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Abstract

In arecentpaper weproposedaddinga STOP AFTER clauseto

SQLto permitthecardinality of a queryresultto beexplicitly lim-

ited by querywriters and querytools. We demonstatedthe use-
fulnessof havingthis clause showechowto extenda traditional

cost-basedjueryoptimizerto accommodaté, anddemonsiated
via DB2-baseaimulationghatlarge performanceyainsare pos-
siblewhenSTOP AFTER queriesare explicitly supportedby the
databaseengine In this paper we presentseveral new stratggies
for efficiently processingSTOP AFTER queries. Thesestrate-
gies, basedlargely on the useof range partitioning techniques,
offer significantadditional savingsfor handling STOP AFTER

queriesthat yield sizeableresult sets. We describeclassesof

guerieswhee sud savingswould indeedarise and presentex-

perimentaimeasuementghat showthe benefitandtradeofs as-
sociatedwith thenew processingstrategies.

1 Intr oduction

In decisionsupportapplications,it is not uncommonto
wish to posea query and then to examine and process
at most somenumber(N) of the resulttuples. In most
databassystemsuntil recently applicationsouldonly do
this by usinga cursor i.e., by submittingthe entirequery
andfetchingonly thefirst N results.Obviously, this canbe
very inefficient, leadingto a significantamountof wasted
gueryprocessingIn arecentpaper[CK97], we proposed
addinga STOP AFTER clauseto SQL to enablequery
writersto limit thesizeof aquerysresultsetto aspecified
numberof tuples;relatedSQL extensionshave beenpro-
posedn [KS95, CG9q. TheSTOP AFTER clauseessen-
tially providesa declaratve way for a userto say”enough
already!”in the context of an SQL query enablingthesys-
tem to avoid computingunwantedresultsin mary cases.
In our previouswork we shavedthe usefulnes®f the new
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clausediscussedhow a cost-basedjueryoptimizercanbe
extendedto exploit it, andusedDB2-basedsimulationsto

demonstratéhe large performancegainsthat are possible
whenSTOP AFTER query supportis explicitly addedto

thedatabasengine.

In this paper we build upon our previous work by
presentingseveral new stratgies for efficiently process-
ing STOP AFTER queries.Althoughwe discussed&TOP
AFTER query processingn generalin [CK97], the ma-
jor focusof ourinitial attentionwason optimizingqueries
whereN is relatively small (e.g., “top ten” queries). An
exampleof a typical query that our previously proposed
processingchemesvill handlewell is:

SELECT e. nane, e.salary
FROM e

Enp
VWHERE e. age >
ORDER BY e. sal ary DESC
STOP AFTER 10;

This queryasksfor the namesandsalariesof the tenmost
highly-paidolderemployeesin thecompary. Our previous
schemewwill alsowork well for primary-key/foreign-key
join queriessuchas:

SELECT e. name
FROM Enmp e, E
VHERE e age > 50
AND e. works_in = d.dno
ORDER BY e. sal ary DESC
STOP AFTER 10;

e. sal ary, d.nane

This query asksfor the emplo/ees’ departmennamesas
well as their namesand salaries. For queriessuch as
these, it is possiblefor the query processorto manage
its sorted,cardinality-reducedhtermediateresultsusinga
main memoryheapstructure therebyavoiding large vol-
umesof wastedsortingl/O ascomparedo processinghe
querywithouta STOP AFTER clauseandthendiscarding
theunwantedemployeeinformation.

In caseswvherethe stoppingcardinality N is large, our
original approachesvould eachend up sorting and then
discardinga significantamountof data—albeikarly (i.e.,
beforethe join in the example above), which still leads
to a significantsavings comparedto the naive approach.
The stratgies presentedn this paperseekto avoid this
wastedeffort aswell. Our new stratgiesare basedupon
borraving ideasfrom existing queryprocessingechniques



suchasrangepartitioning(commonlyusedin parallelsort-
ing and parallel join computations)RID-list processing
(commonlyusedin text processingandsetqueryprocess-
ing), and semi-joins(commonlyusedin distributed ervi-
ronmentsto reducejoin processingcosts). As we will
shaw, adaptingthesetechniquedor usein STOP AFTER
gueryprocessinganprovide significantadditionalsavings
for certainimportantclassesf queries. We have imple-
mentedthe techniquesn the context of an experimental
guery processingystemat the University of Passauand
we will demonstrat¢he efficacy of our techniquedy pre-
sentingmeasurementsf queryplansrunningthere.

Before proceeding,it is worth noting that proprietary
SQL extensionsclosely relatedto our proposedSTOP
AFTER clause can be found in current products from
a numberof major databasesystemvendors. In addi-
tion, mostof theminclude somedegreeof optimizersup-
port for getting the first query resultsback quickly (e.g.,
heuristicallyfavoring pipelinedqueryplansover otherwise
cheaper but blocking, non-pipelinedplans). For exam-
ple, Informix includesa FI RST_ROWS optimizerhint and
a FI RST n clausefor truncatingan SQL query’s result
set.Similarly, Microsoft SQL Sener providesan OPTI ON
FAST n clauseand a session-leel SET ROACCUNT n
statemenfor thesepurposesIBM’s DB2 UDB systemal-
lows usersto include OPTI M ZE FOR n ROAS and/or
FETCH FI RST n ROA5 ONLY clauseswhen entering
an SQL query OracleRdb (originally a DEC product)
addeda LIM T TO n ROWSE clauseto SQL, while Or-
acle Sener makes a virtual ROANUM attribute part of its
guery resultsto supportcardinality limits; including the
predicateROMNUM <= n in the WHERE clauseof an
SQL querytells OracleSenerto stopreturningresultrows
after n rows have beenproduced. RedBrick supportsa
SET ROWCOUNT n commandaswell asan SQL exten-
sion called RANK( col ) which both imposesa resultor-
derandallows processingo be stoppedearly; addingthe
clauseAHEN RANK( col ) < ntoaquerytellsRedBrick
to returntheresultrows thatrankamongthefirst n column
valueswith respecto the indicatedcolumn. (In the event
of atie, RedBrickpermitsmultiple resultrows to have the
samerankvalue.) Finally, several of thesesystemsappar
ently passstoppinginformationto operationsuchas Sort
sothatthey canoptimizefor the desiredhumberof results
whenmeming sortedruns. Unfortunately to the bestof
our knowledge thereis no publishednformationavailable
thatdescribeshow ary of thesesystems’SQL extensions
areimplemented.

Theremaindeof this paperis organizedasfollows: We
presenbackgroundnaterialin Section2, wherewe briefly
summarizethe query operatorsand kinds of query plans
introducedin our previous work, review the basicideaof
rangepartitioningasa queryprocessingstep,andprovide
anoverview of the experimentalervironmentusedto pro-
duce the performanceresults presentedn later sections
of the paper In Section3 we introduceour new range-
basedechniquegor processingTOP AFTERqueriesand

presentexperimentalresultsthat demonstrateheir bene-
fits and highlight their associategerformancdssuesand
tradeofs. We focus on basictop N selectionqueriesin

Section3, while in Section4 we explain how rangetech-
niguescanbe utilized for processingjueriessuchastop N

percentagaelectionsselectionsnvolving STOP AFTER
subqueriesandjoins. In Section5 we shav how RID-list

andsemi-jointechniquesanbe appliedto STOP AFTER
gueries.Finally, we presenbour conclusionsandour plans
for futurework in Section6.

2 Background

The generalstructureproposedor STOP AFTER queries
(andsubqueriesin [CK97] is asfollows:

SELECT ... FROM ... VHERE ...
GROUP BY ... HAVING ... _
ORDER BY (sort specification list)
STOP AFTER (val ue expression)

The STOP AFTER clauses <val ue expressi on>

evaluatesto a scalarinteger valueto indicatethe number
of resulttuplesdesiredjt maybea constantanarithmetic
expression,or even an uncorrelatedscalarsubquery The
semanticof the STOP AFTER clausearestraightforvard
to explain: Let N be the integer stoppingcardinality that
<val ue expressi on> evaluatesto. After computing
therestof the query the systemis to returnonly the first

N tuplesof the result(in the specifiedORDER BY order,

if ary) to therequestingiseror applicationprogram.Note
thatthis produceghe sameresultsasthe cursorbasedap-
proachusedby applicationprogramstoday but the pres-
enceof the STOP AFTER clauseprovidesthe query op-
timizer and runtime query processingsystemwith cardi-
nality informationthatcanbe exploitedto reduce(or even
eliminate,in somecasesyastedwork.

2.1 STOP AFTER Query Processing

To processSTOP AFTER querieswe proposedxtending
the databaseystems collectionof algebraicqueryopera-
tors with a new logical query operator the Stopoperator
Thisoperatomproduceghetop or bottomN tuplesof itsin-
put streamin a specifiedorderanddiscardshe remainder
of the stream.Lik e otherlogical queryoperatorgsuchas
Join), Stop hasseveral alternatve physicaloperatorghat
canimplementit in the contet of queryplans.

We definedtwo physical Stop operatorsin [CK97]:
Scan-Stopfor usewhenthe Stopoperators streanof input
tuplesis alreadyorderedappropriatelyand Sort-Stop for
usewhenthe Stopoperators input streamis not yet rank-
ordered. Scan-Stops extremelysimple;it is a pipelined
operatorthat simply requestsand then passesachof the
first N tuplesof its inputstreamalongto its consumefi.e.,
to the operatoraboreit in the queryplan). In contrastthe
Sort-Stopoperatothandleghe casewheretheinput stream
is not alreadysorted;it mustthereforeconsumets whole
inputstreamin orderto producethetop (or botton) N out-
puttuples. WhenN is relatively small, Sort-Stopcanop-
eratein main memoryusinga priority heap[Knu73]. The
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Figurel: TraditionalPlansfor Queryl

first N tuplesof its input areinsertedinto the heap,and
eachremainingtuple is thenincrementallytestedagainst
theheapscurrentmembershifpoundto determinevhether
or notit warrantsinsertioninto the heapof the top (or bot-
tom) N tuples. For largervaluesof N, externalsortingis
requiredto computethe desiredSort-Stopresults;we sim-
ply usedan ordinary external Sort operatorfollowed by a
Scan-Stomperatolin suchcasesn [CK97].

For illustration purposesconsidera slightly moregen-
eral versionof the first examplequeryfrom the Introduc-
tion (we will call this Query1 in thefollowing):

Queryl: SELECT *
FROM Enp
VWHERE age > 50
ORDER BY sal ary DESC
STOP AFTER N,

Figure 1 depictsthreeof the possibleexecutionplansthat
canbe constructedor this queryby combiningoneof our
physicalStopoperatorsvith other, pre-eistingqueryoper
ators.Thefirst plan,the ClassicSort-Stopplan,usesatable
scan(t bscan) operatotto find employeesin theappropri-
ateagerangefollowedby a heap-basedort - st op('N)
operatotto limit theresultsto the N highestpaidolderem-
ployees. This planis viableaslongas N is smallenough
for the heapto indeedbe a main memorystructure. The
secondplan, Cornventional Sort, insteadusesan external
sorton sal ary followed by a scan- st op(N) to ob-
tainthedesiredresult. Thiswould bethe preferredplanfor
large N in the absenceof a sal ary index. Of course,
planssimilar to thesetwo, but with an Enp. age index
scanusedto producethe inputsto the Stop-relateper
ators,arepossibleaswell. Thethird planin Figurel, the
Traditional Index-Scanplan, would alsobecomeviablein
thepresencef anindex on Enp. sal ary. Thisplanper
forms anindex scan(in descendingrder) on the salary
index, usesthe resultingrecordids (RIDs) to fetch high-
salariedemployeesandappliestheage predicateo them,
andthenusesa scan- st op operatorto selectthetop v
resultssincethe index scanproducests outputin the de-
siredsal ary order This third plandoesvery well if the
salaryindex is a clusteredindex or N is small. If N is
large and the index is unclusteredhowever, it would do
toomary randoml/Osto becost-efective, especiallyif the
age predicateis highly selectve (in which casemary of
the high-salariecemployeesfound using the index would
subsequentlpeeliminated).

We introducedtwo policiesto governthe placemenbf
Stopoperatorsn queryplansin [CK97]. Onewasa Con-
servativepolicy, which insertsStop operatorsas early as
possiblein a query plan subjectto the constraintthat no

Trad. Index-Scan

tuple that might end up participatingin the final N-tuple
gueryresultcanbediscardedy a Stopoperation We also
proposedan Aggressivepolicy thatseekdo introduceStop
operatordn a queryplan even earlier placinga Stopop-
eratorwhereverit canfirst provide a beneficialcardinality
reduction. The Aggressve policy usesresultsize estima-
tion to choosethe stoppingcardinality for the Stop oper
ator; at runtime, if the stoppingcardinality estimateturns
outto have beentoo low, the queryis restartedin orderto
getthe missingtuples. This is accomplishedy placinga
rest art operatorin thequeryplan;this operatorsjob is
to ensurethat,above its pointin theplan,all N tupleswill
be generated.Thus,if its input streamrunsout beforeall
N tuplesarereceved, it will “restart” the query subplan
beneatht to obtainthe missingresults.

2.2 RangePartitioning

Rangepartitioningis awell-known techniquahathasbeen
appliedwith much succesgo numerousproblemsin the
parallel databasealgorithm area[DG92]. One success-
ful exampleis parallelsorting[DNS91H, while anotheris
load-balancegaralleljoin computatiorf DNSS93; yetan-
otherexampleis the computationof so-calledbandjoins
[DNS914. The basicidea of range partitioning is ex-
tremely simple—thedatais divided into separatelypro-
cessablducketsby placingtupleswith attribute valuesin
one rangeinto bucket #1, tupleswith attribute valuesin
the next rangeinto bucket #2, andso on. In the caseof
parallel sorting, eachnodein a k-node databasenachine
partitionsits datainto k bucketsin parallel, basedon the
sortingattribute(s) streamingeachbucket's contentgo that
bucket’s designatedeceier nodewhile the datais being
partitioned.At theendof this processtheindividual buck-
etscanbe sortedin parallelwith no furtherinternodein-
teraction.Figure?2 illustratesthis process.Successfupar
titioning in this mannerproducesvirtually linear sorting
speedupand sampling(or histogram)techniquescanaid
in the determinationof a good setof partition boundary
valuesiDNS91H atrelatively low cost.

In Section3, we will proposeand analyzethe use of
severalpossiblepartitioning-basedpproachesor improv-
ing the efficiency of STOP AFTER queryprocessingWe
will cover the detailslater, but the basicideais simple—
the relevant datacan be range-partitionean the query’s
ORDER BY attribute into a numberof buckets. The buck-
etscanthenbeprocessedneatatime until N resultshave
beenoutput; bucketsthat are not accesseth this process
neednever be sortedat all. This providesa way to imple-
menta Stop(N)operatiorthatscalesbeyondmainmemory
sizeswithout requiringfull sortingof the input stream.In
addition,wewill seethatin certaincontets,additionalsig-
nificantsavzingsarepossibleg.g.,casesnvolving usesof a
STOP AFTER clausein asubquery

2.3 Experimental Environment

As we work our way through the presentationof the
proposednen approachedor executing STOP AFTER
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gueries,we will be presentingresultsfrom performance
experimentsthat demonstratahe tradeofs relatedto the
approachesnd that quantitatvely explore the extent to
which they areableto reducethe costsof STOP AFTER
queries. Like Query 1 above, our test querieswill be
guerieverasimpleemployeedatabaswith thefollowing
self-explanatoryschema:

worksin,
budget,

Emp( eno, addr ess)

Dept (dno,

age, salary,
descri ption)

Ourinstanceof thisemplo/eedatabasés fairly small,with

a 50 MB Enp tableanda 10 MB Dept table. We kept
the databasesmallin orderto achiese acceptableunning
times and becausene had someavhat limited disk space
available for performingour experiments. The Enp ta-

ble has 500,000tuples which are generatedas follows:

eno is set by counting the tuples from 1 to 500,000,
while wor ks_i n, age, andsal ary aresetrandomly
using a uniform distribution on their particulardomains;
addr ess simply padsthe tupleswith “garbage”charac-
tersto ensurethateachEnp tupleis 100 byteslong. The
domainof wor ks_i n is, of course,the sameas that of

Dept . dno (describedelaw), thedomainof age is inte-

gersin therangefrom 10to 60 sothatabout100,000Enps

(20%)areolderthan50, andthedomainof sal ary isin-

tegersin therangeof 1 to 500,000.Our testdatabaséas
no correlationsasanexamplerelevantto our experiments,
ayoungEnp isjustaslikely to haveahighsal ary asan
oldEnp is.

TheDept tablehas100,000tupleswhich aregenerated
asfollows: dno is setby countingthe Dept tuplesfrom
1to 100,000;budget is setto 10,000for all Dept s, and
descri pti on padstheDept tuplesoutto 100bytes.

In termsof indexes,our testdatabasédasclusteredd+
tree indexes on the primary key attributes of the tables
(i.e.,eno anddno) becauselusteredndexeson primary
keys are relatively common. To study planssuchasthe
Traditional Index-Scanplan of Figurel, we alsohave an
Enp. sal ary BT tree;naturally thisindex is unclustered.

Ourexperimentave beenperformednanexperimen-
tal databasesystemcalled AODB [WKHM98]. AODB
is essentiallya textbook relational databasesystemthat
usesstandardmplementationgor sorting,variouskindsof
joins, group-byoperationsandsoon. We extendedAODB

with implementationdor thescan- st op, sort - st op
(using 2-3 treesto organize the heap [AHU83]), and
restart operatorsdescribecabove; we alsoaddedsup-
port for the forms of range partitioning describedin the
next section.We ran AODB on a Sunworkstation10 with
a33MHz SRARC processqr64 MB of mainmemory and
a4 GB disk drive thatis usedto storecode,the database,
andtemporaryresultsof queries.The operatingsystemis
Solaris2.6,andwe usedSolaris’directl/O feature thisdis-
ablesoperatingsystemcachingin a mannersimilar to raw
disk devices. Sinceour databasés small, we limited the
sizeof thedatabaséuffer pool proportionallyto 4 MB, in
thosecasesvherewe do not explicitly sayotherwise. Of
these4 MB, we alwaysgave atleastl00KB to eachopera-
tor thatreadsor writesdatato disk in orderto enablelarge
block I/0 operationandavoid excessie disk seeks.

3 Range-Basedraking Algorithms

We now turn our attentionto the developmentof new
techniquedor processingSTOP AFTER querieswith less
effort—i.e., techniquesfor reducing the “stopping dis-
tance” of an SQL query engine. The primary tool that
we will be usingis rangepartitioning. In this section,
we presentseveral algorithmsthat usethis tool to helpthe
engineto limit wastedwork, therebyfinishing soonerfor
STOP AFTER queries;we referto theseas“range-based
braking” algorithms. We start by describingquery plan
componentshatcanrealizethe algorithmsandillustrating
themusinga typical examplequery We thenstudytheir
performanceandwe closethis sectionby explaininghow
to chooseanappropriatsaumberof partitionsandaneffec-
tive setof partitionsizes.

3.1 Range-Basedraking

As mentionecearlier the problemof extractingthetop (or
bottom) N elementdrom alargedataset,whereN is large
aswell, can be dealtwith by first range-partitioninghe
datainto a numberof buckets on the query’s ranking at-
tribute(s)andthenprocessinghe resultingbucketsoneat
atime until all N elementshave beenoutput. As an ex-
ample,consideragainQuery 1 of Section2.1, which se-
lectsthe namesandsalariesf the N highestpaidemploy-
eesover 50 yearsold. Let ussupposeve have a corpora-
tion with 100,0000lderemployees(asin ourtestdatabase)
andthat NV is 10,000.We could, for instancepartitionthe
compary’s old employeesinto three buckets—thosewith
salariesover $250,000per year thosewho earnbetween
$50,0000 $250,00Gnnually andthosewho earnlessthan
$50,000. Supposehat we do this and find that the first
(highestsalary)partitionendsupwith 1,000tuples thesec-
ondwith 12,000tuples,andthethird with 87,000tuples.If
thisis thecasewe neednotsortthetuplesin thelastparti-
tion, asthe 10,000employeesin the answersetclearly lie
in thefirst two partitions.

While the basicideaof range-basetrakingis simple,
there are several possiblevariationson this themewith
costsand benefitsthat dependon the natureof the query



beingprocesse@dndthe databeingaccessedOneimpor-
tamt option hasto do with how the partitionsare handled:
they caneither be materialized(i.e., storedas temporary
tables),or they canberecomputesn demandrom thein-
put data. In addition, thesetwo optionscanbe combined
to producea hybrid approactthatmaterializessomeof the
partitions(thosethatarelikely to beaccessed.g. thefirst
two partitionsabore) andrecomputeghe reston demand
(theonesthatareunlikely to beaccessed).

To provide for these different options, we propose
adding several new query operatorsto the executionen-
gine. Thefirstis a part - nat operator which takes a
partitioning vector as a parameterand usesit to scanits
input dataandwrite it to diskin aspecifiedhumberof par
titions basedon the splitting valuesgivenin the partition-
ing vector The seconds apart - scan operatorthatis
usedto scanthe resultingpartitionsone-by-one The third
new operatoris apart - r er ead operatoywhich takesa
setof predicateghat describethe membershigriteria for
every partition (e.g., {sal ary > 250, 000, 50, 000
< salary < 250,000, sal ary < 50, 000}) and
materializesa partition’s tuplesby reading(or re-reading)
its input streamfrom the beginning. The final new query
operatofis apart - hybr i d operatoywhich materializes
a specifiednumberof its highest(or lowest)ranked parti-
tionsandcomputeghe contentof the otherpartitionsonly
ondemandWe will furtherillustratehow eachof theseop-
eratorsworks, anddiscussheir performancdradeofs, by
usingthe exampleplanspresentedn the next subsection.

3.2 Range-BasedTop N” Query Plans

To demonstratbow thedifferentvariationsof range-based
brakingactuallywork, let us turn onceagainto Query1,
ourfavorite STOP AFTERqueryexample.Figure3 showvs
threepossiblepartitioningplansfor processingQuerylin
theabsencef ary usefulindexes. (We will discussSTOP
AFTER queryprocessingvith indexesin Sections.1.) The
first plan, labeledMaterialize takesthe approachof ma-
terializing all of the employee partitionsandthensorting
(only) thoseneededo yield N results. The executionof
this planis demand-drenandbestexplainedby looking
at what happensas result tuples are requestedrom the
scan- st op( N) operatoatthetop of theplan. Whenthe
first resulttupleis requestedthescan- st op( N) opera-
tor attemptgo obtainandproducsits first result,soit asks
ther est art ( N) operatorfor atuple,whichin turn asks
thesort operatomuunderneatli for atuple. Thesor t op-
eratorrespond$y consumingandsortingall of thetuplesit
cangetbeforegettingan“end-of-input”indicationfrom the
part - scan operatotbeneatht. Thepart - scan oper
ator obtainstuplesby scanninghefirst partition produced
by its child, thepar t - nat operatorwhich materializesa
full setof partitionswith all of the old employeesby par
titioning theresultof its input (comingfrom theemployee
table scan)beforeallowing the part - scan to proceed.
Whenthepar t - scan finishesscanninghefirst partition,
it returnsan“end-of-input”signalto thesor t , whichsorts

scan-stop(N) scan-stop(N)
scan-stop(N)
restart(N) restart(N)
restart(N)
sort(salary) sort(salary)
sort(salary)
part-scan part-scan
part-reread
part-mat part=hybrid

tbscan(Emp,age>50)

tbscan(Emp,age>50) thscan(Emp,age>50)

Materialize Reead Hybrid

Figure3: RangePartitioningPlansfor Queryl

the partition andthenincrementallypasseghe resultsfor
thefirst partitionto thescan- st op( N) operatorthrough
ther est art ( N) operator Whenther est art ( N) op-
eratorreceves“end-of-input; it sendsarestartsignalback
down the tuple pipeline; whenthis signalis receved by
thepar t - scan operatoyit respond$y moving onto the
next partition,andsoon. The resultis thatthe partitions
createcby thepart - mat operatoraresorted,oneby one,
until thescan- st op(N) atthetop hasproducedN re-
sults. Partitionsnot neededo achieve thatgoalremainun-
sorted,therebysaving on sortingcostas comparedo the
CorventionalSortplanof Figurel.

The secondpartitioning plan shavn in Figure 3, the
one labeledRerad doesnot materializeits partitionsas
temporaryfiles. Instead,it computesand sortsthe parti-
tions on demandby feedinga sort operatorone parti-
tion atatimefromapart - r er ead operator Again, the
planis controlledat the top by a scan- st op(N) anda
restart (N) operator In this case,eachtime a parti-
tion is computedandsorted,the employeetable scanwill
berepeatedthis happendecaus¢hepart - r er ead op-
eratorrespondgo a restartsignal by re-initializing its in-
put operator(i.e., the table scanin the example)or its in-
put operatortree (for more complex query plans), which
thenstartsover from the beginning. The executionof this
gueryplanis otherwisesimilar to thatdescribedabore, so
hopefully its control and dataflow detailsare now clear
The adwantageof the Rereadplanfor our favorite queryis
thatit savesthe costof writing andre-readingthe materi-
alizedpartitions; notethat this caninclude partitions,like
thelargethird partitionin our earlierexample,thatarenot
neededat all to obtainan N-tupleresultset. On the other
hand,it hasto re-scartheemployeetablefor eachpartition
thatit doesuse,sothereis areadcostassociatedvith the
write/readsavings that this approachinvolves. The final
partitioning plan which is shavn in Figure 3, labeledHy-
brid, attemptsto combinethe advantage®f the othertwo
planswhile avoiding their disadwantages.In particulay it
is structuredn sucha way thatit materializests first few
partitionsbut recomputesheremainingones.

3.3 “TopN” SelectQueries

At this point, we have a collection of five query plans
that all could be usedto processour favorite query in
the absenceof indexes: the Classic Sort-Stopand Con-
ventionalSort approachesf [CK97], shovn in Figurel,
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andthepartition-based/aterialize RereadandHybrid ap-
proacheswhich we justintroduced.andwhich areshovn
in Figure 3. To investigatethe quantitatve tradeofs be-
tweenthefiveapproachesye constructe@achof thequery
plans and conducteda seriesof experimentsusing our
testemployee databasendthe AODB system,which are
bothdescribedn Section2.3. Figure4 shows the overall
Query1 responsgime resultsthatwe obtainedby experi-
mentingwith stoppingcardinalityvaluesrangingfrom 1 to
100,00Q(i.e.,from oneupto all of the“old” employees).

The CorventionalSort plan hasthe worst performance
throughoutmostof Figure4 becausét sortsall of thedata
beforeit is ableto identify the top NV results. The per
formancefiguresfor this planthusalwaysincludethe cost
of atwo-phasesortof 10 MB, which takesapproximately
two minutesin our testervironment. The costincreasdor
largervaluesof N aredueto the N-dependencef thefinal
merge phaseof the sort; for N = 1, only the first page
of eachrun is read, while for N = 100,000 all pages
of all runs are readand memged. The ClassicSort-Stop
plan provides much betterperformancehanthe Corven-
tional Sortplanaslong asit is applicable;its curve stops
at N = 10,000 becauséts sortedheapstructureno longer
fits in the buffer pool beyondthatpoint. Therelative per
formanceseenfor theseapproachess essentiallyjust as
predictedn [CK97].

We now turn to the threepartition-basedpproachem
Figure 4. In this experiment,we assumethat the opti-
mizer’s selectvity estimatorhasaccesdo accuratedistri-
bution data;this meansthat we assumehat partitionsare
“ideally” sized(anotionthatwe will examinemoreclosely
in thenext subsection)As aresult,all partition-baseglans
endup with justover N tuplesin theirfirst partition. Look-
ing at the performanceesultsfor Query1, we seethatthe
Materializeplanendsup beingtheworstperformeramong
the threepartitioningplansbecauset alwaysmaterializes
10 MB of temporarypartition data,muchof which is sub-
sequentlynot needed.Despitethis cost,though,it outper
formstheCorventionalSortplanfor all valuesof N except
N = 100,000 (wheretheir performancebecomesssen-
tially thesame).Theothertwo partitioningapproacheend
up providing the bestoverall performancdor this query;

Figure5: Queryl, Vary #Part.
600KB Buffer, N = 20, 000, Perf.Cut

Figure6: Queryl, Vary Cut-point
600KB Buffer, N = 20, 000, Perf.Part.

bothsortonly therequiredamountof datahere heitherma-
terializesarny excessdatain this case andno excessscans
occur, either Thesawo partitioningplansevenoutperform
the ClassicSort-Stopplanfor small N; they usequicksort
to sort their first (and only) partition, which makesthem
slightly lesscostly herethanClassicSort-Stopwhich uses
its heapto ordertheresults.Finally, asN increaseshedif-
ferenceshetweenthe differentapproachesliminishesbe-
causeall of themendup sortingthe sameamountof data
whenN reached.00,000.

3.4 Partitioning and SafetyPadding

The precedingexperimentprovides quite a bit of insight
into therelative performancef our old andnew Sort-Stop
processingschemedor a basictop N query; however, it
assumegberfectpartitioning. Beforewe acceptits results,
we needto explore the sensitvity of the partitionedplans
to the numberandsizesof partitionsused. We needto do
so for two reasons.First, we needto understanchow to
choosethe partitioning parameterdor eachtype of plan.
Secondwe needto find out how costly partitioningerrors
aresowe know how to padthe partitionsizesfor safety;in
practicethesevalueswill beselectedbasedon a combina-
tion of databasstatisticsandoptimizerestimatesandthey
will thereforebeimperfectlychosen.

Figure5 shavstheresultsof aseriesof experimentghat
differ in two waysfrom the oneswe just looked at. Here,
we have fixed N at 20,000and decreasedhe buffer pool
sizeby a factorof aboutserento 600KB (i.e., 150 pages
of 4 KB). We usean even smallerbuffer pool hereso as
to stressthe needfor partitioning;this is similar to scaling
up the sizeof the employeetable,but keepsthe costof the
experimentswithin reason. The x-axis in Figure5 is the
numberof partitionsutilized, andthe y-axisis the overall
gueryresponsgime (asbefore).In this graph,the number
of partitionsis variedwith a “perfectcut”, meaningfor P
partitionsanda querystoppingcardinalitysettingof N, we
have P — 1 “winner” partitionswith N/(P — 1) tuplesin
eachoneplusone“loser” partitionwith theleftovertuples
in it. For comparisorandbaseline-settingurposesin ad-
dition to shawing the performanceof the three partition-
basedplans, the graphalso shaws the timing resultsfor



the CorventionalSort plan (which do not vary sinceN is
fixed);theClassicSort-Stops not applicableheresinceits
heapwill notfit in theavailablebuffer memory

Theresultsshovn in Figure5 provide clearinsightsinto
how eachof the partition-basegblansshouldbe dealtwith
with respectto choosingthe numberof partitions. The
Rereadapproachasonewould obviously expect, is very
sensitve to the numberof partitionsused;to avoid costly
re-readstwo partitions(onewinner, oneloser)is the opti-
mal choice.The Materializeapproactperformsbestwhen
thewinnertuplesarepartitionedinto memory-sizegieces
sothateachpartition canbe sortedin memoryin a single
pass;this is the casein the figure with five (or more)par
titions. The Hybrid approacthasa similar optimal point,
for thesamereasonit outperformdviaterializeby about20
secondsivorth of responsdéime sinceit doesnot material-
izethe 80,000losertuples.

Figure6 shavstheresultsof aseriesof experimentghat
exploresthe questionof whathappendo thedifferentpar
titioning planswhenthe winner/losercut-point (which is
thex-axisin thefigure) hasbeenincorrectlyestimated|et
uscall this cut-pointC from now on. The goal of this ex-
perimentis to obtaininsightsthatwe canuseto guidethe
sizing of partitions(e.g.,sowe know which directionit is
betterto errin). As before,the queryusedfor the exper
imentshereis Query1, the buffer pool sizeis 150 pages,
and N = 20,000. Learningfrom the resultsof Figure5,
Rereadhasonewinner and one loser partitionin this ex-
perimentwhereasMaterializeandHybrid further partition
thewinnertuplesinto memory-sizegieces.

WhenC' is settoo low, Figure 6 shows thatall of the
algorithmsgetinto fairly big trouble. Thisis becaussome
of thewinnertuples,which belongin the queryresult,end
up beingplacedinto the largeloserpartition. In this case,
RereadandHybrid both have to re-scarthe entire 50 MB
employee table to get at thesetuples, while Materialize
mustsort even the large loser partition. Underthesecir-
cumstanceshe CorventionalSort planis ableto beatall
three of the partitioning plans. Materialize performsthe
worst herebecausét doesa greatdeal of expensve read-
ing andwriting, andthisendsup actuallybeingmorecostly
thana secondsequentiabcanof theemployeetable.

WhenC is settoo high, Figure6 shavs thatthe parti-
tioning algorithmsstill managedo do quite well for Query
1. Materializehasroughly constantcostin this region, as
it alwaysmaterializesll of the“old” employees(indepen-
dentof C). Hybrid grows slovly moreexpensve asC in-
creasedecausét materializesC' but not all “old” tuples.
Rereadgrows costly much fasterwith an increasingcut-
point over-estimate. To seewhy, we needto look at the
amountof sortingcarriedout in the threeplans: Reread,
which hasonly onewinner partition (with C' tuples),must
sortthis whole winner partitionin orderto find thetop N
tuples.Ontheotherhand,MaterializeandHybrid partition
their C winner tuplesinto several small winner partitions
sothatthey neednot sortall of thesewinner partitionsin
casedn which C' is settoo high. In ary casethe bottom

line of thisexperimenis thatall of thepartition-basedlgo-
rithms suffer quite stronglyif the numberof tuplesplaced
into winner partitionsendsup beingtoo small, and suffer
muchlessif too mary tuplesare classifiedaslikely win-
ners. Thus, it is betterto err on the high side, placingtoo
few tuplesinto theloserpartition (i.e., too mary into win-
nerpartitions),to avoid potentialperformancenstabilities.

3.5 Choosinga Partitioning Vector

Before moving on to other queries,it is worth discussing
theissueof how the partitioningvector—i.e., the splitting
valuesthatcontrolwhich attribute valuerangesareassoci-
atedwith which partitions—carbechoserfor thepartition-
basedplans. The precedingsubsectiorshoved us how to
choosethe partition cardinalities,so the remainingopen
problemis oneof successfullymappingthesedesiredcar
dinalitiesbackinto attributerangesor the ORDER BY at-
tribute(s)of aSTOP AFTER query Thisis essentiallythe
dual of the selectvity estimationproblem,which takesa
guerysattribute valuerangesandattemptgo estimatecar
dinalities from thoseranges;moreorer, it is amenableo
thesametechniques.

Thereare essentiallytwo potentialanswershere. The
first is histograms which have alreadybeenthoroughly
studied(e.g.,[PIHS94) andareavailablein mostdatabase
systemstoday In particular equi-depthhistogramsthat
provide goodaccuray evenin the presencef skeweddata
are well understoodKoo8Q PSC84 MD88], andin the
caseof correlatedattributes,multi-dimensionahistograms
will help[P197]. Thus,if histogramsreavailable,they can
beusedto determinegpartitionvectorsat querycompilation
time. If no histogramsareavailable,or it is known thatthe
availablehistogramgprovideinsuficientaccurag (e.g.,for
complex querieswith mary “unpredictable’joinsor group-
ing operations),then samplingat run time can be used.
Samplinghasalsobeenthoroughlystudiedin thedatabase
contt (e.g.,[LNS90, HS93), andit hasalsobeenshovn
to bequitecheag DNS91H. To concludeatthis point,we
rely onexistingtechnologyandthenew partition-basedp-
proachesve proposein this papercandirectly take advan-
tageof ary improvementsnadein thisfield in thefuture.

4 Other Examples

Thusfar we have seenexperimentakesults(involving our

favorite query) that demonstratedhe basictradeofs re-

lated to the alternatve rangepartitioning techniquesand
that shaved someof the advantagesof using rangepar

titioning for STOP AFTER queries. In this section,we

presentthree additional exampleswith experimentalre-

sultsthat highlight several otheradwantagef rangepar

titioning. Theseexamplequeriesncludea percenguery a

nestedquery andajoin query Sincethetradeofs between
thethreealternatve partitioningapproachearevery simi-

lar for all STOP AFTER querieswe will focuson Hybrid

plans,which useour preferredpartitioningmethod,in this

section.
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4 MB Buffer, PerfectPartitioning

4.1 PercentQueries

Our first additionalexample(Query 2) is a so-calledper
centquery. Thequeryasksfor the z% highestpaid Enps
thataremorethan50 yearsold.

Query2: SELECT *
FROM Enp
VWHERE age > 50
ORDER BY sal ary DESC

STOP AFTER x%

Percentqueriesare interestingbecausean additional
countingstepis requiredin orderto find out how mary
tuplesareto be returned. Thatis, we needto countthe
numberof Enps thatare over 50 beforewe canactually
start STOPping (so to speak). Looking backat the plans
studiedin the previoussectionwe seethatwe candirectly
apply the Corventional Sort plan (Figure 1) to this per
centquery: the counting step can be carriedout as part
of thet bscan( Enp, age>50) operator andthe result
of this countingsteptimes £% can be propagatedo the
scan- st op( N) operatorbefore the scan- st op(N)
operatorstartsto producetuples;this is possiblebecause
thesort in betweens apipeline-breakingperatorLik e-
wise, all threepartitioningplansof Figure3 canbeapplied
to our percenfguery: again,countingcanbe carriedout as
partof thet bscan( Enp, age>50) operatorsandprop-
agatedothescan- st op( N) operatordecausehereex-
istsa pipeline-breakingperatoiin between(sor t and/or
part-nat or part-hybrid). The ClassicSort-Stop
planof Figurel, however, cannotedirectly appliedin this
case.To useasort - st op operatorwe caneitherread
thewhole Enp tabletwice (onceto carry out the counting
stepandonceto find thetop %), or we canreadthewhole
Enp tabletherebycarryingout the countingstepand ma-
terializingthe Enps with age > 50 asatemporarytable
andthenreadthe temporarytablein orderto find the top
x%. Which oneof thesetwo plansis betterdepend®nthe
selectvity of theage predicatejn our particularexample,
thesecondlanis betterbecausenly oneoutof five Enps
is olderthan50 in our testdatabaseln ary case both of
theseadjustedClassic-Sort-Stoplansaremore expensve
thanthe (inapplicable)ClassicSort-Stopplanof Figurel.

Figure8: Resp.Time (secs)Query3
4 MB Buffer, PerfectPartitioning

Figure9: Query3, Vary L
4 MB Buffer, N = 20,000, C = 25,000

Figure 7 shavs the runningtimes of the Corventional
Sort,theadjustedClassicSort-Stop(with a materialization
step),andthe partition-basedHybrid plansfor this percent
query As describedabore, the CorventionalSortandHy-
brid planshave almostthe samerunningtimeshereasfor
Query1l in Section3, whereaghe ClassicSort-Stopplan
hasa highercostdueto writing andreadingtemporaryre-
sultsfrom disk. As a result,the Hybrid planis the clear
winnerfor all z < 50% for this percentquery Note that
the ClassicSort-Stopplan cannotbe appliedfor z > 50%
becausdéts memoryrequirementshenexceed4 MB.

To find the proper partitioning vector for the Hybrid
plan for this query the obsenations of Section3.4 es-
sentially still apply Thatis, we shouldpartition the data
into memory-sizedportions and “play it safe” by mate-
rializing too mary ratherthantoo few Enp tuplesin the
part - hybri d operator

4.2 STOPin a Subquery

In the secondexampleof this section(Query 3), we con-
sidera querythathasa STOP in a subquery Our example
gueryasksfor the averagesalaryof the N bestpaid Enps
with age > 50.
uery3: SELECT AV e. sal ar

Query FROM (S%ECT y)sal ary
ROM Enmp
VWHERE age > 50
ORDER BY sal ary DESC
STOP AFTER N) e;

Both the CornventionalSortandthe ClassicSort-Stopplan
of Figure1 canbe appliedto this query;they simply need
an aggr egat e operatorat the top in orderto compute
the average. Thesetraditional plans,however, performa
greatdealof wastedvork sincethey producetheir outputin

sal ar y orderandthis orderingis not neededo compute
the average.With a partition-basegblan, mostof this sort-
ing canbeavoidedby partitioningthe Enps into threepar

titions: onepartitioncontainingthetop L Enps (L slightly
smallerthanN'), onepartitioncontainingthenext M Enps

suchthat M is smallandL + M > N, andonepartition
with theall of the otherloserEnps. In this caseonly the
M Enps in thesecondpartitionneedto be sortedin order
to find the N — L highestpaidEnps in thatpartition.

25000



Figure8 shavstherunningtimesof thethreealternatie
plansfor this query We canseethatthe CorventionalSort
planagainhasthe highestcostbecausdt sortsall 100,000
Enps with age > 50, independentf N. Also, asin the
previousexperimentsthecostof the ClassicSort-Stopplan
increasesvith N andis in betweertheHybrid andCorven-
tional Sortplans.WhatmakesQuery3 andthis experiment
specials thatthecostof theHybrid planis almostconstant
herebecausdlybrid sortsvery few Enps, independenof
N; only for very large N doesthe costof the Hybrid plan
slightly increasegdueto materializingmary Enp tuples.As
a result, the differencesn costbetweenthe ClassicSort-
Stop and Hybrid plansincreasesharplywith N, andthe
Hybrid plan outperformsthe CorventionalSort plan even
for N = 100, 000. It shouldbe notedthatthe costof the
CorventionalSort planis lower for this querythanin all
previous experimentshecausehis querycanbe evaluated
usingonly the sal ary columnof Enps (i.e., the other
columnsare projectedout after the t bscan), permitting
thesort to becarriedoutin onepassin memory Simi-
larly, the ClassicSort-Stopplan canbe usedfor all N for
this querywithout exhaustinghe buffer space.

It is somavhattrickier to find a perfectpartitioningvec-
tor for this query than for Queries1 and 2. If we set
C = L+ M (C is the “cut-point” betweenwinnersand
losersasin Section3.4), thenwe needto make surethat
L < N in additionto C > N andC assmall as possi-
ble. In otherwords, herewe needto find a goodleft cut-
ting point, L, in additionto a goodright cutting point, C,
whereaswve only neededo find a goodright cutting point
for Queriesl and2. Figure9 shaws the sensitvity of the
costof theHybrid plantowardscasesn which L is setim-
perfectlyfor N = 20,000 andC = 25,000. Obviously,
theHybrid planperformsbestif L is closeto N. However,
thefigure shaws thatthe penaltyfor a poor settingof L is
not severe(20% at most)dueto thefactthatthe additional
work is proportionalto the numberof misclassifieduples
(i.e., errorsheredon't causeentire additionalpartitionsto
becomanvolvedin thequeryplan);in ary casetheHybrid
plan outperformsboth traditional plans. (Figure9 showvs
the costof the ClassicSort-Stopplan, the betterof thetwo
traditionalplans,asabaseline.)

4.3 Join Queries

The lastexamplequeryof this sectioninvolvesajoin; this
exampleshavsthatpartitioningbecomesvenmoreattrac-
tive for morecomplex queries. The queryasksfor the N
highestpaid Enps thathaveage > 50 andthatwork in

aDept with budget > 1, 000.
Query4: SELECT *
FROM Emp e, Dept d
WHERE a e > 50
AND d. bud et > 1000
AND e. sin = d.dno
sal ary DESC

ORDER BY
STOP AFTER N,

Figure 11 shaws two traditionalplansfor this query The
first planis basedn (corventionally)sortingthe Enp table

into sal ar y orderandthenprobingthetop Enps oneby
onein orderto find outwhetherthey workin aDept with a
highbudget (i.e.,it usesanindex nested-loogoin). The
secondplan carriesout the join first, in orderto find all
Enps thatwork in a Dept with a highbudget (Grace-
hashjoin is bestfor this purposein our testdatabase)and
thenit finds the N highestpaid of theseEnps usinga
sort - st op operator As analternatve to thesetwo tradi-
tional plans,Figure12 shavs two partitioning-baseglans
for this query Theideahereis to partitionthe Enp table
beforethejoin, andthento join oneEnp partitionatatime
with theDept tableuntil atleastN Enps thatsurvive the
join have beernfound. Thus,justaspartitioningwasusedn
the previous examplesto avoid unnecessargortingwork,
partitioningis utilized in thesetwo join plansto avoid un-
necessangortingand join work. The differencebetween
thesetwo plansis thatthefirst oneusesndex nested-loops
for the join, whereashe secondone useshashing. Note
thatfor small NV, the hashjoin of the Part+HJplancanbe
carriedoutin onepassf thepart - hybri d operatopar
titions the datainto memory-sizegbortions.

Figure 10 shaws the running times of the four plans,
varying N andusingour testdatabasén which all Dept s
actuallyhaveabudget > 1, 000. We seeimmediately
thatthe partitioning plansclearly outperformthe two tra-
ditional plans. The Sort+NLJ plan hasthe highestcost,
independentf N, becauseat always sortsall 10 MB of
Enps with age > 50. For N > 1000, it hasextremely
high costsbecausein additionto theexpensvesort , the
NLJ becomesvery costly becausemary Enp tuplesgen-
erateprobes,resultingin an excessie amountof random
disk I/O. The GHJ+Sort-Stogplan haslow sorting costs
for small NV, but it haspoor performancebecausét per
forms a full-fledged Grace-hasljoin. For N > 50,000,
the GHJ+Sort-Stoplanis againinapplicablebecauseghe
buffer requirement®f thesort - st op( N) operatorex-
ceedthelimit of 4 MB. (Replacingthesort - st op(N)
operatorby a corventionalsort andascan- st op(N)
operatorwould yield an executiontime of about250 secs
here.) Both partitioning variantsavoid unnecessargort-
ing and joining of Enp tuples. The Part+NLJ plan per
forms bestfor small N, but its performancedeteriorates
for N > 1,000 dueto the high costof the NLJ, just as
in the Sort+NLJplan. The Part+HJplanshaws betterper
formancein thesecasedecausédashjoins arebetterthan
index nested-loogoins whenbothinputtablesarelarge.

In terms of sensitvity, the points mentioned for
Queriesl and?2 still basicallyapply; we shouldmalke sure
thatthefirst partitioncontainsall of the Enp tuplesneeded
to answerthe query We must keepin mind, however,
thatfor the Part+HJplan, the penaltyfor settingthe “cut-
point” too low is higherthanfor the partitioningplansfor
the simplesort queriesbecause restartinvolvesnot only
re-scanninghe Enp table, but alsore-scanninghe Dept
tablein the Part+HJplan. Sincethe Part+NLJ plan never
actuallyscangshe Dept table,thePart+NLJplandoesnot
paythis additionalpenaltyfor restarts.
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5 Other Techniques

We have seenthat range partitioning can be very help-
ful to improve the responsdime of several differenttypes
of STOP AFTER queries. In this section,we will shaov
how two othertechniquesanbeappliedto evaluateSTOP
AFTER queries.Thefirst techniqueis alsobasedon parti-
tioning, but it is basedon usingorderedindexes(e.g.,B+
trees)to partitionthe data. The secondechniqueis based
onusingsemi-joinsto reducethe sizeof temporaryresults.

5.1 Partitioning with Indexes

Let usreturnto Query1, which asksfor the N Enps with

the highestsal ary andage > 50, andseewhat hap-
penswhenwe have a Bt tree on Enp. sal ary. The
Traditionallndex-Scanplan thatexecuteshis queryusing
the Enp. sal ary index wasshavn in Figurel anddis-
cussedn Section2.1; it readsthe RIDs of the Enps one
at atime in sal ary orderfrom the index, thenfetches
theage, addr ess, etc.fieldsandappliestheage pred-
icate,until thetop N old Enps have beenfound. In Sec-
tion 2.1, we notedthatthis planwould be very goodif the
Enp. sal ary index is clusteredor IV is very small, but

thatit would have a high costif N is largeand/ortheage

predicatdfilters out mary high paid Enps becausein this
casetheri dscan operatorwould leadto a greatdealof

randoml!/O and mary pagefaultsfor rereadingpagesof

the Enp tableif the buffer is too smallto hold all of the
relevantpagesof the Enp table.

For large N andunclusteredndexes,we cando better
by using, of course,partitioning. The ideais to readthe
RIDs of the top N’ Enps from the index, sorttheseN’
RIDsin pageid order dother i dscan with thepredicate,
re-sortinto sal ar y order andcut off thetop N tuplesor
repeaif lessthanN of thetop N’ Enps haveage > 50.

Similar RID sortingideasareknown asRID-list process-
ing and have beencommonlyexploited in text databases
(e.g.,[BCCY94) andsetqueryprocessinge.g.,[Yao79),
but they canonly be appliedin the STOP AFTER con-
text if they arecombinedwith partitioning. The beautyof
this Part-Index approachs thatther i dscan operatorbe-
comegyuitecheapsinceit readgheEnp pagesequentially
andreadsno Enp pagemorethanoncefrom disk. Onthe
negative side, this approachnvolvestwo sortingsteps. If
N and N’ aresmall, however, thesesortsarefairly cheap
becaus¢hey canbecarriedoutin onepassin memory

Figure 13 shaws the running times of the Traditional
Index-Scarplananda Part-Index planfor Queryl, varying
N. As baselinesthe figure alsoshaws the runningtimes
of the Hybrid plan that doesnot usethe Enp. sal ary
index (asin Figure 4) and the “ideal” running time for
Query1 generatedy runningthe TraditionalIndex-Scan
planon a specialversionof our testdatabasén which the
Enp. sal ary index is clustered. We seethat the Part-
Index planclearly outperformsthe TraditionalIndex-Scan
planfor a largerangeof N. While the TraditionalIndex-
Scanplanis only attractve for N < 100, the Part-Index
planshonvsalmost‘ideal” performanceipto N = 10, 000.
(After that its sorts becometoo expensve.) Only for
N = 10 doesthe TraditionalIndex-Scanplanslightly out-
performthe Part-Index plan(0.9secsvs. 1 sec).

Theright settingof N, of coursedependsiponboth N
andthe selectvity of theage predicate.In this example,
N’ shouldbesetto 5 x N becauseveryfifth Enp is older
than50in our testdatabasandthe valuesof thesal ary
andage columnsare not correlated. It shouldbe noted,
however, thatthe penaltyfor restartsn the Part-Inde< plan
is verylow: ratherthanre-scanningheentireEnp table,a
restartsimplyinvolvescontinuingtheEnp. sal ary index
scanandfetchingthenext N’ Enp tuples.
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5.2 A Semi-Jin-Lik e Technique

Theideaof semi-joinsis to reducethecostof I/O intensve
operationssuchas sorts, joins, and group-byoperations,
by projectingoutall but thosecolumnsactuallyneededor
anoperationgdoingsoreduceshesizeof thetemporaryre-
sultsthatneedto be readand/orwritten to disk or shipped
througha network. The disadwantageof semi-joinsis that
columnsthat were projectedout must be re-fetched(us-
ing ari dscan operator)after the operationin orderto
carry out subsequenoperationsor becausehey are part
of the queryresult. Semi-jointechnique$iave beenexten-
sively usedin the early distributeddatabaseystemge.g.,
[BGWT81]), but they have not beenwidely usedin cen-
tralized databasesystems. One reasorfor this is the po-
tentially prohibitively high and unpredictablecostsof re-
fetches,thoughthe costof the re-fetchescan be reduced
with the sameRID sortingtrick describedn the previous
subsection.What makes semi-join-like techniquesttrac-
tive for STOP AFTER queriesis that the costsof the re-
fetchesarelimited andcanbe predictedaccuratelyduring
gueryoptimizationif there-fetchesarealwayscarriedout
attheendof queryexecution:if aqueryasksfor thetop v
tuples,thenat mostN re-fetchesarerequiredattheend.
We studied two different semi-join-like plans for
Queryl. In both plans,the sortingof the Enp tuplescan
be carriedout in one passin main memorybecausenly
the RIDs andthe salaryfields of the Enp tuplesarekept.
The differencebetweenthe two plansis thatthe first plan
which we call the Standad SJ Plan doesnot apply the
RID sortingtrick describedn the previous subsectiorin
orderto improve the re-fetcheswhereaghe secondplan,
the SJ+RidsortPlan, doesapply this trick. We ran both
planswith varying N, and Figure 14 shaws the resultsof
theseexperiments Thefigure alsoshowns theresultsof the
CorventionalSortandHybrid plansof Section3 asbase-
lines. First, we seethattheimpactof the RID sortingtrick
is lesspronouncedhanin the previous experimentswith
the Part-Index plan. Thereasonis thatin both semi-join
plans,the Enp table hasalreadybeenreadonce,andthe
old Enps have alreadybeenfilteredout,sother i dscan
getsmore hits in the buffer pool andis appliedto fewer
tuples.Secondwe obsenrethatfor small N, thetwo semi-
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join plansindeedoutperformthe CorventionalSort plan,
while for N > 1000, the performanceof the semi-join
plansdeterioratesiueto their high re-fetchingcosts. Fi-

nally, we seethat the semi-join plansare clearly outper

formedfor all N by the partition-basedHybrid plan; like
the semi-join plans, the Hybrid plan of Section3 carries
outits sort (sal ary) in onepass(for N < 10,000),

andtheHybrid planhasthe additionaladvantageof sorting
slightly morethan N ratherthanall 100,000Enps with

age > 50. We notethatit is nottoo difficult to find other
examplequeriesvhereasemi-joinplanwould actuallyout-
performa partitioningplan (e.g.,for verylarge andhighly
selectve joins with small N); sometimeghe bestplanto

executea querymay be a combinationof partitioningand
semi-joins.

6 Conclusions

In this paper we presentedseveral new stratgjies for ef-

ficiently processingSTOP AFTER queries. Thesestrate-
gies, basedlargely on the useof rangepartitioning tech-
nigues,wereshown to provide significantsavzings for han-
dling importantclasse®f STOP AFTER queries.We pre-

sentedexamplesincluding basic“top N” queries,percent
gueries,subqueriesandjoins; we sawv benefitsfrom the
useof the new partitioning-basedechniquesn eachcase
dueto thereductionin wastedsortingand/orjoining effort

thatthey offer. We shaved thatrangepartitioningcanbe
usefulfor indexed as well as non-indexed plans,and we

alsoshowved that semi-join-like techniquesanprovide an

additionalsavzingsin somecases.

There are several areasthat appearfruitful for future
work. Oneareaof interestis STOP AFTER query pro-
cessingfor parallel databasesystems. Our techniques
shouldbe immediatelyapplicablethere,andthey may of-
fer even greaterbenefitsby reducingthe amountof data
communicatiorrequiredto processsuchqueries.Another
avenuefor future investigationwould be experimentation
with the effectivenesof histogramand/orsamplingtech-
niguesfor determiningthe partitioning vector entriesfor
STOP AFTERqueriesonrealdatasets.
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