning algorithmsstill manageto do quitewell for Query
1. Materializehasroughlyconstantcostin this region, as
it alwaysmaterializesall of the“old” employees(indepen-
dentof 2 ). Hybrid grows slowly moreexpensive as 2 in-
creasesbecauseit materializes2 but not all “old” tuples.
Rereadgrows costly much fasterwith an increasingcut-
point over-estimate. To seewhy, we needto look at the
amountof sortingcarriedout in the threeplans: Reread,
which hasonly onewinnerpartition(with 2 tuples),must
sort this wholewinnerpartition in orderto find the top �
tuples.Ontheotherhand,MaterializeandHybrid partition
their 2 winner tuplesinto several small winner partitions
so that they neednot sort all of thesewinnerpartitionsin
casesin which 2 is settoo high. In any case,the bottom

lineof thisexperimentis thatall of thepartition-basedalgo-
rithmssuffer quitestronglyif thenumberof tuplesplaced
into winnerpartitionsendsup beingtoo small,andsuffer
muchlessif too many tuplesareclassifiedaslikely win-
ners. Thus,it is betterto err on thehigh side,placingtoo
few tuplesinto the loserpartition(i.e., too many into win-
nerpartitions),to avoid potentialperformanceinstabilities.

3.5 Choosinga Partitioning Vector

Beforemoving on to otherqueries,it is worth discussing
the issueof how thepartitioningvector—i.e., thesplitting
valuesthatcontrolwhich attributevaluerangesareassoci-
atedwith whichpartitions—canbechosenfor thepartition-
basedplans. Theprecedingsubsectionshowedus how to
choosethe partition cardinalities,so the remainingopen
problemis oneof successfullymappingthesedesiredcar-
dinalitiesbackinto attributerangesfor theORDER BY at-
tribute(s)of aSTOP AFTER query. This is essentiallythe
dual of the selectivity estimationproblem,which takesa
query’sattributevaluerangesandattemptsto estimatecar-
dinalities from thoseranges;moreover, it is amenableto
thesametechniques.

Thereareessentiallytwo potentialanswershere. The
first is histograms, which have alreadybeenthoroughly
studied(e.g.,[PIHS96]) andareavailablein mostdatabase
systemstoday. In particular, equi-depthhistogramsthat
providegoodaccuracy evenin thepresenceof skeweddata
are well understood[Koo80, PSC84, MD88], and in the
caseof correlatedattributes,multi-dimensionalhistograms
will help[PI97]. Thus,if histogramsareavailable,they can
beusedto determinepartitionvectorsatquerycompilation
time. If no histogramsareavailable,or it is known thatthe
availablehistogramsprovideinsufficientaccuracy (e.g.,for
complex querieswith many “unpredictable”joinsor group-
ing operations),then samplingat run time can be used.
Samplinghasalsobeenthoroughlystudiedin thedatabase
context (e.g.,[LNS90, HS92]), andit hasalsobeenshown
to bequitecheap[DNS91b]. To conclude,at thispoint,we
relyonexistingtechnology, andthenew partition-basedap-
proachesweproposein this papercandirectly take advan-
tageof any improvementsmadein thisfield in thefuture.

4 Other Examples

Thusfar we have seenexperimentalresults(involving our
favorite query) that demonstratedthe basic tradeoffs re-
lated to the alternative rangepartitioning techniquesand
that showed someof the advantagesof using rangepar-
titioning for STOP AFTER queries. In this section,we
presentthree additional exampleswith experimentalre-
sults that highlight several otheradvantagesof rangepar-
titioning. Theseexamplequeriesincludeapercentquery, a
nestedquery, anda join query. Sincethetradeoffs between
thethreealternativepartitioningapproachesareverysimi-
lar for all STOP AFTER queries,we will focuson Hybrid
plans,which useour preferredpartitioningmethod,in this
section.
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4.1 PercentQueries

Our first additionalexample(Query2) is a so-calledper-
centquery. Thequeryasksfor the ;=< highestpaidEmps
thataremorethan50yearsold.

Query2: SELECT *
FROM Emp
WHERE age > 50
ORDER BY salary DESC
STOP AFTER x%;

Percentqueriesare interestingbecausean additional
countingstepis requiredin order to find out how many
tuplesare to be returned. That is, we needto count the
numberof Emps that areover 50 beforewe canactually
startSTOPping (so to speak). Looking backat the plans
studiedin theprevioussection,weseethatwecandirectly
apply the ConventionalSort plan (Figure 1) to this per-
cent query: the countingstepcan be carriedout as part
of the tbscan(Emp,age>50) operator, and the result
of this countingsteptimes ; % can be propagatedto the
scan-stop(N) operatorbefore the scan-stop(N)
operatorstartsto producetuples; this is possiblebecause
thesort in betweenis apipeline-breakingoperator. Like-
wise,all threepartitioningplansof Figure3 canbeapplied
to our percentquery:again,countingcanbecarriedout as
partof thetbscan(Emp,age>50) operatorsandprop-
agatedto thescan-stop(N) operatorsbecausethereex-
istsa pipeline-breakingoperatorin between(sort and/or
part-mat or part-hybrid). The ClassicSort-Stop
planof Figure1,however, cannotbedirectlyappliedin this
case.To usea sort-stop operator, we caneitherread
thewholeEmp tabletwice (onceto carryout thecounting
stepandonceto find thetop ; %), or wecanreadthewhole
Emp tabletherebycarryingout thecountingstepandma-
terializingtheEmps with age > 50 asa temporarytable
andthenreadthe temporarytablein orderto find the top
; %. Whichoneof thesetwo plansis betterdependson the
selectivity of theage predicate;in ourparticularexample,
thesecondplanis betterbecauseonly oneoutof fiveEmps
is older than50 in our testdatabase.In any case,both of
theseadjustedClassic-Sort-Stopplansaremoreexpensive
thanthe(inapplicable)ClassicSort-Stopplanof Figure1.

Figure7 shows the runningtimesof the Conventional
Sort,theadjustedClassicSort-Stop(with a materialization
step),andthepartition-basedHybrid plansfor this percent
query. As describedabove,theConventionalSortandHy-
brid planshave almostthesamerunningtimeshereasfor
Query1 in Section3, whereasthe ClassicSort-Stopplan
hasa highercostdueto writing andreadingtemporaryre-
sults from disk. As a result, the Hybrid plan is the clear
winner for all ;*	?>��@< for this percentquery. Note that
theClassicSort-Stopplancannotbeappliedfor ;BAC>��D<
becauseits memoryrequirementsthenexceed4 MB.

To find the proper partitioning vector for the Hybrid
plan for this query, the observations of Section3.4 es-
sentiallystill apply. That is, we shouldpartition the data
into memory-sizedportionsand “play it safe” by mate-
rializing too many ratherthan too few Emp tuplesin the
part-hybrid operator.

4.2 STOP in a Subquery

In the secondexampleof this section(Query3), we con-
sidera querythathasaSTOP in a subquery. Our example
queryasksfor theaveragesalaryof the � bestpaidEmps
with age > 50.

Query3: SELECT AVG(e.salary)
FROM (SELECT salary

FROM Emp
WHERE age > 50
ORDER BY salary DESC
STOP AFTER N) e;

Both theConventionalSortandtheClassicSort-Stopplan
of Figure1 canbeappliedto this query;they simply need
an aggregate operatorat the top in order to compute
the average. Thesetraditionalplans,however, performa
greatdealof wastedwork sincethey producetheiroutputin
salary orderandthis orderingis not neededto compute
theaverage.With a partition-basedplan,mostof this sort-
ing canbeavoidedby partitioningtheEmps into threepar-
titions: onepartitioncontainingthetop 6 Emps ( 6 slightly
smallerthan� ), onepartitioncontainingthenext E Emps
suchthat E is smalland 6GF/EHA�� , andonepartition
with theall of theotherloserEmps. In this case,only the
E Emps in thesecondpartitionneedto besortedin order
to find the �I(B6 highestpaidEmps in thatpartition.



Figure8 showstherunningtimesof thethreealternative
plansJ for thisquery. We canseethattheConventionalSort
planagainhasthehighestcostbecauseit sortsall 100,000
Emps with age > 50, independentof � . Also, asin the
previousexperiments,thecostof theClassicSort-Stopplan
increaseswith � andis in betweentheHybridandConven-
tionalSortplans.WhatmakesQuery3 andthisexperiment
specialis thatthecostof theHybrid planis almostconstant
herebecauseHybrid sortsvery few Emps, independentof
� ; only for very large � doesthecostof theHybrid plan
slightly increase,dueto materializingmany Emp tuples.As
a result, the differencesin costbetweenthe ClassicSort-
Stop and Hybrid plansincreasesharplywith � , and the
Hybrid plan outperformsthe ConventionalSort plan even
for ���K���#�L "�#��� . It shouldbenotedthat the costof the
ConventionalSort plan is lower for this query than in all
previousexperimentsbecausethis querycanbeevaluated
using only the salary column of Emps (i.e., the other
columnsareprojectedout after the tbscan), permitting
thesort to be carriedout in onepassin memory. Simi-
larly, theClassicSort-Stopplancanbeusedfor all � for
thisquerywithoutexhaustingthebuffer space.

It is somewhattrickier to find aperfectpartitioningvec-
tor for this query than for Queries1 and 2. If we set
2M�K68FNE ( 2 is the “cut-point” betweenwinnersand
losersas in Section3.4), thenwe needto make surethat
6I	I� in addition to 2OAI� and 2 assmall aspossi-
ble. In otherwords,herewe needto find a good left cut-
ting point, 6 , in additionto a goodright cuttingpoint, 2 ,
whereaswe only neededto find a goodright cuttingpoint
for Queries1 and2. Figure9 shows thesensitivity of the
costof theHybrid plantowardscasesin which 6 is setim-
perfectlyfor �P�I4��L Q���#� and 2$�I4�>L "���#� . Obviously,
theHybrid planperformsbestif 6 is closeto � . However,
thefigureshows that thepenaltyfor a poorsettingof 6 is
not severe(20%atmost)dueto thefactthattheadditional
work is proportionalto thenumberof misclassifiedtuples
(i.e., errorsheredon’t causeentireadditionalpartitionsto
becomeinvolvedin thequeryplan);in any casetheHybrid
plan outperformsboth traditionalplans. (Figure9 shows
thecostof theClassicSort-Stopplan,thebetterof thetwo
traditionalplans,asabaseline.)

4.3 Join Queries

Thelastexamplequeryof this sectioninvolvesa join; this
exampleshowsthatpartitioningbecomesevenmoreattrac-
tive for morecomplex queries.Thequeryasksfor the �
highestpaidEmps thathaveage > 50 andthatwork in
aDept with budget R 1,000.

Query4: SELECT *
FROM Emp e, Dept d
WHERE age > 50

AND d.budget S 1000
AND e.works in = d.dno

ORDER BY salary DESC
STOP AFTER N;

Figure11 shows two traditionalplansfor this query. The
first planis basedon(conventionally)sortingtheEmp table

into salary orderandthenprobingthetopEmps oneby
onein orderto find outwhetherthey work in aDeptwith a
highbudget (i.e., it usesanindex nested-loopjoin). The
secondplan carriesout the join first, in order to find all
Emps that work in a Dept with a high budget (Grace-
hashjoin is bestfor this purposein our testdatabase),and
then it finds the � highestpaid of theseEmps using a
sort-stop operator. As analternativeto thesetwo tradi-
tional plans,Figure12 shows two partitioning-basedplans
for this query. The ideahereis to partition theEmp table
beforethejoin, andthento join oneEmp partitionata time
with theDept tableuntil at least � Emps thatsurvive the
join havebeenfound.Thus,justaspartitioningwasusedin
thepreviousexamplesto avoid unnecessarysortingwork,
partitioningis utilized in thesetwo join plansto avoid un-
necessarysortingand join work. The differencebetween
thesetwo plansis thatthefirst oneusesindex nested-loops
for the join, whereasthe secondoneuseshashing. Note
that for small � , thehashjoin of thePart+HJplancanbe
carriedout in onepassif thepart-hybrid operatorpar-
titions thedatainto memory-sizedportions.

Figure 10 shows the running times of the four plans,
varying � andusingour testdatabasein whichall Depts
actuallyhave abudget > 1,000. We seeimmediately
that the partitioningplansclearly outperformthe two tra-
ditional plans. The Sort+NLJ plan hasthe highestcost,
independentof � , becauseit always sortsall 10 MB of
Emps with age > 50. For �TRU���#��� , it hasextremely
high costsbecause,in additionto theexpensivesort, the
NLJ becomesvery costly becausemany Emp tuplesgen-
erateprobes,resultingin an excessive amountof random
disk I/O. The GHJ+Sort-Stopplan haslow sortingcosts
for small � , but it haspoor performancebecauseit per-
forms a full-fledgedGrace-hashjoin. For ��A$>��! "�#��� ,
the GHJ+Sort-Stopplan is againinapplicablebecausethe
buffer requirementsof thesort-stop(N) operatorex-
ceedthe limit of 4 MB. (Replacingthesort-stop(N)
operatorby a conventionalsort anda scan-stop(N)
operatorwould yield anexecutiontime of about250 secs
here.) Both partitioningvariantsavoid unnecessarysort-
ing and joining of Emp tuples. The Part+NLJ plan per-
forms bestfor small � , but its performancedeteriorates
for �VRW�� Q���#� due to the high costof the NLJ, just as
in theSort+NLJplan. ThePart+HJplanshows betterper-
formancein thesecasesbecausehashjoins arebetterthan
index nested-loopjoinswhenbothinput tablesarelarge.

In terms of sensitivity, the points mentioned for
Queries1 and2 still basicallyapply;we shouldmake sure
thatthefirst partitioncontainsall of theEmp tuplesneeded
to answerthe query. We must keep in mind, however,
that for the Part+HJplan, thepenaltyfor settingthe “cut-
point” too low is higherthanfor thepartitioningplansfor
thesimplesortqueriesbecausea restartinvolvesnot only
re-scanningtheEmp table,but alsore-scanningtheDept
tablein the Part+HJplan. Sincethe Part+NLJplan never
actuallyscanstheDept table,thePart+NLJplandoesnot
paythisadditionalpenaltyfor restarts.
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5 Other Techniques
We have seenthat rangepartitioning can be very help-
ful to improve theresponsetime of severaldifferenttypes
of STOP AFTER queries. In this section,we will show
how two othertechniquescanbeappliedto evaluateSTOP
AFTER queries.Thefirst techniqueis alsobasedon parti-
tioning, but it is basedon usingorderedindexes(e.g.,B �
trees)to partition thedata.Thesecondtechniqueis based
onusingsemi-joinsto reducethesizeof temporaryresults.

5.1 Partitioning with Indexes

Let usreturnto Query1, which asksfor the � Emps with
the highestsalary andage > 50, andseewhat hap-
penswhen we have a B � tree on Emp.salary. The
TraditionalIndex-Scanplanthatexecutesthis queryusing
theEmp.salary index wasshown in Figure1 anddis-
cussedin Section2.1; it readsthe RIDs of theEmps one
at a time in salary order from the index, then fetches
theage, address, etc.fieldsandappliestheage pred-
icate,until the top � old Emps have beenfound. In Sec-
tion 2.1,we notedthat this planwould bevery goodif the
Emp.salary index is clusteredor � is very small, but
that it would have a high costif � is largeand/ortheage
predicatefilters out many high paidEmps because,in this
case,theridscan operatorwould leadto a greatdealof
randomI/O andmany pagefaults for rereadingpagesof
the Emp table if the buffer is too small to hold all of the
relevantpagesof theEmp table.

For large � andunclusteredindexes,we cando better
by using,of course,partitioning. The idea is to readthe
RIDs of the top �ZY Emps from the index, sort these�ZY
RIDsin pageid order, dotheridscanwith thepredicate,
re-sortinto salary order, andcut off thetop � tuplesor
repeatif lessthan � of thetop �ZY Emps haveage > 50.

Similar RID sortingideasareknown asRID-list process-
ing andhave beencommonlyexploited in text databases
(e.g., [BCC94]) andsetqueryprocessing(e.g., [Yao79]),
but they can only be applied in the STOP AFTER con-
text if they arecombinedwith partitioning. Thebeautyof
thisPart-Index approachis thattheridscan operatorbe-
comesquitecheapsinceit readstheEmp pagessequentially
andreadsnoEmp pagemorethanoncefrom disk. On the
negative side,this approachinvolvestwo sortingsteps.If
� and � Y aresmall,however, thesesortsarefairly cheap
becausethey canbecarriedout in onepassin memory.

Figure 13 shows the running times of the Traditional
Index-ScanplanandaPart-Index planfor Query1, varying
� . As baselines,the figure alsoshows the runningtimes
of the Hybrid plan that doesnot use the Emp.salary
index (as in Figure 4) and the “ideal” running time for
Query1 generatedby runningthe TraditionalIndex-Scan
planon a specialversionof our testdatabasein which the
Emp.salary index is clustered. We seethat the Part-
Index planclearlyoutperformstheTraditionalIndex-Scan
plan for a largerangeof � . While the TraditionalIndex-
Scanplan is only attractive for ��	$����� , the Part-Index
planshowsalmost“ideal” performanceupto �[�\���! "�#��� .
(After that its sorts becometoo expensive.) Only for
�]����� doestheTraditionalIndex-Scanplanslightly out-
performthePart-Index plan(0.9secsvs.1 sec).

Theright settingof � Y , of course,dependsuponboth �
andthe selectivity of theage predicate.In this example,
� Y shouldbesetto >_^`� becauseeveryfifth Emp is older
than50 in our testdatabaseandthevaluesof thesalary
andage columnsarenot correlated. It shouldbe noted,
however, thatthepenaltyfor restartsin thePart-Index plan
is very low: ratherthanre-scanningtheentireEmp table,a
restartsimplyinvolvescontinuingtheEmp.salary index
scanandfetchingthenext �ZY Emp tuples.
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5.2 A Semi-Join-Lik eTechnique

Theideaof semi-joinsis to reducethecostof I/O intensive
operations,suchassorts,joins, andgroup-byoperations,
by projectingoutall but thosecolumnsactuallyneededfor
anoperation;doingsoreducesthesizeof thetemporaryre-
sultsthatneedto bereadand/orwritten to disk or shipped
througha network. Thedisadvantageof semi-joinsis that
columnsthat were projectedout must be re-fetched(us-
ing a ridscan operator)after the operationin order to
carry out subsequentoperationsor becausethey are part
of thequeryresult.Semi-jointechniqueshave beenexten-
sively usedin theearlydistributeddatabasesystems(e.g.,
[BGW � 81]), but they have not beenwidely usedin cen-
tralizeddatabasesystems.One reasonfor this is the po-
tentially prohibitively high andunpredictablecostsof re-
fetches,thoughthe costof the re-fetchescan be reduced
with the sameRID sortingtrick describedin the previous
subsection.What makessemi-join-like techniquesattrac-
tive for STOP AFTER queriesis that the costsof the re-
fetchesarelimited andcanbepredictedaccuratelyduring
queryoptimizationif there-fetchesarealwayscarriedout
at theendof queryexecution:if aqueryasksfor thetop �
tuples,thenatmost � re-fetchesarerequiredat theend.

We studied two different semi-join-like plans for
Query1. In both plans,thesortingof theEmp tuplescan
be carriedout in onepassin main memorybecauseonly
theRIDs andthe salaryfieldsof theEmp tuplesarekept.
Thedifferencebetweenthe two plansis that thefirst plan
which we call the Standard SJ Plan doesnot apply the
RID sorting trick describedin the previous subsectionin
orderto improve the re-fetches,whereasthe secondplan,
the SJ+RidsortPlan, doesapply this trick. We ran both
planswith varying � , andFigure14 shows the resultsof
theseexperiments.Thefigurealsoshows theresultsof the
ConventionalSortandHybrid plansof Section3 asbase-
lines. First,we seethattheimpactof theRID sortingtrick
is lesspronouncedthan in the previous experimentswith
the Part-Index plan. The reasonis that in both semi-join
plans,theEmp tablehasalreadybeenreadonce,andthe
old Emps have alreadybeenfilteredout,sotheridscan
getsmorehits in the buffer pool and is appliedto fewer
tuples.Second,weobservethatfor small � , thetwo semi-
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join plansindeedoutperformthe ConventionalSort plan,
while for � A3���#��� , the performanceof the semi-join
plansdeterioratesdueto their high re-fetchingcosts. Fi-
nally, we seethat the semi-join plansare clearly outper-
formedfor all � by the partition-basedHybrid plan; like
the semi-joinplans,the Hybrid plan of Section3 carries
out its sort(salary) in onepass(for �a	]���L Q����� ),
andtheHybrid planhastheadditionaladvantageof sorting
slightly more than � ratherthan all 100,000Emps with
age > 50. Wenotethatit is not toodifficult to find other
examplequerieswhereasemi-joinplanwouldactuallyout-
performa partitioningplan(e.g.,for very largeandhighly
selective joins with small � ); sometimesthe bestplan to
executea querymaybea combinationof partitioningand
semi-joins.

6 Conclusions

In this paper, we presentedseveral new strategies for ef-
ficiently processingSTOP AFTER queries.Thesestrate-
gies,basedlargely on the useof rangepartitioning tech-
niques,wereshown to providesignificantsavingsfor han-
dling importantclassesof STOP AFTER queries.We pre-
sentedexamplesincluding basic“top N” queries,percent
queries,subqueries,and joins; we saw benefitsfrom the
useof the new partitioning-basedtechniquesin eachcase
dueto thereductionin wastedsortingand/orjoining effort
that they offer. We showed that rangepartitioningcanbe
useful for indexed as well as non-indexed plans,and we
alsoshowedthatsemi-join-like techniquescanprovide an
additionalsavingsin somecases.

Thereare several areasthat appearfruitful for future
work. One areaof interestis STOP AFTER query pro-
cessingfor parallel databasesystems. Our techniques
shouldbe immediatelyapplicablethere,andthey mayof-
fer even greaterbenefitsby reducingthe amountof data
communicationrequiredto processsuchqueries.Another
avenuefor future investigationwould be experimentation
with the effectivenessof histogramand/orsamplingtech-
niquesfor determiningthe partitioningvector entriesfor
STOP AFTER querieson realdatasets.
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