
The VLDB Journal (2000) 9: 190–213

Exploiting early sorting and early partitioning
for decision support query processing

J. Claussen∗, A. Kemper, D. Kossmann∗∗, C. Wiesner

Universität Passau, Lehrstuhl f¨ur Informatik, 94030 Passau, Germany; E-mail:{claussen,kemper,kossmann,wiesner}@db.fmi.uni-passau.de

Edited by M.P. Atkinson. Received April 4, 2000 / Accepted June 23, 2000

Abstract. Decision support queries typically involve several
joins, a grouping with aggregation, and/or sorting of the re-
sult tuples. We propose two new classes of query evaluation
algorithms that can be used to speed up the execution of such
queries. The algorithms are based on (1)early sortingand
(2) early partitioning– or a combination of both. The idea is
to push the sorting and/or the partitioning to the leaves, i.e.,
the base relations, of the query evaluation plans (QEPs) and
thereby avoid sorting or partitioning large intermediate results
generated by the joins. Both early sorting and early partition-
ing are used in combination with hash-based algorithms for
evaluating the join(s) and the grouping. To enable early sort-
ing, the sort order generated at an early stage of the QEP
is retained through an arbitrary number of so-calledorder-
preserving hash joins. To make early partitioning applicable
to a large class of decision support queries, we generalize the
so-called hash teams proposed by Graefe et al. [GBC98]. Hash
teams allow to perform several hash-based operations (join and
grouping) on the same attribute in one pass without reparti-
tioning intermediate results. Our generalization consists of in-
directly partitioning the input data. Indirect partitioning means
partitioning the input data on an attribute that is not directly
needed for the next hash-based operation, and it involves the
construction of bitmaps to approximate the partitioning for
the attribute that is needed in the next hash-based operation.
Our performance experiments show that such QEPs based on
early sorting, early partitioning, or both in combination per-
form significantly better than conventional strategies for many
common classes of decision support queries.

Key words: Decision Support Systems – Query processing
and optimization – Early sorting and partitioning – Hash joins
and hash teams – Performance evaluation

Some excerpts of this work – limited to early partitioning – appeared
in the conference publication [KKW99].
This work was partially supported by the German National Research
Council under contract DFG Ke 401/7-1.
∗ Current address: SAP AG, Advanced Technology Group, 69190
Walldorf, Germany; e-mail: jens.claussen@sap.com
∗∗ Current address: Institut f¨ur Informatik, Technische Universit¨at
München, 81667 M¨unchen, Germany; e-mail: kossmann@in.tum.de

1 Introduction

Decision support is emerging as one of the most important
database applications. Managers of large businesses, for ex-
ample, want to study the development ofsalesfor certainprod-
uctsby region, and they expect the database system to return
the relevant information within seconds or at most a few min-
utes.

Decision support typically involves the execution of com-
plex queries with join, group-by, and sort operations. To sup-
port these kinds of queries, database vendors have signifi-
cantly extended their query processors and researchers have
just recently developed a large variety of new query process-
ing techniques; e.g., the use of bitmap indices [CI98], spe-
cial joins that exploit bitmap join indices [GO95], new join
methods [HWM98], or multi-query optimization for decision
support [ZDNS98], to name just a few. In addition, a whole
new industry, data warehouses, has appeared with products
that materialize (i.e., pre-compute) query results and cache
the results of queries. Furthermore, the TPC-H and TPC-R
benchmarks [TPC99] – derived from the TPC-D benchmark
– have been proposed in order to evaluate the performance of
a database product for decision support queries.

We propose two new classes of query evaluation algo-
rithms that can be used to speed up the execution of decision
support queries. The algorithms are based on (a)early sorting
and (b)early partitioning– or a combination of both. The idea
is to push the sorting and/or the partitioning to the leaves, i.e.,
the base relations, of the query evaluation plans and thereby
avoid sorting or partitioning large intermediate results gener-
ated by the joins. Both, early sorting and early partitioning are
used in combination with hash-based algorithms for evaluat-
ing the join(s).

The idea of early sorting is not completely new. There has
been work on query optimization to generate plans in which
sort operators are carried out before joins (e.g., [SAC+79,
SSM96]). Given the current set of available join methods,
however, today’s optimizers often face a dilemma: On the one
hand,sort operators should sometimes be placed early in a
plan so that they are cheap, because they are applied to small
intermediate results. On the other hand, such early sorting lim-
its the options for join processing, resulting in very high costs
for join processing. To solve this dilemma, we propose a new

J. Claussen et al.: Exploiting early sorting and early partitioning for decision support query processing 191

approach which makes it possible to do early sorting and have
cheap joins at the same time. Our approach is based on a new
technique that we callorder-preserving hash joins(OHJs),
which can be used instead of nested-loop joins in order to
preserve the order generated by early sorting.

In the case of early partitioning, we generalize the so-
called hash teams proposed by Graefe et al. [GBC98]. Hash
teams allow several hash-based operations (join and group-
ing) to be performed in one pass without repartitioning inter-
mediate results. Our generalization, which makes hash teams
applicable to a much larger class of decision support queries,
consists of indirectly partitioning the input data. Indirect par-
titioning is the partitioning of the input data on an attribute
that is not directly needed for the next hash-based operation,
and it involves the construction of bitmaps to approximate the
partitioning for the attribute that is needed in the next hash-
based operation. These bitmaps are used to partition the other
argument relation of this hash-based operation.

Our performance experiments show that such query eval-
uation plans based on early sorting, early partitioning, or a
combination of the two perform significantly better than con-
ventional strategies for many common classes of decision sup-
port queries.

1.1 RelatedWork

There has been a great deal of work on join techniques, sorting,
grouping and query processing in general.A good overview of
all join techniques used in practice today is given in [ME92],
and [Gra94,GBC98] describe details and tuning techniques
for hash joins which are relevant and useful for our approach,
too. [Gra93] describes the “textbook” architecture for query
processing (i.e., the iterator model).We integrated all our tech-
niques into an existing query processor that is based on that
architecture as part of our experimental work; indeed, our tech-
niques could be integrated with very little effort into any other
query processor that is based on that architecture. Designers of
query optimizers have also paid attention tointeresting orders
since the 1970s; see, e.g., [SAC+79] or [SSM96] for more
recent work specifically addressing early sorting. Our work
builds on that work, and its purpose is to provide the opti-
mizer with new options to construct plans that exploit early
sorting. Related query optimization work also includes work
on “group-bys before joins” [YL94,CS94]; our study comple-
ments that work as we propose ways to further improve the
performance of the “eager” group-by plans proposed there. In
our own previous work, we proposed theP (PM)∗M algo-
rithm [BCK98], which is based on an idea similar to that of the
OHJs presented here. TheP (PM)∗M algorithm, however,
was specifically devised for so-called pointer-based joins with
nested sets in object-oriented and object-relational database
systems. In contrast, OHJs work for any kind of equi-join;
they are order-preserving (not just “nested-set” preserving)
and applicable in pure relational as well as object-oriented
and object-relational database systems.

Li and Ross [LR99] describe two new join algorithms that
are based on join indices. One of the algorithms is sort-based,
the other is partition-based. Both algorithms draw profit from
not completely materializing the join result, rather they store
the temporary result on disk in two ordered files, which need

to be merged to obtain the join result. The proposed technique
avoids random disk I/O by sequentially scanning the input
relations, the join index, and the temporary files. In contrast to
our work their approach is based on precomputed join indices.

Graefe et al. [GBC98] proposed hash teams. They can
combine multiple hash operations (join, aggregation) on the
same attribute to a team and save disk accesses by avoiding
partitioning of intermediate results. The drawback of their ap-
proach is that real-world applications often do not perform
joins (and aggregations) on the same attribute – as required
when applying hash teams. In [KKW99] we generalized this
concept to allow hash teams to be applied to different at-
tributes. These generalized hash teams are most useful for
joining hierarchical structures, i.e., when the join attributes
form a chain of functional dependencies. In this work we show
that generalized hash teams work in a wider context and can
be combined with other novel techniques such as OHJs.

In [MR94] the TID join technique was introduced, which
allows attributes that are not essential for processing the join
to be projected out. We found this idea very useful for bypass-
ing bulky attributes around joins in order to utilize the main
memory more efficiently both for the OHJ algorithm and the
generalized hash teams. We describe in detail how this works
in this paper.

1.2 Organization of the Paper

In Sect.2 we introduce the order-preserving hash joins used
to enable early sorting. The generalized hash teams to realize
early partitioning are introduced in Sect.3. We also demon-
strate how to combine the two techniques for early sorting
and early partitioning. Section 4 shows how to reduce the I/O
volume of both query evaluation techniques by bypassing bulk
data around the joins. The necessary extensions of a state-of-
the-art dynamic programming-based optimizer are discussed
in Sect.5. Section 6 describes the experimental results we ob-
tained from our implementation of the algorithms. Section 7
provides conclusions for this study.

2 Order-preserving hash joins

2.1 Motivation

Throughout the paper we will use a TPC-H/R style database,
which is presented in Fig.1. This sample database involves
Customer,Order, andLineitemtables with the usual informa-
tion, whereC# denotes theCustomerkey, O# denotes the
Orderkey, L# denotes theLinenumberwithin an order,N#
denotes theNationkey, andMktSegmentdenotes theMarket-
segment. The keys of the tables are underlined. We assume, as
in reality, that theCustomertable contains significantly less
tuples than theOrder andLineitemtables.

To demonstrate the mechanisms and the benefits of order-
preserving hash joins (OHJs), we will use the two exam-
ple queries Query 1 (SMkt,N#,C#(C �� O)) and Query 2
(SMkt,N#,C#(C �� O �� L)). The first query involves a join
between theCustomerandOrder tables and requires the re-
sults to be produced in the following order:Customer.Mkt-
segment, Customer.N#, Customer.C#. The second query in-
volves, in addition, a join with theLineitemtable. Both queries

192 J. Claussen et al.: Exploiting early sorting and early partitioning for decision support query processing

Customer
C# Name N# City MktSegment

Order
O# C# Totalprice Discount

Lineitem
O# L# Quantity Extendedprice Discount

Fig. 1.Relational schema of the sample database (Keys are under-
lined)

could, for example, be initiated by a middleware product in or-
der to analyze the orders and lineitems of groups of customers
from different market segments and countries. These queries
could also occur as query blocks that produce the input of a
rollup operator implemented as part of an extended relational
database system.

Figure 2 shows three alternative “traditional” query eval-
uation plans for the first query. These three plans demonstrate
the dilemma of today’s query processors: the optimizer must
choose between high sorting or high join costs. To see why,
let us take a closer look at the costs of the three plans. The
first plan is applicable if there is an index that can be used
to read theCustomertuples in the right order. If this index
is clustered with respect to theCustomertable, the cost to
bring theCustomertuples into the right order will be very low
in this plan, but the cost to process the (index) nested-loop
join, which is the only known order-preserving join method
applicable in this case, will be very high because an (index)
nested-loop join will cause excessive random disk I/O in this
case. The second plan has a similar cost profile: thesort op-
erator and, thus, bringing theCustomertuples into the right
order is quite cheap because there are not manyCustomertu-
ples, while the nested-loop join has again a very high cost.
In the third plan, the join is executed in the cheapest possible
way (i.e., using hashing), but thesort at the top of that plan is
expensive because the result of the join is very large – much
larger than theCustomertable. For the second query, today’s
optimizers face a similar dilemma: either cheap ordering with
one or two expensive nested-loop joins or cheap hash joins
and expensive sorting at the end.

The goal of the OHJ is to break this dilemma and allow the
optimizer to generate plans like the ones shown in Figs. 3 and 4.
The key idea is to split the different phases of external sorting
and carry out join operations in between thegenerateruns
andmergeruns phases. The join operations are carried out
by a special OHJ operator which essentially is a hash join
augmented with a fine-grained partitioning and re-merging
step. Thus, the OHJ exhibits the same high performance as
standard hash joins. As shown in Fig.4, it is possible to have
any number of OHJ operators in a query, and as we will see
in the next subsection, this aspect requires special attention
in the implementation of OHJ operators. The plans with early
sorting followed by OHJ joins to preserve the order are denoted
SOHJ. Of course, we can also benefit from an existing order
(via a clustered index) such that the sorting becomes obsolete.
These plans will simply be called OHJ plans.

2.2 Binary order-preserving hash join plans

OHJs are based on Grace hash joins as described in
[HCLS97].1 That is, both input relations are partitioned us-
ing hashing in such a way that each partition of the inner
(build) relation fits into the memory, and a pair of partitions
are then joined by building an in-memory hash table for the
partition of the build relation and probing every tuple of the
corresponding partition of the outer (probe) relation using that
hash table. The key idea of order-preserving hash joins lies in
the following very simple observation: if the whole probe re-
lation is ordered to begin with, then the result of the join of
a pair of (probe and build) partitions is ordered too. Putting
it differently, the results of joining pairs of partitions can be
seen assorted runsso that these runs only need to bemerged
to obtain an ordered join result. This process is visualized in
Fig.5, which demonstrates how the order ofR, the probe re-
lation, is preserved after the join withS, the build relation.
In the figure,R andS are partitioned into two partitions (ptn
denotes partitioning andmrgstands for the merge).

In general: Assume we have two relationsR, with at-
tributesA andB, andS, with attributesB andC. Let R be
ordered by attributeR.A and letB be the join attribute. (In
practice, obtainingR in sorted order means scanning the rela-
tion via a [clustered] index on the order attribute.) To evaluate
the joinR ��B S by a hash join, we first partition the probe
inputR and the build inputS intoR1, . . . , Rk andS1, . . . , Sk,
respectively, as in traditional Grace hash joins. In particular,
we use the same hash function to partition both inputs’ data
and do not require special order-preserving hash functions.We
then join the partitions pairwise (i.e.,Ri ✶ Si for 1 ≤ i ≤ k),
just as in traditional Grace hash joins. Then, we write the re-
sults of joining every pair of partitions to disk and merge those
runs; this is the only special step for the simple OHJs. Here
and throughout the paper, we will assume thatS can be parti-
tioned in one phase to generate memory-sized partitions. Our
algorithms can, however, easily be adapted if multiple parti-
tioning steps (e.g., due to skew or large relations and small
main memory) or no partitioning at all is required. (In the
latter case, the corresponding merge step is also omitted.)

2.3 Multi-way order-preserving hash join plans

Now, assume we want to compute the join

R ��R.B=S.B S ��S.C=T.C T

and preserve the order ofR according to attributeR.A. This
query corresponds to Query 2.

One way to achieve this is to first joinS andT and then
apply the binary OHJ onR and(S ��C T), as described in
the previous subsection. This way to order the joins might,
however, not always be attractive and, therefore, we will show
in this section how plans with two OHJs can be produced: one
OHJ forR ✶ S and one OHJ for the join withT , as in the
plan of Fig.4. Here, we must be careful, however, because we
cannot afford using two simple OHJs. Such a naive implemen-
tation would involve a fully fledgedmergestep as part of theR

1 Hash joins without partitioning, i.e., the complete build input fits
into the memory, are order-preserving with respect to the probe input,
anyway.

J. Claussen et al.: Exploiting early sorting and early partitioning for decision support query processing 193

selectc.∗, o.Totalprice
from Customer c, Order o
wherec.C# = o.C#
order by c.Mktsegment, c.N#, c.C#

Query 1: Binary join
(SMkt,N#,C#(C �� O))

selectc.∗, l.Extendedprice
from Customer c, Order o, Lineitem l
wherec.C# = o.C#and o.O# = l.O#
order by c.Mktsegment, c.N#, c.C#

Query 2: Multi-way join
(SMkt,N#,C#(C �� O �� L))

Fig. 2.Traditional plans for query 1

Fig. 3.SOHJ plan for query 1

Fig. 4.SOHJ plan for query 2

ohj S, and this additionalmergestep would be too expensive
because it would involve writing and re-reading the whole
result ofR ✶ S to/from disk. Instead, we directly partition
the runsproduced by theR ohj S and merge corresponding
partitions before the join withT .

In more detail: If the third relationT is partitioned into
T1, . . . , Tl then the join partitionRSi = Ri �� Si resulting
from joining Ri with Si is partitioned intoRSi1, . . . , RSil,
which are all written to disk. Doing this for all intermediate
result partitionsRS1, . . . , RSk results ink · l partitions on
disk. Thesek · l fine-grained partitions are then re-merged
into the l partitions: for all1 ≤ j ≤ l, RS1j , . . . , RSkj are
merged into a single partitionRS{1,...,k}j , and this partition
is then joined withTj as part of the OHJ with tableT . The
whole process is shown in Fig.6 fork = 2 andl = 2, and step
by step the algorithm works as follows:

1. ScanS and partitionS into k main memory-sized2 parti-
tionsS1, . . . , Sk using a hash functionhk onS.B.

2. ScanR via a (cluster) index onR.A and partitionR intok
partitionsR1, . . . , Rk using the hash functionhk onR.B.

3. ScanT and partitionT into l main memory-sized3 parti-
tionsT1, . . . , Tl using a hash functionhl onT.C.

4. For each1 ≤ i ≤ k do:

(a) Createl initially empty partitionsRSi1, . . . , RSil on
disk.

(b) Load partitionSi into a main memory hash table.
(c) For each tupler ∈ Ri probe the hash table to determine

the join result tuple(s)rs and appendrs to partition
RSij with j = hl(rs.C).

Having finished Step 4, there arek · l partitionsRS11, . . .,
RS1l, . . ., RSkl stored on disk.

5. For each1 ≤ i ≤ l do:
(a) Create an initially empty partitionRSTi on disk.
(b) Load partitionTi into a main memory hash table.
(c) Merge the partitionsRS1i, . . . , RSki and for each tu-

ple rs probe the hash table to determine the join result
tuple(s)rstwhich are appended to partitionRSTi.

Having finished Step 5, there arel partitionsRST1, . . .,
RSTl stored on disk.

6. Merge the partitionsRST1, . . . , RSTl to obtain the join
resultRSTin the order ofR.A.

This approach can be applied to join any number of tables:
after every join, the result is directly partitioned for the next
join, and the partitions are then re-merged in order to carry
out the next join. Tracing the ordered relation (i.e.,R in our
example), the following pattern of operators is applied to that
relation:

P J (P M J)∗ M.

2 More precisely, we need to partitionS such that the individualS
partitions fit in memory, as requested by the Grace hash join method,
and at the same time, there is enough memory left to partition the
results ofR ✶ S – cf. Step 4.

3 More precisely, we need to partitionT such that the individual
T partitions fit in memory, and at the same time, there is enough
memory left to mergek RS partitions – cf. Step 5.

194 J. Claussen et al.: Exploiting early sorting and early partitioning for decision support query processing

Fig. 5.Order-preserving binary hash join plan: build inputS and probe inputR, (Join and partitioning attributeB, sort attributeA)

R

A B

0 2

0 7

0 3

3 4

4 3

5 8

6 2

%

ptnB
&

R1

A B

0 2

3 4

5 8

6 2

R2

0 7

0 3

4 3

S

C B

12 2

17 4

14 3

19 8

16 2

13 4

11 3

25 7

%

ptnB
&

S1

C B

12 2

17 4

19 8

16 2

13 4

S2

14 3

11 3

25 7

�B!ptnC

%

&

�B!ptnC

%

&

RS11

A B C

0 2 12

0 2 16

6 2 12

6 2 16

RS12

A B C

3 4 17

3 4 13

5 8 19

RS21

A B C

0 3 14

4 3 14

RS22

A B C

0 7 25

0 3 11

4 3 11

T

C D

12 38

17 34

16 35

12 48

13 33

14 37

11 36

19 40

25 30

%

ptnC
&

T1

C D

12 38

16 35

12 48

14 37

T2

17 34

13 33

11 36

19 40

25 30

mrgA

mrgA

�C!

�C!

RST1

A B C D

0 2 12 38

0 2 12 48

0 2 16 35

0 3 14 37

4 3 14 37

6 2 12 38

6 2 12 48

6 2 16 35

RST2

A B C D

0 7 25 30

0 3 11 36

3 4 17 34

3 4 13 33

4 3 11 36

5 8 19 40

&
mrgA!
%

R �B S �C T

A B C D

0 2 12 38

0 2 12 48

0 2 16 35

0 3 14 37

0 7 25 30

0 3 11 36

3 4 17 34

3 4 13 33

4 3 11 36

4 3 14 37

5 8 19 40

6 2 12 38

6 2 12 48

6 2 16 35

Fig. 6.Order-preserving three-way hash join plan:(R ��B S) ��C T (Disk partitions are marked with thick rules)

Here,P denotes partitioning,M denotes merging, andJ de-
notes the in-memory (hash) join phase.

2.4 Early sorting and order-preserving hash join plans

One might argue that our OHJ technique is only efficient if
there is a clustered index on the sort attribute ofR. Fortu-
nately, however, we can generate the desired order on the fly
during the initial partitioning step. This way we entirely avoid
any additional I/O cost for sorting, and therefore, as we will
show in Sect.6, we get (almost) the same performance in the
presence as in the absence of a clustered index; that is, we get
sorting (almost) for free.

The trick is to combine the initial partitioning step of the
OHJ plan with sorting runs. That is, we sort memory-sized
runs of the probe input and partition each run individually.
The partitions of every run are then re-merged during the pro-
cessing of the first join. Step by step, the algorithm for the
two-way join

R ��R.B=S.B S

works as follows:

1. ScanS and partitionS into k main memory-sized4 parti-
tionsS1, . . . , Sk using a hash functionhk onS.B

4 More precisely, we again need to reserve some space to merge
partitions ofR – cf. Step 3.

J. Claussen et al.: Exploiting early sorting and early partitioning for decision support query processing 195

Fig. 7.Sorting on the fly: disk partitions are marked with thick rules; the sorting-on-the-fly step is highlighted by shading

2. AssumeR ism times bigger than the available main mem-
ory. Then, for each1 ≤ i ≤ m do:
(a) Load the (next) memory sized chunkRi into the mem-

ory and sort it according to attributeA.
(b) PartitionRi intok partitionsRi1, . . . , Rik by applying

hk on attributeB. Each partition constitutes a valid run
according to attributeA. The partitioning can be done
in a single linear iteration through the main memory
resident runRi – see below.

(c) Write the partitionsRi1, . . . , Rik sequentially to disk.
Having finished this combined sort/partitioning step,m ·k
partitionsR11, . . . , R1k, . . . , Rmk – each constituting a
valid sort run – are stored on disk.

3. For each1 ≤ i ≤ k do:
(a) Create an initially empty partitionRSi on disk.
(b) Load partitionSi into a main memory hash table.
(c) Merge the runsR1i, . . . , Rmi, and with each tupler –

in merge order – probe the hash table ofSi to determine
the join result tuple(s)rs and appendrs to partition
RSi.

Having finished Step 3, there arek partitionsRS1, . . .,
RSk stored on disk.

4. Merge the partitionsRS1, . . . , RSk to obtain the join re-
sultRSin the order ofR.A.

This algorithm is illustrated form = 2 and k = 2 in
Fig.7. The important part of the plan – i.e., the combined sort-
ing and partitioning phase and the subsequent re-merging of
the fine-grained partitioning – is shaded in the figure. Here
the same principle is utilized as in combining multiple OHJ
operators in one plan: the fine-grained partitions constitute or-
dered runs which are merged to an ordered partition for the
next phase. The remainder of the evaluation plan is the same
as for the basic OHJ plans. Of course, these so-called SOHJ

A B

9 1 . . .

2 2 . . .

7 4 . . .

3 4 . . .

1 3 . . .

8 1 . . .

4

5

{

2

3

{

Bulk

1

0

3

5

partition-
anchor

h
ead

tail

srt
p
tn

sort/partition-vector

Fig. 8.Partitioning a sorted run

plans can, therefore, also be applied to multi-way join queries
in the same way as described in the previous subsection. Trac-
ing again the ordered relation (i.e.,R), the following pattern
of operators are applied (here,S&P denotes the combined
sorting and partitioning step):

S&P M J (P M J)∗ M

Figure 8 illustrates the combined sorting/partitioning
phase of the algorithm. A memory-sized chunk of the relation
is loaded. Sorting is done via a vector that maintains pointers
to the tuples being sorted; that is, only this vector is sorted,
whereas the individual tuples need not be moved. Once the
sorting is complete, we linearly scan this vector and deter-
mine the partition to which every tuple belongs. Hereby, we
chain tuples that belong to the same partition together (i.e.,
we keep the index of the next tuple of the same partition in
an additional field within the vector), and we keep a sepa-
rate vector, called thepartition-anchors, in order to keep the
heads and the tails of every one of thek sorted “partition-
lists” (in the example of Fig.8,k = 2). Once this partitioning

196 J. Claussen et al.: Exploiting early sorting and early partitioning for decision support query processing

is complete (i.e., the chaining is done and the heads and tails
of the partition-anchors are set), the tuples can be written se-
quentially to disk: partition by partition following the heads
of the partition-anchors one at a time and in the right sort-
order. All partitions could, for example, be written into a sin-
gle temporary file by inserting markers at partition boundaries,
thereby avoiding overhead for allocating multiple temporary
files. Note that Fig.8 shows in fact the generation of the par-
titionsR11 andR12 for runR1 of Fig.7.

With respect to run-time complexity, it would be cheaper
to first partition each complete memory chunk and then sort
the individual partitions: Assumingm = |R|/M records fit
into one memory chunk of sizeM , first sorting and then par-
titioning a memory chunk takesm · logm + m abstract “op-
erations”. The reverse order, i.e., first partitioning a memory
chunk and then sorting each of theN partitions requires only
m+N ·m/N · log(m/N) = m+m · log(m/N) operations.
However, memory management for the partition/sort variant
is more complex than for the sort/partition algorithm, because
several sort vectors of unknown size have to be allocated. We
have implemented both variants, and our performance experi-
ments show that, in practice, the difference in run time is only
marginal for the investigated configurations.

2.5 Early aggregation

So far, we have looked at SOHJ plans for simpleorder by
queries. We will now see how SOHJ and OHJ plans can im-
prove the performance of aggregate queries if sort-based ag-
gregation with so-calledearly aggregation5 is used [BD83,
CS94,YL95,Lar97]. The idea of early aggregation is quite
simple: As soon as a subgroup of tuples belonging to the
same final group is identified,collapsethem into a single tu-
ple. Thus, the aggregation is folded such that it is already
applied to the subgroups belonging to the same final group.
During the final merge, the intermediate aggregation results
are then combined. This is easily achieved for the aggregations
sum,min,max, countwhich constitute commutative monoids
[GKG+97] – i.e., operations that satisfy associativity and have
an identity. For other aggregates more information has to be
maintained to enable early aggregation. For example, in order
to enable earlyavg-aggregation one has to store thesumand
thecountof each collapsed subgroup.

OHJ plans enable early aggregation very effectively if the
sort-aheadis on the grouping attributes. Both variants (OHJ
and SOHJ) produce sorted runs as a result of the join, and
early aggregation can be implemented by merely collapsing all
adjacent tuples with the same value of the grouping attributes
into a single tuplebeforewriting the join results to disk.

Let us again compare SOHJ plans with traditional hash
join plans and look at the following query:

selectR.A, sum(S.C)
from R join SonR.B = S.B
group by R.A
order by R.A.

Figure 9 shows an SOHJ plan and a traditional hash join plan
for that query. The OHJ evaluation of this query – without the

5 Early aggregation must not be confused with early sorting or
early partitioning, the techniques proposed in this paper.

Fig. 9.Early aggregation(M > k)

aggregation – was shown in Fig.5 (page 194). Exploiting early
aggregation, tuples with the sameA-attribute value would be
collapsed, i.e., the two tuples withA = 0 in RS1 and the two
tuples withA = 4 in RS2 would be collapsed into one tuple.

Of course, the traditional hash join plan can benefit from
early aggregation too. Here, early aggregation could be in-
corporated into the sorting of the runs: While loading the sort
area, tuples belonging to the same group (calledduplicatesfor
brevity) are detected via a hash-vector and collapsed. There-
after, the run is sorted and written to disk [Lar97].

The effectiveness of early aggregation depends on the
number of collapsed duplicates. This number is in inverse pro-
portion to the number of partitions (i.e., runs) being written
after the join, because each of them is free of duplicates. In
the notation of Fig.9, the SOHJ plan writesk duplicate-free
runs and the traditional hash join plan writesM runs. It turns
out that in most casesM > k holds, and therefore, the ad-
vantages of early aggregation are less pronounced in the tradi-
tional plan than in the SOHJ plan because less duplicates can
be collapsed in the traditional plan. The numberk is given as
the number of partitions – denoted byptn→k in the query plan
– that are needed to fit every individual partition ofΠB,C(S)
into a main-memory hash table. This number is usually quite
small because of the projection on the relevant parts ofS and
because the hash join can make use of almost all the main
memory. On the other hand, the numberM is usually larger
for two reasons:

– The sort area in which duplicates are collapsed cannot ex-
ploit all main memory because the collapse&sort operator
runs in parallel with the hash join operator, which itself is
memory intensive.

– The duplicates are detected after joining the tuples; there-
fore, these tuples are large.

3 Early partitioning:
generalized hash teams

To make early partitioning applicable for many important
classes of decision support queries, we generalize the concept
of hash teams proposed by Graefe et al. [GBC98]. The orig-
inal hash teams are based on combining several hash-based

J. Claussen et al.: Exploiting early sorting and early partitioning for decision support query processing 197

selectc.City,sum(o.Totalprice)
from Customer c, Order o
wherec.C# = o.C#
group by c.City

Query 3: Join and aggregation
(GCity(C �� O))

Fig. 10a,b.Execution plans for query 3

operations into a team. This allows all arguments of the team
to be partitioned a priori without having to repartition interme-
diate results. In the original proposal, however, one can only
form teams of hash-based operations that are all based on the
same attribute.

3.1 Binary joins with aggregation

In this section, we will show how generalized hash teams work
for queries that involve one join and one group-by operation.
As a running example, we will use Query 3, which asks for
the totalValueof all Ordersgrouped by theCustomer City.

The traditional (state-of-the-art) plan to execute the ex-
ample Query 3 is shown in Fig.10a. This plan uses hashing
in order to execute the join and the group-by operation. This
plan would first partition (abbreviatedptn in the figures) both
theCustomerand theOrder tables byC# such that either all
theCustomeror all theOrderpartitions fit in memory; that is,
this plan would carry out a (grace or hybrid) hash join between
these two tables [Sha86].After that, the traditional plan would
use hashing to group the results of the join byCity. If there
are moreCities than fit into the main memory, this group-by
operation would, again, involve partitioning such that every
partition can be aggregated in memory. In all, there are three
partitioning steps in this traditional plan, incurring I/O costs
to write and read theCustomertable, theOrder table, and
the result of the join. As an alternative,sorting, rather than
hashing, can be used for the join and/or the group by. In many
cases, sorting has a higher (CPU) cost than hashing; in any
case, however, a traditional plan based on sorting would also
involve I/O costs to write and read theCustomertable, the
Order table, and the result of the join.

Figure 10b shows a plan that makes use of generalized
hash teams in order to execute our example query. Like the
traditional plan shown in Fig.10a, this plan is based on hash-
ing to execute the join and the group-by operation. The trick,
however, is that theCustomertable is partitioned byCity,

rather than byC#, so that the result of the join is partitioned
byCityas well and the group-by operation does not require an
additional partitioning step. To make this work, this plan gen-
erates bitmaps while partitioning theCustomertable. These
bitmaps indicate in which partition eachCustomertuple is in-
serted, and these bitmaps are used to partition theOrder table
so thatOrder tuples and matchingCustomertuples can be
found in correspondingOrder andCustomerpartitions. That
is, theOrder table is partitionedindirectlyusing the bitmaps.

To make this clearer, let us look at Fig.11, which illustrates
the whole process in more detail. The figure shows a small ex-
ample extension of theCustomertable and how thisCustomer
table is partitioned byCity into three partitions: the first par-
tition contains allCustomerslocated in PA (Passau) and M
(Munich), the second partition contains allCustomerslocated
in B (Berlin) and HH (Hamburg), and the third partition con-
tains allCustomerslocated in NYC (New York) and LA (Los
Angeles). Just as in a traditional (grace or hybrid) hash join,
the goal is to generate partitions that fit into the main memory,
and database statistics would be used for this purpose. Cor-
responding to every partition, there is one bitmap that keeps
track of theC#’s stored in the partition; in this small example,
there are three bitmaps each of length ten. If aCustomertuple
is inserted into a partition, the 1 + (C#mod 10)th bit of the
corresponding bitmap is set. Thus, the fourth and sixth bits
of the first bitmap are set, because the first partition contains
Customertuples withC# = 5, 13, 25, and 23. Likewise, the
first, third, seventh, and tenth bits are set in the second bitmap.

The next step is to partition theOrder table using the
bitmaps. To see how, let us look at the firstOrder tuple which
refers toCustomer4. ThisOrder is placed into the thirdOr-
derpartition because the bit at position1+(C# mod10) = 5
of the third bitmap is set. Likewise, the secondOrder which
refers toCustomer9 is placed into the second partition, and
the thirdOrderwhich refers toCustomer25 is placed into the
first partition. Following this approach, allOrderswhich refer
toCustomersstored in the firstCustomerpartition are placed
into the firstOrder partition, and the equivalent holds forOr-
dersreferring toCustomersof the second and thirdCustomer
partitions. Thus, the query result can be computed by joining
in memory the firstOrder partition with the firstCustomer
partition, thereby immediately carrying out the aggregation
in the memory, and then doing the same procedure with the
second and thirdOrder andCustomerpartitions.

It is important to notice that in certain cases,Order tuples
must be placed into two or even moreOrder partitions. In
Fig.11, for instance,Order 10 (highlighted in bold) is placed
into the first and thirdOrder partitions because thisOrder
refers toCustomer3 and the fourth bit of the first and third
bitmaps are set. We refer to the accidental placement ofOr-
der 10 in the firstOrder partition as afalse drop. False drops
do not jeopardize the correctness of the overall approach for
regular joins because they are filtered out in the join phase6, but
false drops do impact the performance: the more false drops,
the higher the I/O cost to partition and re-read theOrders. The
number of false drops depends on the length of the bitmaps,
and we will give formulae that can be used in a cost model of
a query optimizer in Sect.3.5. Furthermore,Order duplicates

6 Outer joins cannot always filter out false drops so that generalized
hash teams are not directly applicable for all outer join queries.

198 J. Claussen et al.: Exploiting early sorting and early partitioning for decision support query processing

Customer
C# City

5 PA
13 M
3 NYC
9 B
17 LA
10 HH
4 NYC
7 LA
6 B
25 M
23 PA
42 HH

−→ ptnCity

Customer1
C# City

5 PA
13 M
25 M
23 PA

Customer2
C# City

9 B
10 HH
6 B
42 HH

Customer3
C# City

3 NYC
17 LA
4 NYC
7 LA

Order

O# C#
Total-
price

23 4 13
27 9 54
7 25 10
59 10 13
10 3 66
22 17 42
43 5 33
6 9 45
19 42 75
40 10 1
28 7 9
33 6 51
42 5 34
24 13 0
3 7 12

→ ptnBi

B1
0
0
0
1
0
1
0
0
0
0

B2
1
0
1
0
0
0
1
0
0
1

B3
0
0
0
1
1
0
0
1
0
0

Order1

O# C#
Total-
price

7 25 10
10 3 66
43 5 33
42 5 34
24 13 0

Order2

O# C# Total-
price

27 9 54
59 10 13
6 9 45

19 42 75
40 10 1
33 6 51

Order3

O# C# Total-
price

23 4 13
10 3 66
22 17 42
28 7 9
24 13 0
3 7 12

�C# → AggCity →

�C# → AggCity →

�C# → AggCity →

AggrCity
City Value

PA 33
M 10

AggrCity
City Value

B 150
HH 89

AggrCity
City Value

NYC 79
LA 63

Fig. 11.Example execution of a generalized hash team

occur if Customertuples with the sameC# are placed into
differentCustomerpartitions. Such a situation does not arise
in our example query becauseC# is the key of theCustomer
table. In general, such situations cannot arise if there is a func-
tional dependency between the join attribute (i.e.,C#) and the
partitioning attribute (i.e.,City). In the absence of such a func-
tional dependency,Ordersmust be duplicated in order to find
their join partners in the differentCustomerpartitions. In the
remainder of this paper, we will assume that such a functional
dependency exists or that there is at least a strong correlation
between the join and partitioning attributes, and we recom-
mend that generalized hash teams not be used in other cases.
One example, in which generalized hash teams are not appro-
priate, according to this criterion, would be a query in which
the key of the group-by operation involves a column of the
Order table, e.g.,OrderDate.

3.2 Multi-way joins with aggregation

Generalized hash teams can also be applied to multi-way joins.
For illustration, let us look at Query 4(GCity(C �� O �� L)).

This is a three-way (functional) join ofCustomer, Order,
andLineitemfollowed by a grouping on theCity attribute of
Customer. Generalized hash teams are applicable by partition-
ing theCustomertable byCity, thereby constructing bitmaps
in order to guide the partitioning of theOrder table, as in the
binary case described in Sect.3.1. While partitioning theOr-
der table, another set of bitmaps is constructed, and this set

selectc.City,sum(l.Extendedprice)
from Customer c, Order o, Lineitem l
wherec.C# = o.C#and l.O# = o.O#
group by c.City

Query 4: Two joins and aggregation
(GCity(C �� O �� L))

of bitmaps is then used to partition theLineitemtable. After
that, correspondingCustomer,Order, andLineitempartitions
can be joined and the result can be aggregated in one pass in
memory. After partitioning, the join can be carried out in any
particular order. Figure 12 shows two possible join orders for
our example; the polygons surround a team of three operators.
In the first plan, theCustomer–Orderjoin is carried out first;
in the second plan, theOrder–Lineitemjoin is carried out first.
One of the arguments of the first join serves as the probe input
of the whole team. In our example queryLineitemis the best
choice as the probe input, because of its high cardinality, so
that the second plan of Fig.12 would be better than the first
plan.

It should be noted that the memory requirements of gener-
alized hash teams increase with the number of operations that
are teamed up. In our example, ifLineitemis chosen as probe
input we need to keep information of allOrders, Customers,
andCitiesof a partition in memory as part of executing the
team. (Our special organization described in Sect.3.4, how-
ever, does help to reduce the memory requirements.) In the

J. Claussen et al.: Exploiting early sorting and early partitioning for decision support query processing 199

aCustomerorOrder as Probe Input

b Order or Lineitemas Probe Input

Fig. 12a,b.Alternative query evaluation teams for the three-way join

�����
�����
�����

�����
�����
�����

O#

C#

C#

O#

City

Ord
er

Cus
to

m
er

Lin
eit

em

Partition 1 Partition 2 Partition 3

Fig. 13.Indirectly partitioning a hierarchical structure

partitioning phase, memory for two sets of bitmaps are re-
quired: while partitioning theOrders, theCustomerbitmaps
must be probed and theOrder bitmaps must be constructed;
when partitioning theLineitems, only theOrder bitmaps are
relevant (theCustomerbitmaps can be discarded at that point).

Query 4 is a “classical” case in which to employ gener-
alized hash teams, because the join/grouping columns form
a hierarchy as can be derived from the functional dependen-
ciesCity ← C# ← O#. This hierarchy of the relations is
illustrated in Fig.13. Indirect partitioning works particularly
well for such hierarchical structures because, conceptually,
thecross-relationpartitions (denoted asPartition 1, Partition
2, andPartition 3, and indicated by shading) do not overlap.
That is, as part of the partitioning, all matching tuples of all
relations could be placed into a single cross-relation partition,
and we are able to “team up” the two joins and the group-

forall c ∈ C do
i := p(c.City);
k := h(c.C#);
insertc intoCi;
Bi[k] := 1;

od

forall o ∈ O do
k := h(o.C#);
forall i ∈ {1, . . . , n} do

if (Bi[k] = 1) inserto intoOi;
od

od

aPartitioning ofCustomer b Partitioning ofOrder

Fig. 14a,b.Partitioning the two input relations

by operators. This way, we save the cost of two re-partitioning
steps that would be carried out in a conventional hash join/hash
aggregation plan (one for the second join and one for the ag-
gregation). Of course, in practice, the partitions do overlap
due to false drops, resulting in extra cost, but this extra cost
is usually much smaller than the cost of the additional parti-
tioning steps carried out by a conventional plan. We should
stress that the generalized hash team technique does not re-
quire disjoint cross-relation partitions for correctness – it has
only performance relevance. Therefore, it could be applied to
non-hierarchical cross-relation partitions. However, the per-
formance gain will decrease as more tuples need to be inserted
into multiple partitions.

3.3 Fine-tuning the indirect partitioning phase

We will use ourCustomerandOrder example schema to
illustrate this discussion. In the initial partitioning step the
Customertable (abbreviatedC) is partitioned according to
theCity attribute inton partitionsC1, . . . , Cn. For this pur-
pose some partitioning (hash) functionp is needed that maps
City values into{1, . . . , n}. For each partitionCi a separate
bitmapBi of lengthb is maintained to approximate the par-
titioning of theC# values. These bitmaps are initialized to0.
For setting and probing these bitmaps, a second hash function,
sayh, is needed that mapsC# values into{1, . . . , b}. Now,
consider a particular elementc ∈ C: it is inserted into thei-th
partitionCi for i = p(c.City) and thek-th bit of Bi is set
wherek = h(c.C#). So, the first partitioning ofC is done as
shown in Fig.14a.

Having partitionedC into C1, . . . , Cn, the n bitmaps
B1, . . . , Bn approximate the partitioning function for
CustomeronC#. Then, when partitioning theOrder table (ab-
breviatedO) intoO1, . . . , On any elemento has to be inserted
into partitionOi if theh(o.C#)-th bit of thei-th bitmapBi is
set. Due to false drops, it is possible that anOrder o is placed
into more than one partition. Thus, the partitioning function
for Ordersis as shown in Fig.14b.

We can tune this basic partitioning code in two ways: First,
we can identify thoseOobjects for which the inner loop can be
exited early. Second, we can increase the cache locality when
accessing the bitmaps.

3.3.1 Short-cuts in the inner partitioning loop

There are two kinds of objects for which the inner partitioning
loop can be entirely bypassed or exited early:

1. Objects without a join partner: For thoseo ∈ O that defi-
nitely do not have a join partner inC we need not execute

200 J. Claussen et al.: Exploiting early sorting and early partitioning for decision support query processing

the inner loop at all. We will compute a separate bitmap,
calledused, to identify those objects. (This kind of bitmap
has also been proposed to speed up traditional hash join
operations [Bra84].)

2. Objects without collisions: For thoseo ∈ O that are defi-
nitely not inserted into more than one partition (i.e., objects
that will not drop into a false partition), we can exit the
inner loop as soon as they are inserted into some parti-
tion Ci. Again, we maintain a separate bitmap,collision,
to identify these objects.

The used bitmap can easily be computed by applying
the component-wiseor operation to the partitioning bitmaps
B1, B2, Thecoll bitmap is set at positionk if at least two
bitmaps,Bi andBj , are set at positionk. In our system, both
bitmaps are actually computed during the partitioning of the
Customertable.

3.3.2 Increasing locality on bitmaps

We can also tune the storage structure of the bitmaps in order to
increase (processor) cache locality. We observe that the code
for partitioningO accesses sequentially thek-th position of
every bitmap,used, coll,B1, . . . , Bn. This observation allows
us to achieve higher cache locality. Let’s view then+2bitmaps
of lengthb as a two-dimensional array withn + 2 columns
and b rows. To achieve higher cache locality we store this
array in a single bitmapB of length(n + 2) · b by mapping
the two-dimensional array inrow major sequenceinto a one-
dimensional vector. This way, the inner partitioning loop for
theOrderscan typically be carried out with a single processor
cache miss.

3.4 Teaming up the hash join and the aggregation

The bitmap-based partitioning ofO andC is the prerequisite
for teaming up the hash join and the grouping/aggregation
operator such that the join operator can directly deliver its
result tuples to the aggregation operator – without having to
repartition the data and write it to disk. The straightforward
implementation requires two separate hash tables: one hash
table onCi.C# for performing the join with the probe inputOi

and a second hash table onCi.City for grouping/aggregating
the join result. These two operators have to be managed by a
so-called “team manager” – as it was called in [GBC98] – so
that they switch to the next partition synchronously.

We will now present a further optimization which is based
on combining the join and the aggregation operator such that
they share a common hash table on the build inputC. This is
illustrated in Fig.15.

Let us first concentrate on the build phase, during which
the hash table for thei-th partitionCi is constructed – shown
in Fig.15a. While loading the partitionCi, two hash tables
are maintained: one hash table calledC.C#-HT on the join
columnCi.C# and a second, temporary hash table, called
C.City-HT, on the grouping columnCi.City . Both hash tables
contain pointers into thehash area, in which the group entries
of the join/aggregation query are constructed. That is, thehash
areawill contain one entry for everyCity value of partition
Ci. Let us look at a particular build input tuplec ∈ Ci of

the form c = [C# = 23,City = PA] and trace how it is
installed in the hash tables and the hash area. First, itsC#
value, 23, is inserted into theC.C#-HThash table; second, the
aggregation tuple for itsCity value,PA, is looked up via the
C.City-HT hash table. If this was the firstCi tuple withCity
= PA, a new group entry is installed in thehash areaand the
corresponding pointer is inserted into theC.City-HT. Third,
the pointer to this group entry of thehash areais installed
in theC.C#-HT hash table. After inserting all tuples of the
current build input partitionCi, the probe phase with partition
Oi of the probe input starts – shown in Fig.15b. The temporary
hash tableC.City-HT is not required for the further processing
of this partition and can be deleted. Let us now trace theOrder
tuple [C# = 25,Totalprice = 10]: TheC.C#-HThash table
is inspected and the pointer to the group entry in thehash
area is traversed. TheTotalprice is added to theAggrValue
and theJoinFlag is set to indicate that the group entry “has
found” a join partner (otherwise it would be discarded from the
result when flushing thehash areaof thei-th partition). After
the current probe partition is exhausted, the result tuples are
retrieved (“flushed”) from thehash areaand the computation
of the nextCustomer/Orderpartitions starts.

While this organization sounds complicated at first
glance, it is easy to implement. The advantages are that a great
deal of the main memory is saved because long strings with,
say,City names need only be stored once in thehash area
rather than for eachCustomerindividually, and that a great
deal of CPU costs is saved in many cases because hashing by
City is carried out once for everyCustomerrather than once
for every tuple of the result of theCustomer✶ Order.

The “teaming up” of the aggregation with the preceding
join can be extended to more than one join operator, as we
will demonstrate in the example Query 4(GCity(C �� O ��
L)) (page 198). This query consists of two joins followed
by a grouping on the Customer’sCity (and aggregating the
Lineitem’sExtendedprice). The joins and grouping are along
the functional dependencies

O#→ C#→ City .

Once the bitmap-based partitioning ofCustomer, Order, and
Lineitem(as described in Sect.3.2) is finished, the first par-
tition of Customeris read to build the hash area for the ag-
gregation. As Fig.16a demonstrates, there are two hash tables
pointing to entries in the hash area: theCity hash table and
the C# hash table. These two hash tables are built as be-
fore (cf. Fig.15). At the end of this stage (after the entire
Customerpartition is processed), theCity hash table can be
discarded. Then, the correspondingOrderpartition is read and
theO# hash table is built by probing theC# hash table for
every[O#, C#, . . .] tuple of theOrder partition (illustrated
in Fig.16b). In this phase, (direct) pointers into the hash area
are inserted into theO# hash table. After the entireOrder
partition is read, theC# hash table can be discarded and the
correspondingLineitempartition is read (cf. Fig.16c). For
every tuple[L#, O#,Extendedprice] theO# hash table is
probed to find the corresponding group tuple in the hash area.
TheExtendedpriceis summed and the join flag is set – just as
before in the binary join case of Fig.15.

This simple scheme to team up several joins with a group-
ing is applicable if the aggregation only involves attribute(s)
of the last relation in the chain – as is the case for Query 4. If

J. Claussen et al.: Exploiting early sorting and early partitioning for decision support query processing 201

City Ptr

PtrC#

C#

PA

M

0

0

hash area

0

0

City JoinFlag
AggrValue

5

13

25

23

PA

M

C.City-HT

C.C#-HT

PA23

City

IO Buffer
Customer

3. set pointer

(+
insert if necessary)

2. lookup

1. insert

PtrC#

5

13

25

23 M

PA

C.C#-HT

hash area

1

00

10

probe

aggr

25

5

10

33

C# Totalprice

IO Buffer
Order

City JoinFlag
AggrValue

aBuild Phase b Probe Phase

Fig. 15a,b.Implementation of the hash tables

hash table

Ptr
City hash area

hash table

Ptr
C#

C#→ City
Customer

hash table

Ptr
City hash area

hash table

Ptr

hash table

Ptr
C#

Order
O#→ C#

O# hash area
hash table

Ptr
O#

Lineitem
L# O# Extendedprice

hash table

Ptr
C#

hash table

Ptr
City

aBuild Phase b Probe Phase 1 cProbe Phase 2

Fig. 16a–c.Extending the teaming up concept

the attributes of intermediate relations are needed in the aggre-
gation, they need to be stored in the hash tables. For example,
if the example query involved an aggregation on(o.Discount·
l.Extendedprice)theOrder’sDiscountwould have to be stored
in theO#-hash table to “pick it up” in the probe phase with
Lineitems.

The main benefits of this multi-stage teaming up are again
in reducing CPU costs by avoiding probing several hash tables
for everyLineitemtuple and better main memory utilization
because some hash tables can be discarded at intermediate
stages of processing the hash team. As a consequence this
allows larger partitions to be generated.

3.5 False drop analysis

In this section, we will summarize the formulae7 in order to
estimate the number of false drops that occur when execut-
ing generalized hash teams. These formulae can be used dur-
ing query optimization in order to decide whether general-
ized hash teams are beneficial to execute parts of a query or
whether traditional join techniques are more favorable. Using
these formulae, the optimizer must be extended by formulae
that estimate the overall cost of generalized hash teams and by
enumeration rules that generate plans with generalized hash
teams. These extensions are shown in Sect.5 and/or are virtu-
ally the same as the extensions made in Microsoft’s latest SQL
Server product to integrate ordinary hash teams [GBC98].

7 The detailed formula derivations are omitted and can be found
in [KKW99].

3.5.1 Binary joins

We estimate the number of false drops for binary joins such
as Query 3(GCity(C �� O)). To simplify the discussion, we
will assume that the join is a functional join and that there
is a referential integrity constraint so that everyOrder refers
to exactly oneCustomerin the join. (These assumptions can
easily be relaxed for cases in which there is, e.g., a predicate
that restricts theCustomersparticipating in the join.) We will
usen for the number of partitions,b for the length of every
bitmap,c for the number ofCustomers, ando for the number
ofOrders. Under these assumptions, anOrdermust be placed
into one partition, and it is falsely copied into one of the other
n− 1 partitions if one of the otherc− 1 Customersto which
theOrder does not refer has set the corresponding bit in the
bitmap of that partition. Putting it differently, the probability
of a false drop for anOrder in a partition is:

1−
(

1− 1
n · b

)c−1

.

(Here, 1
n·b is the probability that aCustomersets the relevant

bit; 1− 1
n·b is the probability that aCustomerdoes not set the

relevant bit;(1− 1
n·b)

c−1 is the probability that none of thec−1
Customerssets the relevant bit; and finally,1− (1− 1

n·b)
c−1

is the probability that at least one of thec− 1 Customerssets
the relevant bit.)

In all, the number of false drops for allOrders, considering
all of then−1 “critical” partitions, can be estimated as follows:

o · (n− 1) ·
(

1−
(

1− 1
n · b

)c−1
)
. (1)

Unfortunately, this formula cannot be used in a practical
query optimizer. Ifc andb are large, which they usually are,

202 J. Claussen et al.: Exploiting early sorting and early partitioning for decision support query processing

computing the result of this formula with reasonable accuracy
is prohibitively expensive. Also, computing the (standard) ap-
proximation usinge

x
y for (1− 1

y)x is prohibitively expensive.
We therefore propose the use of the following very simple ap-
proximation in order to estimate the number of false drops in
a query optimizer:

o · (n− 1) · c− 1
n · b (2)

The approximation consists in assuming that no twoCus-
tomersset the same bit in a bitmap. This formula is conserva-
tive: it can be shown thatc−1

n·b > 1 − (1− 1
n·b
)c−1

. Thus, a
query optimizer using this formula will overestimate the num-
ber of false drops, and therefore it will use generalized hash
teams cautiously.

3.5.2 Multi-way joins

We will concentrate on Query 4(GCity(C �� O �� L)), as an
example of multi-way join queries; it should be noted, how-
ever, that our results can easily be generalized to other queries.

First of all we note that there areOrderandLineitemfalse
drops when using generalized hash teams for our three-way
join query. TheOrder false drops can be computed using ex-
actly the same (approximate or exact) formulae described in
the previous subsection. Second, we note that theLineitem
false drops can occur in one of two ways:

1. Ordersplaced into differentOrder partitions can have the
sameO#hash value; allLineitemsreferring to suchOrders
produce false drops. So we get (according to Formula 2)
as the number of false drops

l · (n− 1) · o− 1
n · bo

, (3)

wherebo is the bitmap length for indirectly partitioning the
Lineitems, i.e. the bitmaps generated duringOrder parti-
tioning.

2. False drop propagation: If anOrderproduces a false drop,
all the Lineitemsthat refer to thatOrder produce false
drops as well. For this phenomenon we get as the number
of false drops

fo · l
o
, (4)

wherefo is the number ofOrder false drops.

3.6 Combining order-preserving hash joins
and generalized hash teams

In Fig.17 we demonstrate how to combine the two techniques
of early sortingandearly partitioningon a modified version
of our example Query 4 on page 198. We generatem sorted
runs of theCustomerrelation on theCity attribute. Each of
them City-sorted runs isk-way partitioned onC# to prepare
for the subsequent order-preserving hash join. This results in
m ·k fine-grained partitions – each constituting aCity-ordered
run – of theCustomerrelation. In each phase, the OHJ merges
m of the fine-grained partitions based on theirCity attribute

Fig. 17.Combining order-preserving hash joins and generalized hash
teams

into a single partition/run which is used as probe input. Us-
ing the OHJ algorithm the order of theearly sorted Customer
partitions will be preserved. The build input of the OHJ is cre-
ated by a generalized hash team, which consists ofOrder and
Lineitem. While partitioningOrder by C# into k partitions,
bitmaps for the resultingO# partitioning are generated. The
bitmaps are used tok-way partitionLineitem. The result of
this join, which retains thek-way partitioning byC#, is kept
in a main-memory hash table and theCustomertuples of the
corresponding partition/run are probed against this hash table.
The generated result tuples are ordered byCity, so early ag-
gregation on theCity attribute can be performed very easily
by collapsing identicalCity tuples. These duplicate-free par-
titions are written to disk and finally merged to do the full
aggregation.

4 The bulk bypassing technique

4.1 Basic concept

Early sorting and also early partitioning have the effect that the
sorting or partitioning of the base relations is often preserved
throughout the entire query plan. That is, the result tuples are
generated in exactly the same order as one of the argument
relation’s partitions.This enables us to strip off bulky attributes
of this argument relation and re-merge them with the final
result with very little cost. Stripping off bulky attributes saves
main memory space and disk I/O if intermediate results need
to be written to disk. We call this technique bulk bypassing.

4.2 Order-preserving hash joins with bulk bypassing

Let us again consider the schema of Sect.2 with tablesR and
S.

If R is stored inR.A order on disk (i.e., the OHJ plan
case), bulk bypassing can be applied in a straightforward way:
only attributeB, which is needed to compute the join, and
a sequence numberSeq#, which is used as surrogate for re-
merging theBulkdata, are retained byR after the initial index
scan ofR. The join is then carried out (using attributeB)
and theBulk data is afterwards re-merged using the sequence

J. Claussen et al.: Exploiting early sorting and early partitioning for decision support query processing 203

.

.

R
A B Bulk
9 1 . . .
0 2 aaa
7 4 . . .
3 4 . . .
0 3 bbb
8 1 . . .
6 2 . . .
4 3 . . .
10 9 . . .
5 8 . . .
0 7 ccc
11 10 . . .

sortA−→

sortA−→

R1
A B Bulk
0 2 aaa
0 3 bbb
3 4 . . .
7 4 . . .
8 1 . . .
9 1 . . .

R2
A B Bulk
0 7 ccc
4 3 . . .
5 8 . . .
6 2 . . .
10 9 . . .
11 10 . . .

↗

ptnB

↘

↗

ptnB

↘

R11
A U B
0 1.1 2
3 1.3 4
7 1.4 4

R12
A U B
0 1.2 3
8 1.5 1
9 1.6 1

R21
A U B
5 2.3 8
6 2.4 2
11 2.6 10

R22
A U B
0 2.1 7
4 2.2 3
10 2.5 9

mrgA,U →

mrgA,U →

R{1,2}1
A U B
0 1.1 2
3 1.3 4
5 2.3 8
6 2.4 2
7 1.4 4
11 2.6 10

R{1,2}2
A U B
0 1.2 3
0 2.1 7
4 2.2 3
8 1.5 1
9 1.6 1
10 2.5 9

R1 Bulk
U Bulk
1.1 aaa
1.2 bbb
1.3 . . .
1.4 . . .
1.5 . . .
1.6 . . .
R2 Bulk

U Bulk
2.1 ccc
2.2 . . .
2.3 . . .
2.4 . . .
2.5 . . .
2.6 . . .

S
C B Bulk
19 1 . . .
12 2 . . .
18 1 . . .
17 4 . . .
16 2 . . .
13 4 . . .
11 3 . . .
14 3 . . .
20 9 . . .
15 8 . . .
25 7 . . .
11 10 . . .

↗
ptnB

↘

S1
C B
12 2
17 4
16 2
13 4
15 8
11 10

S2
C B
19 1
18 1
11 3
14 3
20 9
25 7

�B →

�B →

RS1 = R{1,2}1 � S1
A U B C
0 1.1 2 12
0 1.1 2 16
3 1.3 4 17
3 1.3 4 13
5 2.3 8 15
6 2.4 2 12
6 2.4 2 16
7 1.4 4 17
7 1.4 4 13
11 2.6 10 21
RS2 = R{1,2}2 � S2
A U B C
0 1.2 3 11
0 1.2 3 14
0 2.1 7 25
4 2.2 3 11
4 2.2 3 14
8 1.5 1 19
8 1.5 1 18
9 1.6 1 19
9 1.6 1 18
10 2.5 9 20

R
1

B
ulk

→
↗

mrgA,U →

←
R

2
B

ulk
↖

R � S
A B C Bulk
0 2 12 aaa
0 2 16 aaa
0 3 11 bbb
0 3 14 bbb
0 7 25 ccc
3 4 17 . . .
3 4 13 . . .
4 3 11 . . .
4 3 14 . . .
5 8 15 . . .
6 2 12 . . .
6 2 16 . . .
7 4 17 . . .
7 4 13 . . .
8 1 19 . . .
8 1 18 . . .
9 1 19 . . .
9 1 18 . . .
10 9 20 . . .
11 10 21 . . .

Fig. 18.Early sorting (SOHJ) and bulk bypassing

number. We will call this approach OHJ+BB in the remainder
of the paper.

The reason why the OHJ+BB plan (and the TID join) only
works well ifR is already sorted according toA on disk is that
the re-merge of theBulkdata using the sequence number gets
prohibitively expensive due to random I/O ifR is not sorted.
After bringingR intoR.A order (i.e., as part of theR.A index
scan) the sequence numbers point randomly to tuples ofA.
Using our sorting-on-the-fly technique in conjunction with
OHJs, however, we can achieve effective bypassing of bulk
data with a cheap re-merge, even ifR is not pre-sorted. For
this purpose, we need to carry out an adjusted SOHJ plan. (This
discussion assumes binaryR �� S joins, but SOHJ plans for
multi-way join queries can be adjusted just as easily.) Such a
SOHJ+BB plan is illustrated in Fig.18 for a binary join query.
It involves the following three adjustments:

1. Adjust the sort&partition operator as follows:After sorting
runRi in the memory, write theBulk data of the tuples of
Ri in sort order (i.e.,R.A) in a separate temporary file,
Ri Bulk, and assign everyBulk record a unique identifier
U := i.j consisting of the run numberi followed by the
position of the recordj in the sorted run. Furthermore,
isolate theA, U , andB columns of the run, partition the
run and continue and carry out OHJs as proposed in the
previous subsections.U , therefore, plays the same role in
an SOHJ+BB plan as the sequence number in the OHJ+BB
plan.B is needed to carry out the join, as in the OHJ+BB
plan, andA is needed to re-merge intermediate results
because two unique identifiers, say,a.p and b.q of two
different runsa andb, are not comparable in terms of the
sort criterionR.A. (In contrast,a.Seq#< b.Seq#always
implies a.A < b.A for tuplesa andb of R if R is pre-
sorted.)

2. The intermediate merges are performed by comparing the
sort attributeA and the unique identifieri.j, in that prece-

selectc.C#, c.City,sum(o.Totalprice)
from Customer c, Order o
wherec.C# = o.C#
group by c.C#, c.City

Query 5:A bulky attribute (City) in the result
(GC#,City(C �� O))

dence. This way we make sure that tuples with the same
A values coming from the same run remain in the same
order in which theirBulkdata was written to disk, which is
important to make the final merging of theBulk efficient.

3. At the end, merge theBulk with the join results using
the unique identifiers; that is, we merge the partitions
RS1, . . . , RSl (horizontally) and at the same time, we
merge (vertically) theBulk partitions R1 Bulk , . . .,
Rm Bulk . The final (vertical) merge is cheap and does not
result in excessive random I/O because theBulk runs are
ordered in the same way as the join result, i.e., according
to R.A.

4.3 Bypassing bulk around generalized hash teams

In the (S)OHJ query plans bulk bypassing was used to reduce
the data volume that is written to disk at intermediate stages
of the query evaluation process. In generalized hash teams
this technique can also be beneficial in order to bypass bulky
attributes around the join operations. This way, the individual
partitions can be made larger, and therefore fewer partitions
are needed. Bulk bypassing is possible if the result of the
hash team is assembled in a hash area, i.e., if the hash team
comprises a final grouping operation. If the grouping is on a
single relation, then the bulky attributes of this relation can
be bypassed. This only works if the bulk attribute(s) is/are

204 J. Claussen et al.: Exploiting early sorting and early partitioning for decision support query processing

.

Customer

C# City
5 B
0 PA
3 NYC
1 M
4 LA
2 HH

↗
ptnC#

↘

Bulk1
C# City

0 PA
4 LA
2 HH

Cust1
C#

0
4
2

Bulk2
C# City

5 B
3 NYC
1 M

Cust2
C#

5
3
1

Order

O# C#
Total-
price

2 2 8
6 4 2
1 3 7
5 4 4
0 1 3
3 1 8
4 2 3
7 3 9
9 5 5

10 0 1

↗
ptnC#

↘

Order1

C#
Total-
price

2 8
4 2
4 4
2 3
0 1

Order2

C#
Total-
price

3 7
1 3
1 8
3 9
5 5

�C# → AggC# →

�C# → AggC# →

C# sum Seq C# City sum
4 6 4 LA 6
2 11

→ merge →
2 HH 11

0 1 0 PA 1

C# sum Seq C# City sum
5 5 5 B 5
3 16

→ merge →
3 NYC 16

1 11 1 M 11

insertion-order-preserving
hash tables

First

First

Fig. 19.Applying bulk bypassing to a team (Query 5)

functionally dependent on other grouping attributes. We will
demonstrate bulk bypassing for hash teams on the example
Query 5 defined on page 14. As before, we assume thatC#→
City holds and that, therefore, the grouping can be performed
on C# alone. For simplicity, we chose this example even
though it is an ordinary hash team – for generalized hash teams
it works analogously. Figure 19 shows the evaluation of this
query.

During the partitioning phase, the bulkyCity attribute is
stripped off theCustomerpartitions and stored on disk. It is
important to store the [C#,City] partitions in exactly the same
order as theC# partitions. Having finished the partitioning
ofCustomers andOrder, the actual hash teams are formed for
each partition. Let us concentrate on the first partition:TheC#
partition, which constitutes the build input of the hash team, is
read and inserted into a so-calledinsertion-order-preserving
hash table. The insertion-order-preserving hash table is just a
standard hash table except that the entries have an additional
Seqpointer to chain them in insertion order. Once the join
and the aggregation with the correspondingOrderpartition is
completed, the hash table is read in insertion order (using the
pointer chain, starting with theFirst pointer), and the corre-
sponding bulk partition is merged. Note that the bulk partition
is read in the exact order in which it was written to disk; there-
fore this merge is fairly cheap to perform. Our performance
experiments indicate that this bulk bypassing, if applicable,
can actually result in performance increase of up to a factor of
two.

5 Query optimization

In this section, we show how an existing query optimizer
can be extended in order to generate plans with early sorting
(SOHJ), early partitioning (hash teams), and bulk bypassing.
Many different query optimization architectures have been
proposed in the literature and obviously there are many al-
ternative ways to integrate SOHJ and hash teams into the
query optimizer. In this section, we show how to integrate

our proposed techniques into a traditional Selinger-style op-
timizer (i.e., bottom-up dynamic programming) [SAC+79,
Loh88]. Furthermore, we show the optimizer extensions that
are needed in order to exploit the full potential of our tech-
niques, whereby we limit the generalized hash teams to hi-
erarchies. Clearly, these extensions will significantly increase
the size of the search space of the optimizer and, thus, the run-
ning time of the optimizer. We believe, however, that existing
industrial-strength optimizers are capable of handling such
a larger search space. For instance, early sorting (as needed
for SOHJ plans) has already been implemented in the DB2
optimizer ([SSM96]), and (basic) hash teams have been im-
plemented in Microsoft’s SQL Server 7.0 ([GBC98]). In addi-
tion, heuristics such as those proposed in [KS00] can be used
to speed up query optimization. Studying all the tradeoffs of
optimization time vs. plan quality for supporting early sorting
and partitioning is beyond the scope of this paper.

In the following, we will describe changes to the opti-
mizer’s cost model and the plan enumerator.These changes are
essentially along the lines of previous work to extend bottom-
up, dynamic-programming query optimizers, e.g., [Loh88,
CS94,CS96,CK97].

CostmodelThe cost model extensions are straightforward.We
only need to provide cost estimates for all new operators like
OHJ, SOHJ, indirect partitioning, and BulkMerge. Cost for-
mulae similar to those needed to estimate the cost of (S)OHJ
operators have been devised in [BCK98,BCKK00] for the par-
tition/merge algorithm. The cost of indirect partitioning and
generalized hash teams strongly depends on the number of
false drops. The number of false drops can be estimated as
described in Sect.3.5.

SearchspaceJust as with “traditional optimizers,” we use trees
to represent plans. We consider all access paths (i.e., indices),
all possible (bushy) join orders, and all common join meth-
ods (i.e., sort-merge, nested-loop, hash join). Furthermore, we
consider all possible ways to apply generalized hash teams as
well as (S)OHJ with and without bulk bypassing. That is, we

J. Claussen et al.: Exploiting early sorting and early partitioning for decision support query processing 205

will consider sorting and partitioning a table by each interest-
ing column (defined below). For ease of presentation, we will
assume that group-by operators are applied after all joins, as is
done by most commercial optimizers; in other words, we will
ignore transformations as those proposed in [CS94,YL94] in
the remainder of this section.

An interesting column of a table is any column that is
used in a join or as part of anorder-byor group-byclause. In
modern database systems, a column used in arollup or cube
clause [GBLP96] is also interesting. In this sense, the concept
of interesting column is identical to the concept of interesting
order used in traditional optimizers [SAC+79]. To produce
generalized hash teams, however, a column may be interesting
for a table, even if it is not part of the table. In our examples
of Sect.3, for instance,City is an interesting column for the
Order table andC# is interesting for theLineitemtable. A
column which is part of TableA and not part of TableB may
only be interesting for TableB, if TableA is “higher” in the
hierarchy.

Properties In order to describe a (sub-)plan and simplify
bottom-up plan enumeration, we annotate each (sub-)plan with
properties.8 Plan properties are also used for pruning plans dur-
ing the bottom-up plan enumeration. (For brevity, we will not
present the details of pruning here.) Annotating plans is also
done in traditional query optimizers ([GD87,Loh88]). Typical
plan properties include thecostof a plan, thecardinality of
the output produced by the plan, and thesiteat which the plan
is executed in a distributed system. To integrate early sorting
and early partitioning, the following properties are relevant:

– sorted by:a set of columns indicating that the output of a
plan is sorted by these columns.

– partitioned by:a set of columns indicating that the out-
put of a plan is partitioned by these columns. When both
“sorted by” and“partitioned by” property sets are non-
empty, this indicates that the plan produces sorted runs
which can be merged to produce a single unpartitioned
and sorted output.

– generated bitmaps:a set of columns indicating that bit-
maps were generated as a result of a partitioning step
carried out in the plan.Generated bitmapscan only be
non-empty ifpartitioned byis also non empty.

– consumed bitmaps:a set of columns indicating that bit-
maps were consumed during indirect partitioning.

– open/closed:a Boolean value which indicates whether a
plan is executable or requires bitmaps to be executable.
For example, a plan that specifies that theLineitemtable
should be partitioned byC# is not executable because the
Lineitemtable has noC# column. Such a plan would be
annotated as“open” and it would be executed as part of a
generalized hash team which involves a plan that generates
bitmaps.

– team break:a Boolean value which indicates the border of
a hash team if hash teams are split. Essentially, this prop-
erty corresponds to the “pipelined/materialized” proper-
ties used in traditional optimizers and istruewhen inter-
mediate results are written to disk.

8 More precisely, properties are assigned to operators and the prop-
erties of a (sub-)plan are the properties of the root of the (sub-)plan.

selectc.C#, c.City,sum(l.Extendedprice)
from Customer c, Order o, Lineitem l
wherec.C# = o.C#and o.O# = l.O#
group by c.C#, c.City
order by c.C#

Query 6: Illustrating the optimization pro-
cess
(SC#(GC#,City(C �� O �� L)))

– bulk bypassed:a set of (bulk) attributes which are by-
passed. The full result can be computed by a vertical
(merge) join with the bulk data as described in Sect.4.

Enumerating access plansAs mentioned at the beginning of
this section, we consider a query optimizer that enumerates
plans in a bottom-up way. Such an optimizer generates so-
called access plans for all tables involved in a query in its
first step. An access plan specifies how a table is read, i.e.,
using a full scan or an index. We propose to extend access
plan generation and enumerate different access plans for all
kinds of early sorting, early partitioning, and bulk bypassing.
Specifically, we propose to generate the following access plans
for a Tablet with interesting columnsc andd:

1. sortc(t): sortt by c.
2. ptnc(t), ptnBB

c (t): partitiont by c, with and without bulk
bypassing.

3. sptnc,d(t), sptnBB
c,d (t): partition t by c, at the same time

sorting each partition byd, with or without bulk bypassing.
(This is the combined sort&partition operator of SOHJ.)

4. ptnc(t)→ cn: partition t by c and generate a bitmap for
cn; such a plan is generated ifcn is a join column for a
join with a table which is lower in the hierarchies thant.

5. cp →ptnBM cp
(t): partition t using a bitmap; such a plan

is generated ifcp is the join column for a join with a table
which is higher in the hierarchy thant.

6. cp →ptnBM cp
(t)→ cn: partition t using a bitmap and

generating a bitmap.

Table 1 shows the access plans and their properties which
are generated for Query 6. (Note thatCity is not an interesting
column in this query, although it is used in the group-by clause.
The reason is thatCity functionally depends onC#.)

Enumerating joinsJust as for access plans, there is a fixed
set of rules that tell the optimizer which join plans to enumer-
ate. A join plan specifies how the results of two sub-plans are
joined, depending on the properties of the sub-plans. These
sub-plans may be access plans or other join plans. The follow-
ing rules are applicable to enumerate (S)OHJ plans and plans
with generalized hash teams.t1 is the first sub-plan (as probe
input), t2 is the second sub-plan (as build input), andc is the
join attribute.

1. OHJc(t1, t2): join t1 and t2 using an OHJ. This plan is
applicable ift1 and t2 are partitioned byc. If the parti-
tioning of the result differs from the input partitioning, the
fine-grainedpartition–mergeoperations are inserted after
the join. The generated properties are:
– sorted by= t1.sorted by

206 J. Claussen et al.: Exploiting early sorting and early partitioning for decision support query processing

Table 1.Access plans for Query 6

C sortC# ptnC# sptnC#,C# ptnBB
C#,C# sptnBB

C#,C#

| | | | |
C C C C C

sorted by {} {C#} {} {C#} {} {C#}
partitioned by {} {} {C#} {C#} {C#} {C#}

generated bitmaps {} {} {} {} {} {}
consumed bitmaps {} {} {} {} {} {}

open/closed closed closed closed closed closed closed
team break yes yes yes yes yes yes

bulk bypassed {} {} {} {} {C.City} {C.City}

O sortC# sortO# ptnC# ptnO# sptnC#,C# sptnC#,O# sptnO#,C# sptnO#,O# ptnC#
BMO#−→

| | | | | | | | |
C C C C C C C C C

sorted by {} {C#} {O#} {} {} {C#} {C#} {O#} {O#} {}
partitioned by {} {} {} {C#} {O#} {C#} {O#} {C#} {O#} {C#}

generated bitmaps {} {} {} {} {} {} {} {} {} {O#}
consumed bitmaps {} {} {} {} {} {} {} {} {} {}

open/closed closed closed closed closed closed closed closed closed closed closed
team break yes yes yes yes yes yes yes yes yes yes

bulk bypassed {} {} {} {} {} {} {} {} {} {}

L sortO# ptnO# sptnO#,O#
BMO#−→ ptnBMO#

| | | |
L L L L

sorted by {} {O#} {} {O#} {}
partitioned by {} {} {O#} {O#} {C#}

generated bitmaps {} {} {} {} {}
consumed bitmaps {} {} {} {} {O#}

open/closed closed closed closed closed open
team break yes yes yes yes yes

bulk bypassed {} {} {} {} {}

Table 2.Selected plans forCustomer��C# Order (Query 6)

J. Claussen et al.: Exploiting early sorting and early partitioning for decision support query processing 207

Table 3.Selected plans forOrder��O# Lineitem(Query 6)

– partitioned by= cn, wherecn is an interesting column
– generated bitmaps

= t1.generated bitmaps∪ t2.generated bitmaps
– consumed bitmaps

= t1.consumed bitmaps∪ t2.consumed bitmaps
– open/closed= t1.open/closed∧ t2.open/closed
– bulk bypassed= t1.bulk bypassed∪ t2.bulk bypassed
– team break= yes

2. HJc(t1, t2): join t1 andt2 using a HJ. This plan is appli-
cable ift1 andt2 are partitioned byc or c ∈ t1.generated
bitmapsandc ∈ t2.consumedbitmapsorc ∈ t1.consumed
bitmapsandc ∈ t2.generated bitmaps. If the generated
partitioning of the result differs from the input partitioning,
apartitionoperator is inserted after the join. The generated
properties are:
– sorted by= {}
– generated bitmaps

= t1.generated bitmaps∪ t2.generated bitmaps
– consumed bitmaps

= t1.consumed bitmaps∪ t2.consumed bitmaps
– open/closed

= if consumed bitmaps⊆ generated bitmaps then
closed else open

– bulk bypassed= t1.bulk bypassed∪ t2.bulk bypassed
– if team break== yesthenpartitioned by= cn, where

cn is an interesting column;
if team break== no then
partitioned by= t2.partitioned by

Tables 2, 3, and 4 show some sample two-way and three-
way join plans enumerated for Query 6.

Postprocessing/code generationAfter a plan has been cho-
sen by the optimizer, this plan is translated into an executable
plan. The generation of an executable plan involves the gener-
ation of themergeoperators for OHJ andMergeBulkoperators
for bulk bypassing. Also,sptnoperators are replaced by a se-
quence ofsort–ptn–mergeoperators. This postprocessing step
is straightforward.

6 Performance evaluation

In this section we will present experimental results conducted
using a prototypical implementation of OHJs, generalized and
“ordinary” hash teams, and traditional (hash-based) algor-
ithms to carry out joins and aggregation. We will present
the running times of our example queries, using a synthetic

TPC-H/R like database ([TPC99]). In contrast to the original
database we used tuples and attributes of constant size. This
was chosen to simplify the implementation – the comparative
results of the different evaluation techniques, however, are not
affected by this simplification. Our test database is character-
ized in Table 5.

6.1 Experimental environment

We integrated our implementation of (S)OHJ and generalized
hash teams into an experimental query engine that is based on
the iterator model [Gra93]. This query engine also provides it-
erators for traditional (hash-based) joins and aggregation. All
code is written in C++. We installed the query engine on a Sun
Ultra 10 with a 333MHz processor and 128MB of main mem-
ory. The operating system was Solaris 7. In all experiments,
we varied the amount of main memory available for query
processing. We used relatively small memory sizes in order to
simulate a multi-user environment in which many queries are
run concurrently and only a small amount of main memory
is available for each query. We made use of Solaris’direct IO
feature in order to avoid caching at the operating system level.
The database and the intermediate query results were stored
on a 18.2 GB IBM DNES-318350 disk drive.

We adopted the idea presented in [DG94] to adjust the clus-
ter size for writing and reading the partitions to the available
memory. This way the number of disk seeks can be reduced
enormously. In contrast to [DG94] we do not need to re-adjust
the cluster size during the execution of the query because we
assume constant memory size during query execution. The
minimum cluster size is 4 kB, which is the physical page size,
the maximum cluster size is 64 kB (16 pagesà 4 kB).

6.2 Order-preserving hash joins

Figure 20a shows the results of our implementation for
the binary join plans for Query 1(SMkt,N#,C#(C �� O))
(page 193).The traditional hash join (HJ) plan with subsequent
sorting shows the worst performance due to the expensive sort
operation on the entire join result. For small memory con-
figurations, the HJ plan shows particularly poor performance
because in this case, there is not enough memory to satisfy
the purposes of both the hash join and the sort at the same
time – recall that these two operations run concurrently and
share the available memory in this plan. The (S)OHJ plans,
on the other hand, show high performance, even if memory is
scarce, because no two memory-intensive operations run con-
currently. Figure 20a also shows that the bulk bypassing (BB)
variants of the OHJ plans yield an additional performance gain
due to reduced disk I/O to write and re-read intermediate re-
sults. Evidently, the plots indicate that there is only a small
difference between OHJ and SOHJ plans which proves the
effectiveness of our sorting-on-the-fly approach. As a result,
OHJ plans work well even in the absence of clustered indices.

Figure 20b shows the performance results for the three-
way join Query 2(SMkt,N#,C#(C �� O �� L)) (page 4). In
addition to the second join operator, the OHJ plans contain
the fine-grained partition/re-merge step. Evidently, the per-
formance advantages observed for binary (S)OHJ plans are
retained.

208 J. Claussen et al.: Exploiting early sorting and early partitioning for decision support query processing

Table 4. Selected plans forCustomer��C# Order ��O# Lineitem (Query 6)a Pure SOHJ plan.b Pure GenTeam plan.c Combined
SOHJ/GenTeam plan

0

200

400

600

800

1000

1200

1400

1600

2 3 4 5 6 7 8 9 10

tim
e

[s
ec

s]

memory [MB]

OHJ
OHJ BB

SOHJ
SOHJ BB

HJ

0

500

1000

1500

2000

2500

3000

10 15 20 25 30

tim
e

[s
ec

s]

memory [MB]

OHJ
OHJ BB

SOHJ
SOHJ BB

HJ

aResponse time [secs] b Response time [secs]
Query 1(SMkt,N#,C#(C �� O)) Query 2(SMkt,N#,C#(C �� O �� L))

Fig. 20a,b.Order-preserving hash joins

0

1000

2000

3000

4000

5000

6000

7000

8000

750 7500 15000 22500 30000 37500 45000

tim
e

[s
ec

s]

cardinality of Order [k]

OHJ
OHJ BB

SOHJ
SOHJ BB

HJ

Fig. 21.Response time query 1 [secs]
(SMkt,N#,C#(C �� O))
(vary#Order, 10MB memory)

Figure 21 shows the impact of a largeOrder table on the
performance of the five plans for Query 1. In this experiment
the number ofOrders perCustomeris varied from 1 to 60, and

Table 5.Database characteristics

Table Tuple width Cardinality Size inMB

Region 124 bytes 5 <4 kB
Nation 128 bytes 25 <4 kB
Supplier 160 bytes 50000 8MB
Customer 180 bytes 750000 135MB
Order 104 bytes 7500000 780MB
Lineitem 112 bytes 30000000 3360MB

the available main memory is fixed at 10MB. Thus, the right-
most running times of Fig.20a correspond to the 5 measure-
ments atx = 7500, whereCustomers have 10Orders, on av-
erage. (Reported running times of the traditional HJ plans are
always for the best possible join order. Note, that for largeOr-
der tables the HJ plans useOrderas the outer, whileCustomer
is always the outer in (S)OHJ plans.) We see that with increas-
ing size of theOrder table the advantages of our (S)OHJ plans

J. Claussen et al.: Exploiting early sorting and early partitioning for decision support query processing 209

selectc.City,sum(o.Totalprice)
from Customer c, Order o
wherec.C# = o.C#
group by c.City
order by c.City

Query 7: Binary join with aggregation
(SCity(GCity(C �� O)))

selectc.City,sum(l.Extendedprice)
from Customer c, Order o, Lineitem l
wherec.C# = o.C#and o.O# = l.O#
group by c.City
order by c.City

Query 8: Multi-way join with aggregation
(SCity(GCity(C �� O �� L)))

0

50

100

150

200

250

300

350

400

450

500

2 3 4 5 6 7 8 9 10

tim
e

[s
ec

s]

memory [MB]

OHJ EA
OHJ BB EA

SOHJ EA
SOHJ BB EA

HJ EA

0

200

400

600

800

1000

1200

1400

1600

1800

10 15 20 25 30

tim
e

[s
ec

s]

memory [MB]

OHJ EA
OHJ BB EA

SOHJ EA
SOHJ BB EA

HJ EA

aResponse time Query 7 [secs] b Response time Query 8 [secs]
(SC〉�†(GC〉�†(C �� O))) (SCity(GCity(C �� O �� L)))

Fig. 22a,b.Order-preserving hash joins with aggregation

increase because the final sort of the traditional HJ plans be-
comes more and more expensive and dominates the cost of
the whole query. The maximum performance gain of (S)OHJ
plans to the HJ plans amounts up to a factor of six.

Figure 22a and b show the running times of the five plan
alternatives for Query 7(SCity(GCity(C �� O))) and Query 8
(SCity(GCity(C �� O �� L))), respectively. All plans benefit
from early aggregation, but the benefits are most pronounced
for those evaluation plans without bypassing bulk data, i.e.,
the OHJ, SOHJ and the HJ variants. These plans draw more
benefit from collapsing duplicates because the size of the col-
lapsed records is substantially larger than those of the BB vari-
ants. Therefore, the differences between the BB and standard
(S)OHJ plans are less pronounced in these experiments.

6.3 Generalized hash teams

Figure 23a shows the running time of Query 3(GCity(C �� O))
(page 197) using generalized hash teams and two traditional
plans that use an OHJ and hash aggregation to execute the
query. The difference between the two traditional plans is that
early aggregation (as described in [Lar97]) is effected in one
of the two plans. Early aggregation reduces the size of the
intermediate results that must be written to disk in the parti-
tioning phase of the group-by operator9. We observe that, as
expected, generalized hash teams significantly outperform the
traditional plans in the whole range of main memory sizes.
The traditional plans perform particularly poorly if there is
only little memory available – in this case, the I/O costs of the
join and group-by operators are very high because many small
partitions must be created, and thus the benefits of saving the

9 Remember not to confuse early aggregation with early sorting or
early partitioning.

partitioning step for the group-by operation are significant.
Note that for small memory size, the number of false drops
is also particularly high for generalized hash teams, but the
extra cost due to false drops is much lower than the cost of
an extra partitioning step. With increasing memory size, the
advantages of our new approaches get smaller. However, only
for very large memory sizes, when the join and/or group-by
can be carried out completely in the memory, do the traditional
plans perform as well as our new approaches.

Figure 23b shows the running time of Query 4(GCity(C
�� O �� L)) (page 198) for various different plans. Again,
generalized hash teams are the overall winner. In this case,
however, generalized hash teams are only beneficial if a cer-
tain amount of memory is available. Recall from Sect.3.2 that
the memory requirements increase with the number of oper-
ations that participate in the team. Thus, the amount of false
drops produced during partitioning theOrder andLineitem
table impairs the running time at small memory configura-
tions. For the traditional plans, the best memory configuration
involves carrying out the whole group-by in memory so that
early aggregation does not improve the running time in these
experiments. The traditional plans lose here because they re-
quire re-partitioning for the second join (i.e., the join with
Lineitem).

We ran another experiment to show the benefits of bulk
bypassing on generalized hash teams. Figure 24 shows the
profit of bulk bypassing applied to Query 9(GC#,City(C ��
O �� L)). At very small memory configurations the execution
time of GenTeam BB is about a factor of two better than that of
GenTeam because the described effect of a reduced number
of partitions leads to less false drops. The more memory is
allocated for the query, the more the performance gain of BB
diminishes.

210 J. Claussen et al.: Exploiting early sorting and early partitioning for decision support query processing

0

50

100

150

200

250

300

2 3 4 5 6 7 8 9 10

tim
e

[s
ec

s]

memory [MB]

GenTeam
HJ

HJ EA
0

200

400

600

800

1000

1200

10 15 20 25 30

tim
e

[s
ec

s]

memory [MB]

GenTeam
HJ

HJ EA

aResponse time Query 3 [secs] b Response time Query 4 [secs]
(GCity(C �� O)) (GCity(C �� O �� L))

Fig. 23a,b.Generalized hash teams

6.4 Combining order-preserving hash joins
and generalized hash teams

Figure 25a and b show the results of combining OHJs and gen-
eralized hash teams. We show the running times of the three-
way join queryCustomer�� Order �� Lineitemwith group-
ing and sorting onCity (Query 8(SCity(GCity(C �� O ��
L))), page 209) and a grouping and sorting onC# (Query 6
{SC#[GC#,City(C �� O �� L)]}, page 205) to demonstrate
the impact of the size of the aggregation result. A simplified
version of the SOHJ GenTeam plan of Query 8 is shown in
Fig.17. (Here we also apply early aggregation on the hash
team part.) The SOHJ GenTeam plan for Query 6 is similar.

Looking at Fig.25a for the results of Query 8, where we
group onCity, we can recognize that the SOHJ BB EA plan
shows a relative constant running time, as already shown in
the previous experiments of Sect.6.2. For very small memory
sizes the running times of the GenTeam variants are quite high
due to many false drops. For large main memory allocations,
however, the GenTeam plans turn out to be slightly better than
the SOHJ plans and much better than the traditional HJ plan.
The pure GenTeamSort plan (with sorting of the aggregation
result) performs better than the combined SOHJ GenTeam
plan for this query, because of the fewer tuples that have to
be sorted: there are 75000 cities, as opposed to to 750000
Customertuples, which are early sorted by the SOHJ.

Looking at Fig.25b for the results of Query 6, where the
grouping is done byC#, the SOHJ BB EA plan shows al-
most the same running times as in Fig.25a. However, now the
combined SOHJ GenTeam plan performs better than the pure
GenTeamSort plan, due to the bigger aggregation result. So
both query evaluation plans have to sort the same number of
tuples, but due to the more tuples in the aggregation result,
more partitions have to be created for the pure team and so
more false drops occur, which leads to longer running times.
The extremely high running times (up to 6400secs for 5MB)
of the traditional HJ EA plan are not shown for small memory
configurations.

These results show that – in order to choose the most ef-
ficient plan – it is fundamental for the application of both
algorithms and the combination of them to determine the size
of the aggregation result.

selectc.C#, c.City,sum(l.Extendedprice)
from Customer c, Order o, Lineitem l
wherec.C# = o.C#and o.O# = l.O#
group by c.C#, c.City

Query 9: Grouping by a non-bulk attribute
(GC#,City(C �� O �� L))

0

2000

4000

6000

8000

10000

12000

2 4 6 8 10 12 14 16 18 20

tim
e

[s
ec

s]

memory [MB]

GenTeam
GenTeam BB

Fig. 24.Bulk bypassing in generalized hash teams: response time of
Query 9 [secs](GC#,City(C �� O �� L))

6.5 Applying generalized hash teams to TPC-H/R queries

Finally, we show an application of generalized hash teams to
a “real-world query” of the TPC-H/R benchmark suite. Let
us consider in detail Query Q5 of the TPC-H/R suite (our
concept is also applicable to other queries of TPC-H/R, e.g.,
Query Q10 and Query Q18):

selectn.Name,sum(l.Extendedprice∗(1−l.Discount))
asRevenue
from Customer c, Order o, Lineitem l, Supplier s,
Nation n, Region r
wherec.C# = o.C#and o.O# = l.O#
and l.S# = S.S#and c.N# = s.N#
and s.N# = n.N#and n.R# = r.R#
and r.Name = ’[region]’
and o.Orderdate>= DATE ’[date]’
and o.Orderdate< DATE ’[date]’ +
INTERVAL 1YEAR
group by n.Name
order by Revenuedesc

J. Claussen et al.: Exploiting early sorting and early partitioning for decision support query processing 211

1000

1500

2000

2500

3000

5 10 15 20 25 30

tim
e

[s
ec

s]

memory [MB]

HJ EA (City)
SOHJ GenTeam (City)

GenTeamSort (City)
SOHJ BB EA (City)

1000

1500

2000

2500

3000

5 10 15 20 25 30

tim
e

[s
ec

s]

memory [MB]

HJ EA (C#)
SOHJ GenTeam (C#)

GenTeamSort (C#)
SOHJ BB EA (C#)

aResponse time Query 8 [secs] b Response time Query 6 [secs]
(SCity(GCity(C �� O �� L))) (SC#(GC#,City(C �� O �� L)))

Fig. 25a,b.Combining OHJs and generalized hash teams

Query Memory Time SF

GenTeam 8MB 312secs 5.0
trad. HJ 8MB 870secs 5.0
trad. HJ 16MB 867secs 5.0

RDBMS
(

highest
opt. level

)
>8MB 1021secs 5.0

GenTeam 1.5MB 59secs 1.0
trad. HJ 1.5MB 164secs 1.0
trad. HJ 3MB 163secs 1.0

RDBMS
(

highest
opt. level

)
>2MB 209secs 1.0

aRunning times of different scale factors (SF)10

O#

O#

C#

C#

N#

Lineitem

Order

Customer

Supplier

Nation � RegionN#

N#

S#

bUnderlying hierarchy and three-way partitioning

Fig. 26a,b.TPC-H/R Query Q5

This query has multiple chains of functional dependencies:

O#→ C#→ N#→ R# and S#→ N#→ R#.

These functional dependencies constitute two overlapping
hierarchies as shown in Fig.26b. So, a possible query evalua-
tion plan using a generalized hash team could be as in Fig.27b.
The resulting partitioning of the entire hierarchy is illustrated
in Fig.26b by the three different shadings, each of which rep-
resents one partition of the entire hierarchy which is processed
by a single hash team. Here we first joinCustomer,Nation, and
Regionto filter out the relevantCustomertuples. During parti-
tioning the known set of bitmaps for indirectly partitioning the
Order table is created. Additionally a Bloom filter ([Blo70])
for the join withSupplieris calculated. So the I/O volume can
be reduced enormously on all participating base relations. The
bitmaps created for indirect partitioning contain the described
usedbitvector, which acts as an implicit Bloom filter.

The traditional hash join plan shown in Fig.27a has to
write large volumes of intermediate results while joining the
big tablesOrderandLineitem. The only optimization that can
be applied to the traditional plan is the final in-memory aggre-
gation, which does not improve the performance significantly.
The results of the running times are shown in Fig. 26a. In
order to show the advantages of the generalized hash teams
we used two scale factors of the database. The teams show in

10 It could not be determined how much memory the RDBMS al-
located for the whole plan. Each operator was limited to the denoted
memory.

both cases superior performance. It should be noted that due
to the optimized memory usage the hash teams do not require
more memory than shown in the table.

We also compared our query engine with a commercial
RDBMS using both scale factors 1.0 and 5.0. In the commer-
cial RDBMS it was not possible to limit the memory for the
whole plan, so each operator got 2MB for the scale factor 1.0
and 8MB for the scale factor 5.0. Thus, even though we could
not determine the total memory exactly, the RDBMS plans
consumed much more memory than we allocated for the Gen-
Team plans, which were limited to 1.5MB (and 8MB respec-
tively) in total.The statistics for all tables and all useful indexes
were generated for both database sizes. The built-in optimizer
of the RDBMS has chosen the plan shown in Fig.27c. The
performance of this RDBMS plan was comparable with our
chosen traditional hash join plans on our experimental query
engine. The performance gain of using generalized hash teams
amounted in both cases to a factor of 3.

7 Conclusions

Many queries – in particular, in OLAP and decision support
applications – involve joins and grouping with aggregation
and/or sorting of the result. In this paper we devised two com-
plementary query evaluation techniques to push sorting and
partitioning to the leaves of query evaluation plans.Early sort-
ing andearly partitioningare effective in many decision sup-
port queries because they allow to perform costly operations

212 J. Claussen et al.: Exploiting early sorting and early partitioning for decision support query processing

AggN#

σN#

�O#

ptnO#

�C#

ptnC#

O

ptnC#

σN#,R#

C �N �R

ptnO#

�S#

ptnS#

S

ptnS#

L

AggN#

�O#

�C#

�N#

ptnN#
Bit-← −−

map

S

ptnN#
Bit-−− →

maps

C �N �R

ptnBM1
Bit-−− →

maps

O

ptnBM2

L

AggN#

SortN#

�C#

�R#

�N#

�S#

�O#

O L

S

N

R

C

aTraditional hash join with in-memory aggregationb Generalized hash team cPlan generated by RDBMS

Fig. 27a–c.Possible QEPs for TPC-H/R Query Q5

(involving disk I/O) on relatively small base relations instead
of on intermediate results which become very large in some
OLAP queries.

Order-preserving hash joins allow an existing order of one
of the base relations to be preserved or the costly run gen-
eration phase of the sorting to be pushed to a base relation.
This early sorting is applicable if the desired sort order of the
query is based on attributes of a single base relation only. One
particular advantage of order-preserving hash join plans is that
they reduce the main memory requirements of queries because
memory-intensive operations such as the probe phase of a join
and the make-run phase of a sort are not carried out concur-
rently. A great additional performance gain can be achieved
for many group-by queries by exploiting early aggregation.

The early partitioning technique is based on Graefe et
al.’s [GBC98] hash teams, which were integrated into Mi-
crosoft’s SQL Server product. This technique allows one to
“team up” several join (and grouping) operators; however, in
Microsoft’s hash teams, all operators must involve thesame
attribute. This, of course, restricts the applicability of their ap-
proach to a very special class of queries. We proposed general-
ized hash teams which allow one to “team up” join and group-
ing operators even if they are based on different columns. This
makes generalized hash teams applicable for a much larger
class of queries. The key idea is indirect partitioning: a relation
is partitioned on an attribute that is used in a later operation,
and bitmaps are constructed in order to guide the partitioning
of other relations which are involved in the next operation. We
presented details of such generalized hash teams and showed
formulae that can be used by a query optimizer in order to
cost out plans with generalized hash teams and thus decide
when they are beneficial. We also showed how to combine
early sorting and early partitioning.

In order to further reduce the size of intermediate re-
sults, we investigated the bulk-bypassing technique for order-
preserving hash joins and hash teams. This technique allows
one to bypass large (bulky) attributes of one relation around
expensive operations such as joins. We showed how an opti-
mizer could be extended to enumerate all proposed algorithms.
Lastly we carried out experiments demonstrating the useful-
ness of early sorting and early partitioning for many classes
of decision support queries. We compared the individual al-
gorithms and combinations of them. We also investigated the
applicability of our early sorting and partitioning plans for

”real-world” queries of the TPC-H/R benchmark suite. Sev-
eral of the queries can be optimized using our approach, we
studied one query (Q5) in detail and found out that we could
achieve an improvement of a factor 3 compared to a traditional
plan of a commercial RDBMS product.

Acknowledgements.We would like to thank Christoph Pesch for his
help on the estimation of the false drops and Konrad Stocker for his
comments on the integration ofearly sortingandearly partition-
ing into an optimizer. We acknowledge the helpful comments of the
anonymous reviewers.

References

[BCK98] Braumandl R., Claussen J., Kemper A. Evaluating
functional joins along nested reference sets in object-
relational and object-oriented databases. In: Proc. of the
Conf. on Very Large Data Bases (VLDB), New York,
USA, August 1998, pp. 110–121

[BCKK00] Braumandl R., Claussen J., Kemper A., Kossmann D.
Functional join processing. The VLDB Journal 8(3-4):
156–177, 2000.

[BD83] Bitton D., DeWitt D.J. Duplicate record elimination in
large data files. ACM Trans. on Database Systems 8(2):
255–265, 1983

[Blo70] Bloom B. Space/time trade-offs in hash coding with al-
lowable errors. Communications of the ACM 13: 422–
426, 1970

[Bra84] Bratbergsengen K. Hashing methods and relational al-
gebra operations. In: Proc. of the Conf. on Very Large
Data Bases (VLDB), pp. 323–333, Singapore, Singa-
pore, 1984

[CI98] Chan C.-Y., IoannidisY. Bitmap index design and evalu-
ation. In: Proc. of the ACM SIGMOD Conf. on Manage-
ment of Data, pp. 355–366, Seattle, Wash., USA, June
1998

[CK97] Carey M., Kossmann D. On saying “enough already!” in
SQL. In: Proc. of the ACM SIGMOD Conf. on Manage-
ment of Data, pp. 219–230, Tucson, Ariz., USA, May
1997

[CS94] Chaudhuri S., Shim K. Including group-by in query opti-
mization. In: Proc. of the Conf. onVery Large Data Bases
(VLDB), pp. 354–366, Santiago, Chile, September 1994

[CS96] Chaudhuri S., Shim K. Optimization of queries with
user-defined predicates. In: Proc. of the Conf. on Very

J. Claussen et al.: Exploiting early sorting and early partitioning for decision support query processing 213

Large Data Bases (VLDB), pp. 87–98, Bombay, India,
September 1996

[DG94] Davison D.L., Graefe G. Memory-contention responsive
hash joins. In: Proc. of the Conf. on Very Large Data
Bases (VLDB), pp. 379–390, Santiago, Chile, Septem-
ber 1994

[GBC98] Graefe G., Bunker R., Cooper S. Hash joins and hash
teams in Microsoft SQL Server. In: Proc. of the Conf. on
Very Large Data Bases (VLDB), pp. 86–97, New York,
USA, August 1998

[GBLP96] Gray J., BosworthA., LaymanA., Pirahesh H. Data cube:
A relational aggregation operator generalizing group-
by, cross-tab, and sub-total. In: Proc. IEEE Conf. on
Data Engineering, pp. 152–159, New Orleans, La., USA,
February 1996

[GD87] Graefe G., DeWitt D. The EXODUS optimizer genera-
tor. In: Proc. of the ACM SIGMOD Conf. on Manage-
ment of Data, pp. 160–172, San Francisco, Calif., USA,
May 1987

[GKG+97] Grust T., Krüger J., Gluche D., Heuer A., Scholl M.H.
Query evaluation in CROQUE – calculus and alge-
bra coincide. In: Proc. British National Conference on
Databases (BNCOD), pp. 84–100, London, UK, July
1997

[GO95] Graefe G., O’Neil P. Multi-table joins through bitmapped
join indices. ACM SIGMOD Record 24(3): 8–11, Oct
1995

[Gra93] Graefe G. Query evaluation techniques for large
databases. ACM Computing Surveys 25(2): 73–170,
June 1993

[Gra94] Graefe G. Sort-Merge-Join: An idea whose time has(h)
passed? In: Proc. IEEE Conf. on Data Engineering, pp.
406–417, Houston, Tex., USA, 1994

[HCLS97] Haas L., Carey M., Livny M., Shukla A. Seeking the
truth aboutad hocjoin costs. The VLDB Journal 6(3):
241–256, 1997

[HWM98] Helmer S., Westmann T., Moerkotte G. Diag-Join: An
opportunistic join algorithm for 1:N relationships. In:
Proc. of the Conf. on Very Large Data Bases (VLDB),
pp. 98–109, New York, USA, August 1998

[KKW99] Kemper A., Kossmann D., Wiesner C. Generalized hash
teams for join and group-by. In: Proc. of the Conf. on
Very Large Data Bases (VLDB), pp. 30–41, Edinburgh,
UK, September 1999

[KS00] Kossmann D., Stocker K. Iterative dynamic program-
ming: A new class of query optimization algorithms.
ACM Trans. on Database Systems 25(1), March 2000,
in press

[Lar97] Larson P.A. Grouping and duplicate elimination: Ben-
efits of early aggregation. Microsoft Technical Report,
January 1997.
http://www.research.microsoft.com/ palarson/

[Loh88] Lohman G. Grammar-like functional rules for represent-
ing query optimization alternatives. In: Proc. of theACM
SIGMOD Conf. on Management of Data, pp. 18–27,
Chicago, Ill., USA, May 1988

[LR99] Li Z., Ross K.A. Fast joins using join indices. TheVLDB
Journal 8(1): 1–24, May 1999

[ME92] Mishra P., Eich M. Join processing in relational
databases. ACM Computing Surveys 24(1): 63–113,
March 1992

[MR94] Marek R., Rahm E. TID hash joins. In: International
Conference on Information and Knowledge Manage-
ment (CIKM), pp. 42–49, Gaithersburg, Md., USA, 1994

[SAC+79] Selinger P., Astrahan M., Chamberlin D., Lorie R., Price
T. Access path selection in a relational database man-
agement system. In: Proc. of the ACM SIGMOD Conf.
on Management of Data, pp. 23–34, Boston, USA, May
1979

[Sha86] Shapiro L. Join processing in database systems with
large main memories.ACM Trans. on Database Systems
11(9): 239–264, September 1986

[SSM96] Simmen D., Shekita E., Malkemus T. Fundamental tech-
niques for order optimization. In: Proc. of theACM SIG-
MOD Conf. on Management of Data, pp. 57–67, Mon-
treal, Canada, June 1996

[TPC99] Transaction Processing Performance Council TPC. TPC
benchmarks H and R (decision support). Standard Spec-
ification, Transaction Processing Performance Council
(TPC), October 1999. http://www.tpc.org/

[YL94] Yan W., Larson P.A. Performing group-by before join.
In: Proc. IEEE Conf. on Data Engineering, pp. 89–100,
Houston, Tex., USA, 1994

[YL95] Yan W.P., Larson P.A. Eager aggregation and lazy aggre-
gation. In: Proc. of the Conf. on Very Large Data Bases
(VLDB), pp. 345–357, Z¨urich, Switzerland, September
1995

[ZDNS98] Zhao Y., Deshpande P., Naughton J., Shukla A. Simul-
taneous optimization and evaluation of multiple dimen-
sional queries. In: Proc. of the ACM SIGMOD Conf.
on Management of Data, pp. 271–282, Seattle, Wash.,
USA, June 1998

