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Abstract. Decision support queries typically involve several 1 Introduction
joins, a grouping with aggregation, and/or sorting of the re-
sult tuples. We propose two new classes of query evaluatiof€cision support is emerging as one of the most important
algorithms that can be used to speed up the execution of sudiatabase applications. Managers of large businesses, for ex-
queries. The algorithms are based on ¢&)ly sortingand  ample, wantto study the developmensafesfor certainprod-
(2) early partitioning— or a combination of both. The idea is uctsby region and they expect the database system to return
to push the sorting and/or the partitioning to the leaves, i.e.the relevant information within seconds or at most a few min-
the base relations, of the query evaluation plans (QEPs) andtes.
thereby avoid sorting or partitioning large intermediate results ~ Decision support typically involves the execution of com-
generated by the joins. Both early sorting and early partition-plex queries with join, group-by, and sort operations. To sup-
ing are used in combination with hash-based algorithms foiport these kinds of queries, database vendors have signifi-
evaluating the join(s) and the grouping. To enable early sortcantly extended their query processors and researchers have
ing, the sort order generated at an early stage of the QEfst recently developed a large variety of new query process-
is retained through an arbitrary number of so-calleder-  ing techniques; e.g., the use of bitmap indices [CI98], spe-
preserving hash joinsTo make early partitioning applicable cial joins that exploit bitmap join indices [GO95], new join
to a large class of decision support queries, we generalize th@ethods [HWM98], or multi-query optimization for decision
so-called hash teams proposed by Graefe etal. [GBC98]. Hasupport [ZDNS98], to name just a few. In addition, a whole
teams allow to perform several hash-based operations (join an@ew industry, data warehouses, has appeared with products
grouping) on the same attribute in one pass without repartithat materialize (i.e., pre-compute) query results and cache
tioning intermediate results. Our generalization consists of inthe results of queries. Furthermore, the TPC-H and TPC-R
directly partitioning the input data. Indirect partitioning means benchmarks [TPC99] — derived from the TPC-D benchmark
partitioning the input data on an attribute that is not directly— have been proposed in order to evaluate the performance of
needed for the next hash-based operation, and it involves th@ database product for decision support queries.
construction of bitmaps to approximate the partitioning for ~ We propose two new classes of query evaluation algo-
the attribute that is needed in the next hash-based operatiofithms that can be used to speed up the execution of decision
Our performance experiments show that such QEPs based @tpport queries. The algorithms are based oedéy sorting
early sorting, early partitioningor both in combination per- and (b)early partitioning— or a combination of both. The idea
form significantly better than conventional strategies for manyis to push the sorting and/or the partitioning to the leaves, i.e.,
common classes of decision support queries. the base relations, of the query evaluation plans and thereby
avoid sorting or partitioning large intermediate results gener-
Key words: Decision Support Systems — Query processingated by the joins. Both, early sorting and early partitioning are
and optimization — Early sorting and partitioning — Hash joins used in combination with hash-based algorithms for evaluat-
and hash teams — Performance evaluation ing the join(s).
The idea of early sorting is not completely new. There has
been work on query optimization to generate plans in which

Some excerpts of this work — limited to early partitioning — appearedSOrt Operators are carried out before joins (e.g., [SAS,
in the conference publication [KKW99]. SSM96]). Given the current set of available join methods,
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approach which makes it possible to do early sorting and havéo be merged to obtain the join result. The proposed technique
cheap joins at the same time. Our approach is based on a neavoids random disk I/O by sequentially scanning the input
technique that we calbrder-preserving hash joinfOHJs),  relations, the join index, and the temporary files. In contrast to
which can be used instead of nested-loop joins in order taur work their approach is based on precomputed join indices.
preserve the order generated by early sorting. Graefe et al. [GBC98] proposed hash teams. They can
In the case of early partitioning, we generalize the so-combine multiple hash operations (join, aggregation) on the
called hash teams proposed by Graefe et al. [GBC98]. Hashame attribute to a team and save disk accesses by avoiding
teams allow several hash-based operations (join and grougsartitioning of intermediate results. The drawback of their ap-
ing) to be performed in one pass without repartitioning inter-proach is that real-world applications often do not perform
mediate results. Our generalization, which makes hash teanjeins (and aggregations) on the same attribute — as required
applicable to a much larger class of decision support queriesyhen applying hash teams. In [KKW99] we generalized this
consists of indirectly partitioning the input data. Indirect par- concept to allow hash teams to be applied to different at-
titioning is the partitioning of the input data on an attribute tributes. These generalized hash teams are most useful for
that is not directly needed for the next hash-based operationpining hierarchical structures, i.e., when the join attributes
and it involves the construction of bitmaps to approximate theform a chain of functional dependencies. In this work we show
partitioning for the attribute that is needed in the next hashthat generalized hash teams work in a wider context and can
based operation. These bitmaps are used to partition the othbe combined with other novel techniques such as OHJs.
argument relation of this hash-based operation. In [MR94] the TID join technique was introduced, which
Our performance experiments show that such query evalallows attributes that are not essential for processing the join
uation plans based on early sorting, early partitioning, or ao be projected out. We found this idea very useful for bypass-
combination of the two perform significantly better than con- ing bulky attributes around joins in order to utilize the main
ventional strategies for many common classes of decision supnemory more efficiently both for the OHJ algorithm and the
port queries. generalized hash teams. We describe in detail how this works
in this paper.

1.1 Related Work

1.2 Organization of the Paper
There has been a great deal of work on join techniques, sortin
grouping and query processing in general. A good overview 0
all join techniques used in practice today is given in [ME92],
and [Gra94,GBC98] describe details and tuning technique
for hash joins which are relevant and useful for our approach
too. [Gra93] describes the “textbook” architecture for query
processing (i.e., the iterator model). We integrated all our tech

h Sect.2 we introduce the order-preserving hash joins used
to enable early sorting. The generalized hash teams to realize
§arly partitioning are introduced in Sect.3. We also demon-
Strate how to combine the two techniques for early sorting
and early partitioning. Section 4 shows how to reduce the I1/O
volume of both query evaluation techniques by bypassing bulk

niques into an existing query processor that is based on th ata around the joins. The necessary extensions of a state-of-

architecture as part of our experimental work; indeed, our tech: e-art dynamu_: programmmg-based optimizer are discussed
nigues could be integrated with very little effort into any other |n.Sect. > Sectlo_n 6 descnbe; the experlmental results we ob-
query processor thatis based on that architecture. Designers Eﬁ'”?d from our wpplementgﬂon of the algorithms. Section 7
query optimizers have also paid attentiolirtieresting orders provides conclusions for this study.
since the 1970s; see, e.g., [SAZR] or [SSM96] for more
recent work specifically addressing early sorting. Our work
builds on that work, and its purpose is to provide the opti-
mizer with new options to construct plans that exploit early 2 1 Motivation
sorting. Related query optimization work also includes work
on “group-bys before joins” [YL94,CS94]; our study comple- Throughout the paper we will use a TPC-H/R style database,
ments that work as we propose ways to further improve thewvhich is presented in Fig. 1. This sample database involves
performance of the “eager” group-by plans proposed there. IlCustomerOrder, andLineitemtables with the usual informa-
our own previous work, we proposed ti PM)*M algo-  tion, whereC'# denotes theCustomerkeyO# denotes the
rithm [BCK98], which is based on an idea similar to that of the Orderkey L# denotes th&inenumbemwithin an order,N#
OHJs presented here. T PM)* M algorithm, however, denotes théationkey andMktSegmentienotes théarket-
was specifically devised for so-called pointer-based joins withsegmentThe keys of the tables are underlined. We assume, as
nested sets in object-oriented and object-relational database reality, that theCustomertable contains significantly less
systems. In contrast, OHJs work for any kind of equi-join; tuples than th®rder andLineitemtables.
they are order-preserving (not just “nested-set” preserving) To demonstrate the mechanisms and the benefits of order-
and applicable in pure relational as well as object-orientedpreserving hash joins (OHJs), we will use the two exam-
and object-relational database systems. ple queries Query 18 v#.cx(C > O)) and Query 2

Li and Ross [LR99] describe two new join algorithms that (Sawe,a+#,c4(C b1 O > £)). The first query involves a join
are based on join indices. One of the algorithms is sort-basedetween the&CustomerandOrder tables and requires the re-
the other is partition-based. Both algorithms draw profit fromsults to be produced in the following ordeCustomer.Mkt-
not completely materializing the join result, rather they storesegmentCustomer.N#, Customer.C#The second query in-
the temporary result on disk in two ordered files, which needvolves, in addition, a join with theineitemtable. Both queries

2 Order-preserving hash joins
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Customer 2.2 Binary order-preserving hash join plans
C# | Name | N# | City | MktSegment

OHJs are based on Grace hash joins as described in
Order [HCLS97]! That is, both input relations are partitioned us-
O% | C# | Totalprice | Discount ing.hashing. in §uqh a way that each partitiqn of the' !nner
— (build) relation fits into the memory, and a pair of partitions
Lineitem are then joined by building an in-memory hash table for the
: : : partition of the build relation and probing every tuple of the
O# | L# | Quantity | Extendedprice) Discount corresponding partition of the outer (probe) relation using that
hash table. The key idea of order-preserving hash joins lies in
the following very simple observation: if the whole probe re-
Fig. 1. Relational schema of the sample database (Keys are undefation is ordered to begin with, then the result of the join of
lined) a pair of (probe and build) partitions is ordered too. Putting
it differently, the results of joining pairs of partitions can be
seen asorted runsso that these runs only need torberged
could, for example, be initiated by a middleware product in or-to obtain an ordered join result. This process is visualized in
der to analyze the orders and lineitems of groups of customerkig. 5, which demonstrates how the orderfafthe probe re-
from different market segments and countries. These querig@tion, is preserved after the join withi, the build relation.
could also occur as query blocks that produce the input of dn the figure,R andS are partitioned into two partitionp{n

rollup operator implemented as part of an extended relationalenotes partitioning anehrg stands for the merge).
database system. In general: Assume we have two relatioRs with at-

Figure 2 shows three alternative “traditional” query eval- tributes A and B, and S, with attributesB andC'. Let R be
uation plans for the first query. These three plans demonstraterdered by attributé?. A and letB be the join attribute. (In
the dilemma of today’s query processors: the optimizer muspractice, obtaining? in sorted order means scanning the rela-
choose between high sorting or high join costs. To see whytion via a [clustered] index on the order attribute.) To evaluate
let us take a closer look at the costs of the three plans. Théhe join R g S by a hash join, we first partition the probe
first plan is applicable if there is an index that can be usednputR and the build inpuf'into Ry, ..., Ry andS, ..., Sk,
to read theCustomertuples in the right order. If this index respectively, as in traditional Grace hash joins. In particular,
is clustered with respect to t@ustomertable, the cost to We use the same hash function to partition both inputs’ data
bring theCustomettuples into the right order will be very low and do notrequire special order-preserving hash functions. We
in this plan, but the cost to process the (index) nested-looghen join the partitions pairwise (i.€2; X S; for 1 <i < k),
join, which is the only known order-preserving join method just as in traditional Grace hash joins. Then, we write the re-
applicable in this case, will be very high because an (index)sults of joining every pair of partitions to disk and merge those
nested-loop join will cause excessive random disk I/O in thisfuns this is the only special step for the simple OHJs. Here
case. The second plan has a similar cost profilestiteop- ~ and throughout the paper, we will assume thiaan be parti-
erator and, thus, bringing tH@ustomertuples into the right  tioned in one phase to generate memory-sized partitions. Our
order is quite cheap because there are not n@arstomertu- algorithms can, however, easily be adapted if multiple parti-
ples, while the nested-loop join has again a very high costtioning steps (e.g., due to skew or large relations and small
In the third plan, the join is executed in the cheapest possiblénain memory) or no partitioning at all is required. (In the
way (i.e., using hashing), but tisert at the top of that plan is  latter case, the corresponding merge step is also omitted.)
expensive because the result of the join is very large — much
larger than th&Custometrtable. For the second query, today’s ] ] o
optimizers face a similar dilemma: either cheap ordering with2-3 Multi-way order-preserving hash join plans
one or two expensive nested-loop joins or cheap hash joins .
and expensive sorting at the end. Now, assume we want to compute the join

t_'I'h_e g?al ofthe (t)HJI is toI_Eretak this dil?]mma_ arll(_j allgw tf(;e4pb MXppesg SXNsoerc T
optimizerto generate plans like the ones shownin Figs. 3and 4. _ . .
The key idea is to split the different phases of external sorting?"d Preserve the order &f according to attributé?. A. This
and carry out join operations in between thenerateruns query corresponds to Que_ry_2. L
and mergeruns phases. The join operations are carried out ON€ Way to achieve this is to first joifi and 7" and then

by a special OHJ operator which essentially is a hash joinahpply the binary OHJ ok ar?d(s > T), as ﬂes_crjbed i'nh
augmented with a fine-grained partitioning and re-mergingt e previous subsection. This way to order the joins might,

step. Thus, the OHJ exhibits the same high performance aowever, not always be attractive and, therefore, we will show

o PR P ; his section how plans with two OHJs can be produced: one
standard hash joins. As shown in Fig. 4, it is possible to havén t A ;
any number of OHJ operators in a query, and as we will sed>J for 2 X .5 and one OHJ for the join witlf’, as in the

in the next subsection, this aspect requires special attentioRi2n ©f F]L?Aé Here, we mustlb%(f_'areftél, h(r)]weve_r, pecalluse we
in the implementation of OHJ operators. The plans with earlycarmOI afford using two simple OHJs. Such a naive implemen-
ation would involve a fully fledgethergestep as part of th&

sorting followed by OHJ joins to preserve the order are denoted
SOHJ. Of course, we can also benefit from an existing order * Hash joins without partitioning, i.e., the complete build input fits
(via a clustered index) such that the sorting becomes obsoleténto the memory, are order-preserving with respect to the probe input,
These plans will simply be called OHJ plans. anyway.
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selectc.x, o.Totalprice selectc.x, |.Extendedprice
from Customer ¢, Order o from Customer ¢, Order o, Lineitem |
where c.C# = 0.C# where ¢.C# = 0.C#and 0.0# = |.O#
order by c.Mktsegment, c.N#, c.C# order by c.Mktsegment, c.N#, c.C#
Query 1: Binary join Query 2: Multi-way join
(Smre np.c4(C 21 0)) (Smrtn#,c4(C 1O L))
nested-loop join sort
nested-loop join / \ |
/ \\ sort  idxscan({Order) hash join
idxscan(Customer)  idxscan(Order) l /
thscan(Customer) thscan(Customer)  tbscan{Order)
Index Sean + NLJ Sort + NLJ HJ + Sort
Fig. 2. Traditional plans for query 1
sort:merge.runs 1. ScanS and partitionS into £ main memory-sizedparti-
| tionsSy, ..., Sk using a hash functioh; on S.B.
OHJ 2. ScanR via a (cluster) index oi. A and partitionR into &
/ \ partitionsRy, . .., Rj using the hash functiohy, on R.B.
sort:generate runs  tbscan(Order) 3. Scanl and partitionZ” into / main memory-sizetiparti-
| tionsTi,...,T; using a hash functioh; onT.C.
tbscan(Customer) 4. Foreach <1 < kdo:
Fig. 3. SOHJ plan for query 1 (a) Creatd initially empty partitionsR.S;1, ..., RS; on
disk.
sort:merge_runs (b) Load partitionS; into a main memory hash table.
| (c) Foreachtuple € R; probethe hashtable to determine
OHJ the join result tuple(sys and appends to partition
RS@j Wlthj = hl(TS.O).
OHJ  tbscan(Lineitem) Having finished Step 4, there atel partitionsRS14, . . .,
N RSy, .., RSy stored on disk.
sort:generate_runs  tbscan(Order) 5. Foreach < i <ldo:
| (a) Create an initially empty partitioRST; on disk.
tbscan(Customer) (b) Load partition7; into a main memory hash table.

(c) Merge the partition®.54;, . . ., RSk; and for each tu-
plers probe the hash table to determine the join result
tuple(s)rst which are appended to partitiddST;.

Having finished Step 5, there atgartitions RSTY, .. .,

RST, stored on disk.

6. Merge the partition®RS571, ..., RST; to obtain the join

resultRSTin the order ofR. A.

Fig. 4. SOHJ plan for query 2

ohj S, and this additionamergestep would be too expensive
because it would involve writing and re-reading the whole
result of R X S to/from disk. Instead, we directly partition
theruns produced by the? ohj S and merge corresponding

partitions before the join witf". . . - )
In more detail: If the third relatiod” is partitioned into This approach can be applied to join any number of tables:

T T, then the join partitionkS; — R, s S; resulting after every join, the result is directly partitioned for the next
frlo’rﬁ.jc;inling R with S is partitionéd intc;RS; ! RS. join, and the partitions are then re-merged in order to carry
which are all written to disk. Doing this for all intermediate out the next join. Tracing the ordered relatlo_n (|B.|_n our
result partitionsRS, , .. ., RSy results ink - [ partitions on example), the following pattern of operators is applied to that
disk. Thesek - [ fine-grained partitions are then re-merged relation:

into thel_ partitio_ns: for aII_l_ <j <1 RSy, .. ,.RSkj are PJ(PMJ)* M.

merged into a single partitioRS; . ;1;, and this partition

.....

is then joined withT; as part of the OHJ with tabl&. The 2 More precisely, we need to partitighsuch that the individua$
whole process is shown in Fig. 6 for= 2 andl = 2, and step  partitions fitin memory, as requested by the Grace hash join method,
by step the algorithm works as follows: and at the same time, there is enough memory left to partition the

results ofR X S — cf. Step 4.

3 More precisely, we need to partitiah such that the individual
T partitions fit in memory, and at the same time, there is enough
memory left to mergé R.S partitions — cf. Step 5.
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Fig. 5. Order-preserving binary hash join plan: build inguand probe inpuR, (Join and partitioning attribut8, sort attributeA)
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Fig. 6. Order-preserving three-way hash join plédR <5 S) <ic T (Disk partitions are marked with thick rules)

Here, P denotes partitioning)/ denotes merging, and de- The trick is to combine the initial partitioning step of the

notes the in-memory (hash) join phase. OHJ plan with sorting runs. That is, we sort memory-sized
runs of the probe input and partition each run individually.
The partitions of every run are then re-merged during the pro-

2.4 Early sorting and order-preserving hash join plans cessing of the first join. Step by step, the algorithm for the
two-way join

One might argue that our OHJ technique is only efficient if R <xp. p=s.5 S
there is a clustered index on the sort attributefofFortu-
nately, however, we can generate the desired order on the fl
during the_ initial partitioning step. This way we entirely avoic_i 1. ScanS and partitionS into k¥ main memory-sizetiparti-
any additional I/O cost for sorting, and therefore, as we will  tions g, ... S, using a hash functioh;, on S.B

show in Sect. 6, we get (almost) the same performance in the
presence as in the absence of a clustered index; that is, we gett More precisely, we again need to reserve some space to merge
sorting (almost) for free. partitions of R — cf. Step 3.

|\9/orks as follows:
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Fig. 7. Sorting on the fly: disk partitions are marked with thick rules; the sorting-on-the-fly step is highlighted by shading

2. AssumeR ism times bigger than the available mainmem- 4 2 Bulk sort/partition-vector
ory. Then, for each < i < m do: 9 i1 4
(a) Load the (next) memory sized chuRkinto the mem- 5y g & L1, ]
ory and sort it according to attribut. — Rk partition-
(b) PartitionR; into k partitionsR;1, . . ., Rix by applying T 3 anchor

hi on attributeB. Each partition constitutesavalidrun | 3 : 4
according to attributel. The partitioning can be done | ; i 5
in a single linear iteration through the main memory
resident runR; — see below.
(c) Write the partitionsR;1, . . ., R;x sequentially to disk.
Having finished this combined sort/partitioning step,k
partitions Rq1, . . ., Rik, - . ., Rk — €ach constituting a
valid sort run — are stored on disk.

ot

[f

wd ||

Fig. 8. Partitioning a sorted run

3. Foreach < < k do: o _ plans can, therefore, also be applied to multi-way join queries
(a) Create an initially empty partitioR.S; on disk. in the same way as described in the previous subsection. Trac-
(b) Load partitionS; into a main memory hash table. ing again the ordered relation (i.€?), the following pattern
(c) Merge the rungty;, . .., R,n;, and with each tuple — o gperators are applied (her6& P denotes the combined

in merge order — probe the hash tabl&pfo determine sorting and partitioning step):

the join result tuple(sys and appends to partition

RS;. S&P M J(PMJ)*M
Having finished Step 3, there akepartitions RSy, .. .,

RS, stored on disk. Figure 8 illustrates the combined sorting/partitioning

- . - phase of the algorithm. A memory-sized chunk of the relation
4. Merge the partitiongts,, ..., 5y to obtain the join re- 5 5aded. Sorting is done via a vector that maintains pointers
SultRSin the order off?. A. to the tuples being sorted; that is, only this vector is sorted,
This algorithm is illustrated forn = 2 andk = 2 in whereas the individual tuples need not be moved. Once the
Fig. 7. The important part of the plan —i.e., the combined sort-sorting is complete, we linearly scan this vector and deter-
ing and partitioning phase and the subsequent re-merging afiine the partition to which every tuple belongs. Hereby, we
the fine-grained partitioning — is shaded in the figure. Herechain tuples that belong to the same partition together (i.e.,
the same principle is utilized as in combining multiple OHJ we keep the index of the next tuple of the same partition in
operators in one plan: the fine-grained partitions constitute oran additional field within the vector), and we keep a sepa-
dered runs which are merged to an ordered partition for theate vector, called thpartition-anchors in order to keep the
next phase. The remainder of the evaluation plan is the samieeads and the tails of every one of thesorted “partition-
as for the basic OHJ plans. Of course, these so-called SOHikts” (in the example of Fig. 8 = 2). Once this partitioning
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is complete (i.e., the chaining is done and the heads and tail Agg Agg
of the partition-anchors are set), the tuples can be written se | |
quentially to disk: partition by partition following the heads mrg ! mrg" !
of the partition-anchors one at a time and in the right sort- [ I
order. All partitions could, for example, be written into a sin- collapse_duplicates collapse_duplicates®
gle temporary file by inserting markers at partition boundaries, | sort:generate_runs
thereby avoiding overhead for allocating multiple temporary OHJ '
files. Note that Fig. 8 shows in fact the generation of the par- H ~ HI
titions Ry; and R, for run Ry of Fig.7. Mgk pin "k AN

With respect to run-time complexity, it would be cheaper | | ptn =% ptn~H
to first partition each complete memory chunk and then sor ptn™=mk  thecan(S) ! |
the individual partitions: Assuming: = |R|/M records fit | thscan(R) thscan(S)

into one memory chunk of siz&/, first sorting and then par-
titioning a memory chunk takes - log m + m abstract “op-
erations”. The reverse order, i.e., first partitioning a memory
chunk and then sorting each of thepartitions requires only
m—+ N -m/N -log(m/N) = m+m-log(m/N) operations.  Fig. 9. Early aggregatiofiM > k)
However, memory management for the partition/sort variant
is more complex than for the sort/partition algorithm, because
several sort vectors of unknown size have to be allocated. Waggregation —was shown in Fig. 5 (page 194). Exploiting early
have implemented both variants, and our performance experiaggregation, tuples with the sardeattribute value would be
ments show that, in practice, the difference in run time is onlycollapsed, i.e., the two tuples with = 0 in RS; and the two
marginal for the investigated configurations. tuples withA = 4 in RS, would be collapsed into one tuple.
Of course, the traditional hash join plan can benefit from
. early aggregation too. Here, early aggregation could be in-
2.5 Early aggregation corporated into the sorting of the runs: While loading the sort
) area, tuples belonging to the same group (callgalicatesfor
So far, we have looked at SOHJ plans for simpider by previty) are detected via a hash-vector and collapsed. There-
queries. We will now see how SOHJ and OHJ plans can im-fter, the run is sorted and written to disk [Lar97].
prove the performance of aggregate queries if sort-based ag- The effectiveness of early aggregation depends on the
gregation with so-callegarly aggregation is used [BD83,  nymber of collapsed duplicates. This number is in inverse pro-
CS94,YL95,Lar97]. The idea of early aggregation is quite portion to the number of partitions (i.e., runs) being written
5|mp|e:_ As soon as a sgpgroup of tuple_s belon_glng to thefter the join, because each of them is free of duplicates. In
same final group is identifiedpllapsethem into a single tu-  the notation of Fig.9, the SOHJ plan writegluplicate-free
ple. Thus, the aggregation is folded such that it is alreadyyngs and the traditional hash join plan write&runs. It turns
applied to the subgroups belonging to the same final groupgyt that in most cased/ > & holds, and therefore, the ad-
During the final merge, the intermediate aggregation resultgantages of early aggregation are less pronounced in the tradi-
are then combined. This is easily achieved for the aggregationggna| plan than in the SOHJ plan because less duplicates can
sum min, max countwhich constitute commutative monoids e collapsed in the traditional plan. The numbés given as
[GKGT97]-i.e., operations that satisfy associativity and haveihe number of partitions — denoted py* in the query plan
an Idel’ltlty For other aggregates more information has to be_ that are needed to fit every individual par““on@é C(S)
maintained to enable early aggregation. For example, in ordefo a main-memory hash table. This number is usually quite
to enable earlyvg-aggregation one has to store 8mand  gma|l because of the projection on the relevant parts and
thecountof each collapsed subgroup. because the hash join can make use of almost all the main

OHJ plans enable early aggregation very effectively if thememory. On the other hand, the numberis usually larger
sort-aheadis on the grouping attributes. Both variants (OHJ o two reasons:

and SOHJ) produce sorted runs as a result of the join, and
early aggregation can be implemented by merely collapsing all —
adjacent tuples with the same value of the grouping attributes
into a single tupldeforewriting the join results to disk.

Let us again compare SOHJ plans with traditional hash
join plans and look at the following query:

selectR.A, sum(S.C)

from Rjoin SonR.B=S.B

group by R.A 3 Early partitioning:
order by R.A. generalized hash teams

Figure 9 shows an SOHJ plan and a traditional hash join plal
for that query. The OHJ evaluation of this query — without the

sort:generate_runs "
|
thscan(R)

The sort area in which duplicates are collapsed cannot ex-
ploit all main memory because the collapse&sort operator
runs in parallel with the hash join operator, which itself is
memory intensive.

— The duplicates are detected after joining the tuples; there-
fore, these tuples are large.

%o make early partitioning applicable for many important
classes of decision support queries, we generalize the concept
5 Early aggregation must not be confused with early sorting orof hash teams proposed by Graefe et al. [GBC98]. The orig-
early partitioning, the techniques proposed in this paper. inal hash teams are based on combining several hash-based
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rather than byC#, so that the result of the join is partitioned
by City as well and the group-by operation does not require an
additional partitioning step. To make this work, this plan gen-
erates bitmaps while partitioning tf@ustomertable. These
bitmaps indicate in which partition ea€ustomettuple is in-

selectc.City, sum(o.Totalprice)
from Customer c, Order o
wherec.C# = 0.C#

group by c.City

Query 3: Join and aggregation serted, and these bitmaps are used to partitio®tder table
(Geity(C 1 0)) so thatOrder tuples and matchin@ustomertuples can be
Aggciey found in correspondin@rder andCustomerpartitions. That

| is, theOrder table is partitionedndirectly using the bitmaps.

T Aggcy, To make this cle_arer, letus Iqok at Fi_g. 11, whichillustrates
| | the whole process inmore detail. The figure sh(_)ws a small ex-
M Mew amplg extension of tf’@.ust.omeltable and'how thlﬁustomer
P t_a_ble is parfutloned beity into three partitions: the first par-
P oy ot PE Giimaps tition contains allCustomerdocated in PA (Passau) and M
Piicy  Plicy r | (Munich), the second partition contains @listomersocated
Cust4|:>:ner Orlder Chistomer Order in_B (Berlin) and HH (Ham_burg), and the third partition con-
tains allCustomerdocated in NYC (New York) and LA (Los

Angeles). Just as in a traditional (grace or hybrid) hash join,
the goal is to generate partitions that fit into the main memory,
and database statistics would be used for this purpose. Cor-
Fig. 10a,b.Execution plans for query 3 responding to every partition, there is one bitmap that keeps
track of theC#'s stored in the partition; in this small example,
there are three bitmaps each of length ten Glstometuple
operations into a team. This allows all arguments of the teanis inserted into a partition, ¢l + C# mod 10)th bit of the
to be partitioned a priori without having to repartition interme- corresponding bitmap is set. Thus, the fourth and sixth bits
diate results. In the original proposal, however, one can onlyof the first bitmap are set, because the first partition contains
form teams of hash-based operations that are all based on tt@ustomertuples withC# = 5, 13, 25, and 23. Likewise, the
same attribute. first, third, seventh, and tenth bits are set in the second bitmap.
The next step is to partition th®rder table using the
bitmaps. To see how, let us look at the fidader tuple which
3.1 Binary joins with aggregation refers toCustomer4. ThisOrder is placed into the third®r-
der partition because the bit at positiba- (C# mod10) = 5
In this section, we will show how generalized hash teams worlof the third bitmap is set. Likewise, the seco@dler which
for queries that involve one join and one group-by operationrefers toCustomer9 is placed into the second partition, and
As a running example, we will use Query 3, which asks forthe thirdOrder which refers taCustome25 is placed into the
the totalValueof all Ordersgrouped by th&€Customer City first partition. Following this approach, @rderswhich refer
The traditional (state-of-the-art) plan to execute the ex-to Customerstored in the firsCustomerpartition are placed
ample Query 3 is shown in Fig. 10a. This plan uses hashingnto the firstOrder partition, and the equivalent holds fOr-
in order to execute the join and the group-by operation. Thiglersreferring toCustomer®f the second and thir@ustomer
plan would first partition (abbreviatgatnin the figures) both  partitions. Thus, the query result can be computed by joining
the Customerand theOrder tables byC'# such that either all  in memory the firstOrder partition with the firstCustomer
theCustomeior all theOrder partitions fitin memory; thatis, partition, thereby immediately carrying out the aggregation
this plan would carry out a (grace or hybrid) hash join betweenn the memory, and then doing the same procedure with the
these two tables [Sha86]. After that, the traditional plan wouldsecond and thir@rder andCustomerpartitions.
use hashing to group the results of the joinQiy. If there It is important to notice that in certain cas@sder tuples
are moreCitiesthan fit into the main memory, this group-by must be placed into two or even mo@der partitions. In
operation would, again, involve partitioning such that everyFig. 11, for instanceQrder 10 (highlighted in bold) is placed
partition can be aggregated in memory. In all, there are threéto the first and thirdOrder partitions because thi©rder
partitioning steps in this traditional plan, incurring I/O costs refers toCustomer3 and the fourth bit of the first and third
to write and read th&€ustomertable, theOrder table, and  bitmaps are set. We refer to the accidental placemefitrof
the result of the join. As an alternativegrting, rather than  der 10 in the firstOrder partition as dalse drop False drops
hashing can be used for the join and/or the group by. In manydo not jeopardize the correctness of the overall approach for
cases, sorting has a higher (CPU) cost than hashing; in ansegularjoins because they are filtered out in the join phse
case, however, a traditional plan based on sorting would alsgalse drops do impact the performance: the more false drops,
involve 1/0 costs to write and read tl@ustomertable, the  the higher the I/O cost to partition and re-read@rders The
Order table, and the result of the join. number of false drops depends on the length of the bitmaps,
Figure 10b shows a plan that makes use of generalizednd we will give formulae that can be used in a cost model of
hash teams in order to execute our example query. Like tha query optimizer in Sect. 3.5. Furthermo@der duplicates
traditional plan shown in Fig. 10a, this plan is based on hash-
ing to execute the join and the group-by operation. The trick, ® Outerjoins cannotalways filter out false drops so that generalized
however, is that th&Customertable is partitioned byCity, hash teams are not directly applicable for all outer join queries.

a Traditional Hash Join b Generalized Hash Team
and Hash Aggregation Plan
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Fig. 11.Example execution of a generalized hash team

occur if Customertuples with the sam€# are placed into
different Customerpartitions. Such a situation does not arise -

in our example query becau€## is the key of theCustomer from CUStOTer ¢, Order o, I:'ne'tem !
table. In general, such situations cannot arise if there is afuch-Vheref)'C#C_.to'C#and 0% =0.0%
tional dependency between the join attribute (iC) and the group by ¢.L1y

partitioning attribute (i.e City). In the absence of such a func- Query 4: Two joins and aggregation
tional dependency¥rdersmust be duplicated in order to find (Gciry (C 1 O < L))

their join partners in the differe@ustomerpartitions. In the

remainder of this paper, we will assume that such a functional

dependency exists or that there is at least a strong correlatiogy iy ans s then used to partition thneitemtable. After
between the join and partitioning attributes, and we recomy, ¢ ¢orrespondingustomerOrder, andLineitempartitions
mend that generalized hash teams not be used in other case

o le. in which lized hash 3N be joined and the result can be aggregated in one pass in
ne example, in which generalized hash teams are not approqemqry. After partitioning, the join can be carried out in any
priate, according to this criterion, would be a query in which

he k fth b ion invol I fth particular order. Figure 12 shows two possible join orders for
the key of the group-by operation involves a column of the o, example; the polygons surround a team of three operators.
Order table, e.g.OrderDate

In the first plan, theCustomer—Ordejoin is carried out first;

in the second plan, th@rder—Lineitenjoin is carried out first.

One of the arguments of the first join serves as the probe input

3.2 Multi-way joins with aggregation of the whole team. In our example qudrineitemis the best
choice as the probe input, because of its high cardinality, so

Generalized hashteams can also be applied to multi-way joinghat the second plan of Fig. 12 would be better than the first

For illustration, let us look at Query @ ., (C < O 1 L)). plan.

This is a three-way (functional) join @@ustomerOrder, It should be noted that the memory requirements of gener-
andLineitemfollowed by a grouping on th€ity attribute of  alized hash teams increase with the number of operations that
CustomerGeneralized hash teams are applicable by partitionare teamed up. In our exampleLiheitemis chosen as probe
ing theCustomettable byCity, thereby constructing bitmaps input we need to keep information of &irders Customers
in order to guide the partitioning of tH@rder table, as in the  andCities of a partition in memory as part of executing the
binary case described in Sect. 3.1. While partitioning@e  team. (Our special organization described in Sect. 3.4, how-
der table, another set of bitmaps is constructed, and this setver, does help to reduce the memory requirements.) In the

selectc.City, sum(l.Extendedprice)
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forall ¢ € C' do forall o € O do
i := p(c.City); k:= h(o.C#);
k= h(c.C#); forall i € {1,...,n} do
insertc into C;; if (B;[k] = 1) inserto into O;;
Bilk] = 1, od
od od

a Partitioning ofCustomer b Partitioning ofOrder
Plfigiy —=— Pligy--— piigy
| I ! Fig. 14a,b.Partitioning the two input relations
Customer Order Lineitem

a Customeror Order as Probe Input by operators. This way, we save the cost of two re-partitioning
steps thatwould be carried outin a conventional hash join/hash
aggregation plan (one for the second join and one for the ag-
gregation). Of course, in practice, the partitions do overlap
due to false drops, resulting in extra cost, but this extra cost
is usually much smaller than the cost of the additional parti-
tioning steps carried out by a conventional plan. We should
stress that the generalized hash team technique does not re-
quire disjoint cross-relation partitions for correctness — it has

PN gy === PN —-—Pin gy, only performance relevance. Therefore, it could be applied to
| | | non-hierarchical cross-relation partitions. However, the per-
Customer Order Lineitem formance gain will decrease as more tuples need to be inserted

o into multiple partitions.
b Order or Lineitemas Probe Input

Fig. 12a,b Alternative query evaluation teams for the three-way join 3.3 Fine-tuning the indirect partitioning phase

We will use ourCustomerand Order example schema to
illustrate this discussion. In the initial partitioning step the
Customertable (abbreviatedC) is partitioned according to
the City attribute inton partitionsCy, ..., C,. For this pur-
pose some partitioning (hash) functipiis needed that maps
City values into{1, ...,n}. For each partitiorC; a separate
bitmap B; of lengthb is maintained to approximate the par-
titioning of theC# values. These bitmaps are initializedOto
For setting and probing these bitmaps, a second hash function,
say h, is needed that maps# values into{1,...,b}. Now,
consider a particular element C': itis inserted into the-th
partition C; for i = p(c.City) and thek-th bit of B; is set
wherek = h(c.C#). So, the first partitioning of is done as
shown in Fig. 14a.
Having partitionedC into C1,...,C,, the n bitmaps
Fig. 13.Indirectly partitioning a hierarchical structure Bi,...,B, approximate the partitioning function for
CustomeinonC# Then, when partitioning th@rder table (ab-
breviated)) into O, .. ., O,, any elemend has to be inserted
partitioning phase, memory for two sets of bitmaps are re-nto partitionO; if the h(o.C'#)-th bit of thei-th bitmapB,; is
quired: while partitioning th@®rders the Customerbitmaps  set. Due to false drops, it is possible thatGmler o is placed
must be probed and th@rder bitmaps must be constructed; into more than one partition. Thus, the partitioning function
when partitioning the ineitens, only theOrder bitmaps are  for Ordersis as shown in Fig. 14b.
relevant (theCustomebitmaps can be discarded atthat point).  We can tune this basic partitioning code in two ways: First,
Query 4 is a “classical” case in which to employ gener- we can identify thos® objects for which the inner loop can be
alized hash teams, because the join/grouping columns formaxited early. Second, we can increase the cache locality when
a hierarchy as can be derived from the functional dependeraccessing the bitmaps.
cies City <+ C# < O%. This hierarchy of the relations is
illustrated in Fig. 13. Indirect partitioning works particularly
well for such hierarchical structures because, conceptually3.3.1 Short-cuts in the inner partitioning loop
thecross-relationpartitions (denoted aRartition 1, Partition _ ) ) ) L
2, andPartition 3, and indicated by shading) do not overlap. There are two k|_nds of objects forwh_lch the inner partitioning
That is, as part of the partitioning, all matching tuples of all /00P can be entirely bypassed or exited early:
relations could be placed into a single cross-relation partition,1. Objects without a join partnef~or thosen € O that defi-
and we are able to “team up” the two joins and the group-  nitely do not have a join partner @i we need not execute

Partition 1 Partition 2 Partition 3
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the inner loop at all. We will compute a separate bitmap,the forme = [C# = 23, City = PA] and trace how it is
calledused to identify those objects. (This kind of bitmap installed in the hash tables and the hash area. First/4ts
has also been proposed to speed up traditional hash joimalue, 23, is inserted into th@.C#-HT hash table; second, the
operations [Bra84].) aggregation tuple for it€ity value,PA, is looked up via the
2. Objects without collisionsFor thoseo € O that are defi-  C.City-HT hash table. If this was the first; tuple with City
nitely notinserted into more than one partition (i.e., objects= PA, a new group entry is installed in titeash areaand the
that will not drop into a false partition), we can exit the corresponding pointer is inserted into t8eCity-HT. Third,
inner loop as soon as they are inserted into some partithe pointer to this group entry of thHeash areais installed
tion C;. Again, we maintain a separate bitmapllision, in the C.C#-HT hash table. After inserting all tuples of the
to identify these objects. current build input partitior’;, the probe phase with partition
O, of the probe input starts — shown in Fig. 15b. The temporary
hash table.City-HT is not required for the further processing
of this partition and can be deleted. Let us now tracedtder
tuple [C# = 25, Totalprice = 10]: The C.C#-HT hash table
is inspected and the pointer to the group entry in blash
areais traversed. Th@otalpriceis added to theédggrValue
and theJoinFlagis set to indicate that the group entry “has
found” ajoin partner (otherwise it would be discarded from the
result when flushing thieash areaof thei-th partition). After
the current probe partition is exhausted, the result tuples are

We can also tune the storage structure of the bitmaps in order tgtrieved (“flushed”) from théash areaand the computation
increase (processor) cache locality. We observe that the coddf the nextCustomer/Ordepartitions starts. _

for partitioning O accesses sequentially theth position of While this organization sounds complicated at first
every bitmapusedcoll, By, . .., B,. This observation allows ~glance, itis easy toimplement. The advantages are that a great
usto achieve higher cache locality. Let's viewthe2 bitmaps ~ deal of the main memory is saved because long strings with,
of lengthb as a two-dimensional array with + 2 columns ~ S&Y City names need only be stored once in tash area

and b rows. To achieve higher cache locality we store this'ather than for eactustomerindividually, and that a great
array in a single bitmagB of length(n + 2) - b by mapping dgal _of CPU costs is saved in many cases because hashing by
the two-dimensional array iw major sequencito aone- ~ City is carried out once for everl@ustomermrather than once
dimensional vector. This way, the inner partitioning loop for for every tuple of the result of th@ustomerx Order.

theOrderscan typically be carried out with a single processor  The “teaming up” of the aggregation with the preceding
cache miss. join can be extended to more than one join operator, as we

will demonstrate in the example Query(&c;., (C > O
L)) (page 198). This query consists of two joins followed
3.4 Teaming up the hash join and the aggregation by a grouping on the CustomerGity (and aggregating the
Lineitem’s Extendedprick The joins and grouping are along
The bitmap-based partitioning 6f andC is the prerequisite  the functional dependencies
for teaming up the hash join and the grouping/aggregatio )
operator such that the join operator can directly deliver itsr,b# — O = City.
result tuples to the aggregation operator — without having tdOnce the bitmap-based partitioning@éistomeyrOrder, and
repartition the data and write it to disk. The straightforward Lineitem(as described in Sect. 3.2) is finished, the first par-
implementation requires two separate hash tables: one hastiion of Customeris read to build the hash area for the ag-
table onC;.C'# for performing the join with the probe inpat; gregation. As Fig. 16a demonstrates, there are two hash tables
and a second hash table 6% City for grouping/aggregating pointing to entries in the hash area: G#y hash table and
the join result. These two operators have to be managed by the C# hash table. These two hash tables are built as be-
so-called “team manager” — as it was called in [GBC98] — sofore (cf. Fig.15). At the end of this stage (after the entire
that they switch to the next partition synchronously. Customermartition is processed), theity hash table can be
We will now present a further optimization which is based discarded. Then, the correspond@gier partition is read and
on combining the join and the aggregation operator such thathe O+ hash table is built by probing th&# hash table for
they share a common hash table on the build ifputhisis  every[O#, C#,...] tuple of theOrder partition (illustrated
illustrated in Fig. 15. in Fig. 16b). In this phase, (direct) pointers into the hash area
Let us first concentrate on the build phase, during whichare inserted into thé&# hash table. After the entir®rder
the hash table for theth partitionC; is constructed — shown partition is read, th€'# hash table can be discarded and the
in Fig.15a. While loading the partitio@’;, two hash tables correspondind.ineitem partition is read (cf. Fig.16c). For
are maintained: one hash table callecC#-HT on the join  every tuple[L#, O#, Extendedprice] the O# hash table is
column C;.C# and a second, temporary hash table, calledprobed to find the corresponding group tuple in the hash area.
C.City-HT, on the grouping colum@;. City. Both hash tables TheExtendedpricés summed and the join flag is set — just as
contain pointers into thieash areain which the group entries  before in the binary join case of Fig. 15.
of the join/aggregation query are constructed. That ish#sh This simple scheme to team up several joins with a group-
areawill contain one entry for evergity value of partition  ing is applicable if the aggregation only involves attribute(s)
C;. Let us look at a particular build input tupte € C; of of the last relation in the chain — as is the case for Query 4. If

The used bitmap can easily be computed by applying
the component-wiser operation to the partitioning bitmaps
By, Bs, .. .. Thecoll bitmap is set at positioh if at least two
bitmaps,B; and B;, are set at positiof. In our system, both
bitmaps are actually computed during the partitioning of the
Customettable.

3.3.2 Increasing locality on bitmaps
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Fig. 16a—c.Extending the teaming up concept

the attributes of intermediate relations are needed in the aggré&.5.1 Binary joins
gation, they need to be stored in the hash tables. For example, ] ) o
if the example query involved an aggregation(oiscount e estimate the number of false drops for binary joins such
|.ExtendedpricetheOrder's Discountwould have to be stored @S Query 3Geir, (C > O)). To simplify the discussion, we
in the O#-hash table to “pick it up” in the probe phase with Will assume that the join is a functional join and that there
Lineitens. is a referential integrity constraint so that evéyder refers

The main benefits of this multi-stage teaming up are agairf® €xactly oneCustomerin the join. (These assumptions can
in reducing CPU costs by avoiding probing several hash table§asily be relaxed for cases in which there is, e.g,, a predicate
for everyLineitemtuple and better main memory utilization thatrestricts th€ustomersparticipating in the join.) We will
because some hash tables can be discarded at intermediatgen for the number of partitiong, for the length of every

stages of processing the hash team. As a consequence thgmap,c for the number oCustomersando for the number
allows larger partitions to be generated. of Orders Under these assumptions,@rder must be placed

into one partition, and it is falsely copied into one of the other
n — 1 partitions if one of the other — 1 Customergo which

3.5 False drop analysis the Order does not refer has set the corresponding bit in the
bitmap of that partition. Putting it differently, the probability

In this section, we will summarize the formulaia order to  ©f a false drop for a®rder in a partition is:
estimate the number of false drops that occur when execut- 1\ !

ing generalized hash teams. These formulae can be used dur- 1-— (1 — )

ing query optimization in order to decide whether general- n-b

ized hash teams are beneficial to execute parts of a query ?Here,-L; is the probability that £ustomersets the relevant
whether traditional join t.ec'hnlques are more favorable. Usmgoit; 1— L is the probability that £ustomerdoes not set the
these formulae, the optimizer must be extended by formulae nb 1 o1 .

that estimate the overall cost of generalized hash teams and gglevant bit{1—:7)°" " is the probability thatnone of the-1
enumeration rules that generate plans with generalized haghustomersets the relevant bit; and finally,— (1 — )"
teams. These extensions are shown in Sect.5 and/or are virtif the probability that at least one of the- 1 Customersets
ally the same as the extensions made in Microsoft's latest SQithe relevant bit.)

Server product to integrate ordinary hash teams [GBC98]. In all, the number of false drops for @Irders considering
all of then—1 “critical” partitions, can be estimated as follows:

0.(n—1)-<1—(1—n1'b)61>. 1)

” The detailed formula derivations are omitted and can be found ~ Unfortunately, this formula cannot be used in a practical
in [KKW99]. query optimizer. Ifc andb are large, which they usually are,
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computing the result of this formula with reasonable accuracy Aggciry
is prohibitively expensive. Also, computing the (standard) ap- 'kﬂ

mTyCit'y

proximation using:+ for (1 — %)x is prohibitively expensive.
We therefore propose the use of the following very simple ap-
proximation in order to estimate the number of false drops in
a query optimizer:

c—1
o-(n—1)- — (2) mrggas "~

N C . |
The approximation consists in assuming that no @ias- ptny ™ pinzt O pmzk
tomersset the same bit in a bitmap. This formula is conserva- | o e
. . _ -1
tive: it can be shown th&tﬁ >1-— (1 — ﬁ)c . Thus, a sort:generate.Tunscip Order Lineitem

query optimizer using this formula will overestimate the num- |
ber of false drops, and therefore it will use generalized hash
teams cautiously.

Customer

Fig. 17.Combining order-preserving hash joins and generalized hash
teams

3.5.2 Multi-way joins
into a single partition/run which is used as probe input. Us-

We will concentrate on Query @i, (C <1 O =1 £)), asan  ing the OHJ algorithm the order of theerly sorted Customer
example of multi-way join queries; it should be noted, how- partitions will be preserved. The build input of the OHJ is cre-
ever, that our results can easily be generalized to other queriedted by a generalized hash team, which consis@rdér and

First of all we note that there a@rder andLineitemfalse  Lineitem While partitioningOrder by C# into k partitions,
drops when using generalized hash teams for our three—wagitmapS for the resultin@# partitioning are generated. The
join query. TheOrder false drops can be computed using ex- bitmaps are used tb-way partitionLineitem The result of
actly the same (approximate or exact) formulae described ifhis join, which retains thé-way partitioning byC'#:, is kept

the previous subsection. Second, we note that_theitem  in @ main-memory hash table and tGiastomertuples of the
false drops can occur in one of two ways: corresponding partition/run are probed against this hash table.

_ ) - The generated result tuples are orderedClity, so early ag-
1. Ordersplaced into differenOrder partitions can have the  gregation on theCity attribute can be performed very easily
sameD#hash value; allineitemgeferring to suclOrders  py collapsing identicaCity tuples. These duplicate-free par-
produce false drops. So we get (according to Formula 2}itions are written to disk and finally merged to do the full

as the number of false drops aggregation.
o—1
l-(n—=1)  ——= 3
(=1 3

4 The bulk bypassing technique
whereb, is the bitmap length for indirectly partitioning the

Lineitemsi.e. the bitmaps generated duri@gder parti-
tioning.

2. False drop propagation: If @rder produces a false drop, Early sorting and also early partitioning have the effect that the
all the Lineitemsthat refer to thatOrder produce false  sorting or partitioning of the base relations is often preserved
drops as well. For this phenomenon we get as the numbethroughout the entire query plan. That is, the result tuples are
of false drops generated in exactly the same order as one of the argument

I relation’s partitions. This enables us to strip off bulky attributes
for—, (4) of this argument relation and re-merge them with the final
0 result with very little cost. Stripping off bulky attributes saves
wheref, is the number oDrder false drops. main memory space and disk /O if intermediate results need
to be written to disk. We call this technique bulk bypassing.

4.1 Basic concept

3.6 Combining order-preserving hash joins

and generalized hash teams 4.2 Order-preserving hash joins with bulk bypassing

In Fig. 17 we demonstrate how to combine the two techniqued.et us again consider the schema of Sect. 2 with taBlaad

of early sortingandearly partitioningon a modified version
of our example Query 4 on page 198. We generatsorted

runs of theCustomerrelation on theCity attribute. Each of
them City-sorted runs i&-way partitioned orC# to prepare

S.

If R is stored inR.A order on disk (i.e., the OHJ plan
case), bulk bypassing can be applied in a straightforward way:
only attribute B, which is needed to compute the join, and

for the subsequent order-preserving hash join. This results ia sequence numb&eqg# which is used as surrogate for re-

m -k fine-grained partitions — each constitutinGigy-ordered

merging theBulk data, are retained by after the initial index

run — of theCustomerrelation. In each phase, the OHJ mergesscan of R. The join is then carried out (using attribufe)

m of the fine-grained partitions based on th@ity attribute

and theBulk data is afterwards re-merged using the sequence
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Fig. 18.Early sorting (SOHJ) and bulk bypassing

number. We will call this approach OHJ+BB in the remainder
of the paper.

The reason why the OHJ+BB plan (and the TID join) only
works wellif R is already sorted according tbon disk is that
the re-merge of thBulk data using the sequence number gets
prohibitively expensive due to random I/OAfis not sorted.  Query 5: A bulky attribute City) in the result
After bringing R into R. A order (i.e., as part of thB. A index (Gey.city (C > 0))
scan) the sequence numbers point randomly to tuples. of
Using our sorting-on-the-fly technique in conjunction with  dence. This way we make sure that tuples with the same
OHJs, however, we can achieve effective bypassing of bulk 4 values coming from the same run remain in the same
data with a cheap re-merge, everfifis not pre-sorted. For  order in which theiBulk data was written to disk, which is
this purpose, we needto carry outan adjusted SOHJ plan. (This  important to make the final merging of tBeilk efficient.
discussion assumes binafy>< S joins, but SOHJ plans for 3. At the end, merge thBulk with the join results using
multi-way join queries can be adjusted just as easily.) Such a  the unique identifiers; that is, we merge the partitions
SOHJ+BB plan is illustrated in Fig. 18 for a binary join query. RSi,...,RS; (horizontally) and at the same time, we
Itinvolves the following three adjustments: merge (vertically) theBulk partitions R;_Bulk, ...,
R,,-Bulk. The final (vertical) merge is cheap and does not
result in excessive random 1/O because Bludk runs are
ordered in the same way as the join result, i.e., according
to R.A.

selectc.C#, c.City,sum(o.Totalprice)
from Customer c, Order o

where c.C# = 0.C#

group by c.C#, c.City

1. Adjustthe sort&partition operator as follows: After sorting
run R; in the memory, write th&ulk data of the tuples of
R; in sort order (i.e.,R.A) in a separate temporary file,
R; _Bulk, and assign everBulk record a unique identifier
U := i.j consisting of the run numbeérfollowed by the
position of the record in the sorted run. Furthermore,
isolate theA, U, and B columns of the run, partition the 4.3 Bypassing bulk around generalized hash teams
run and continue and carry out OHJs as proposed in the
previous subsection8&l, therefore, plays the same role in In the (S)OHJ query plans bulk bypassing was used to reduce
an SOHJ+BB plan as the sequence humber inthe OHJ+BBhe data volume that is written to disk at intermediate stages
plan. B is needed to carry out the join, as in the OHJ+BB of the query evaluation process. In generalized hash teams
plan, andA is needed to re-merge intermediate resultsthis technique can also be beneficial in order to bypass bulky
because two unique identifiers, sayp andb.q of two attributes around the join operations. This way, the individual
different runsa andb, are not comparable in terms of the partitions can be made larger, and therefore fewer partitions
sort criterionR. A. (In contrasta.Seg#< b.Seg#always  are needed. Bulk bypassing is possible if the result of the
impliesa.A < b.A for tuplesa andb of R if R is pre- hash team is assembled in a hash area, i.e., if the hash team
sorted.) comprises a final grouping operation. If the grouping is on a

2. The intermediate merges are performed by comparing thsingle relation, then the bulky attributes of this relation can
sort attributed and the unique identifigrj, in that prece- be bypassed. This only works if the bulk attribute(s) is/are
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Bulk, Custy
Customer C# | City C#
C# | City 0 PA 0
5 B v 4 LA 4
0 P 2 HH 2 o )
3 NYC pmes Bulks Custa insertion-order-preserving
1 M N C#  Cuy fo2n hash tables
4 LA 5 B 5
2 HH 3 | NYC 3 i
a o a0 C# [ sum | Seq 3 C# [ City [ sum
= Moy — Aggey — | 2 6 . 1 LA 6
Orders_ i Tl | n T 2 | me |1
otal- '
Order C# price 0 1 T First 0 P 1
o4 | o4 ;‘r)itfje' 2| 8 '
' .
5 5 3 4 2 C# | sum | Seq —_— C# | City sum
6 | 4 2 4 4 515 T mege— | 2 B 5
1 3 - Va 2 3 Moy — Aggoy — | 3 16 4 3 | NYC | 16
5 | a 4 pincs 0 1 1] 1 1 M 1
0 1 3 N Or'de%r‘zaj
3 |1 8 cu | T
4 2 3 price
7 | 3 9 g 4
9 | 5 5 1 3
10| 0 1 1 ¥
3 9
5 5

Fig. 19.Applying bulk bypassing to a team (Query 5)

functionally dependent on other grouping attributes. We will our proposed techniques into a traditional Selinger-style op-
demonstrate bulk bypassing for hash teams on the exampkimizer (i.e., bottom-up dynamic programming) [SAT9,
Query 5 defined on page 14. As before, we assumelitat Loh88]. Furthermore, we show the optimizer extensions that
City holds and that, therefore, the grouping can be performedre needed in order to exploit the full potential of our tech-
on C# alone. For simplicity, we chose this example evenniques, whereby we limit the generalized hash teams to hi-
thoughitis an ordinary hash team —for generalized hash teamerarchies. Clearly, these extensions will significantly increase
it works analogously. Figure 19 shows the evaluation of thisthe size of the search space of the optimizer and, thus, the run-
query. ning time of the optimizer. We believe, however, that existing
During the partitioning phase, the bulkity attribute is  industrial-strength optimizers are capable of handling such
stripped off theCustomermpartitions and stored on disk. It is a larger search space. For instance, early sorting (as needed
importantto store th&]#, City] partitions in exactly the same for SOHJ plans) has already been implemented in the DB2
order as the”'# partitions. Having finished the partitioning optimizer ([SSM96]), and (basic) hash teams have been im-
of Customes andOrder, the actual hash teams are formed for plemented in Microsoft's SQL Server 7.0 ([GBC98])). In addi-
each partition. Let us concentrate on the first partition:THe  tion, heuristics such as those proposed in [KS00] can be used
partition, which constitutes the build input of the hash team, isto speed up query optimization. Studying all the tradeoffs of
read and inserted into a so-calleertion-order-preserving  optimization time vs. plan quality for supporting early sorting
hash table The insertion-order-preserving hash table is just aand partitioning is beyond the scope of this paper.
standard hash table except that the entries have an additional In the following, we will describe changes to the opti-
Seqgpointer to chain them in insertion order. Once the join mizer's costmodel and the plan enumerator. These changes are
and the aggregation with the correspondingler partitionis  essentially along the lines of previous work to extend bottom-
completed, the hash table is read in insertion order (using thap, dynamic-programming query optimizers, e.g., [Loh88,
pointer chain, starting with thEirst pointer), and the corre- CS94,CS96,CK97].
sponding bulk partition is merged. Note that the bulk partition

is read in the exact order in which it was written to disk; there- Cost modelThe cost model extensions are straightforward. We
fore this merge is fairly cheap to perform. Our performanceonly need to provide cost estimates for all new operators like
experiments indicate that this bulk bypassing, if applicable,0HJ, SOHJ, indirect partitioning, and BulkMerge. Cost for-
can actually result in performance increase of up to a factor ofulae similar to those needed to estimate the cost of (S)OHJ
two. operators have been devised in [BCK98,BCKKO0O] for the par-
tition/merge algorithm. The cost of indirect partitioning and
generalized hash teams strongly depends on the number of
5 Query optimization false drops. The number of false drops can be estimated as
described in Sect. 3.5.
In this section, we show how an existing query optimizer
can be extended in order to generate plans with early sortin@earch spacdustas with “traditional optimizers,”we use trees
(SOHJ), early partitioning (hash teams), and bulk bypassingto represent plans. We consider all access paths (i.e., indices),
Many different query optimization architectures have beenall possible (bushy) join orders, and all common join meth-
proposed in the literature and obviously there are many aleds (i.e., sort-merge, nested-loop, hash join). Furthermore, we
ternative ways to integrate SOHJ and hash teams into theonsider all possible ways to apply generalized hash teams as
query optimizer. In this section, we show how to integratewell as (S)OHJ with and without bulk bypassing. That is, we
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will consider sorting and partitioning a table by each interest- ) .
ing column (defined below). For ease of presentation, we willS€/€¢tc-C#, ¢.City.sum(l.Extendedprice)
assume that group-by operators are applied after all joins, as fé%m Cungeré£ rger S#Llnle'otim !
done by most commercial optimizers; in other words, we will vvrotzreg. . 6#0'0 Citn 0=l
ignore transformations as those proposed in [CS94,YL94] i rdelrobgclc#' Y
the remainder of this section. '

An interesting column of a table is any column that is Query 6: lllustrating the optimization pro-
used in a join or as part of arder-byor group-byclause. In ~ cess
modern database systems, a column usedrafiap or cube  (Sc#(Gex,city (C 1 O 1 L))
clause [GBLP96] is also interesting. In this sense, the concept
of interesting column is identical to the concept of interesting . .
order used in traditional optimizers [SAQ9]. To produce  — bulk bypasseda set of (bulk) attributes which are by-
generalized hash teams, however, a column may be interesting P2ssed. The full result can be computed by a vertical
for a table, even if it is not part of the table. In our examples  (Merge) join with the bulk data as described in Sect. 4.
of Sect. 3, for instanceCity is an interesting column for the
Order table andC'# is interesting for the_ineitemtable. A
column which is part of Tablel and not part of Tablé& may
only be interesting for Tabl&, if Table A is “higher” in the
hierarchy.

Enumerating access planss mentioned at the beginning of
this section, we consider a query optimizer that enumerates
plans in a bottom-up way. Such an optimizer generates so-
called access plans for all tables involved in a query in its
first step. An access plan specifies how a table is read, i.e.,
Properties In order to describe a (sub-)plan and simplify using a full scan or an index. We propose to extend access
bottom-up plan enumeration, we annotate each (sub-)plan witRlan generation and enumerate different access plans for all
propertie$ Plan properties are also used for pruning plans durkinds of early sorting, early partitioning, and bulk bypassing.
ing the bottom-up plan enumeration. (For brevity, we will not Specifically, we propose to generate the following access plans
present the details of pruning here.) Annotating plans is alsdor a Tablet with interesting columns andd:

done in traditional query optimizers ([(GD87,Loh88]). Typical 1
plan properties include theost of a plan, thecardinality of '
the output produced by the plan, and #iteat which the plan

is executed in a distributed system. To integrate early sorting
and early partitioning, the following properties are relevant:

sort.(t): sortt by c.

2. ptn.(t), ptn?B(¢): partitiont by ¢, with and without bulk
bypassing.

3. sptn. q(t), sptrfZ (¢): partition ¢ by ¢, at the same time
sorting each partition by, with or without bulk bypassing.

_ sorted by:a set of columns indicating that the output of a  (ThiS is the combined sort&partition operator of SOHJ.)

plan is sorted by these columns. 4. ptn.(t)— ¢, partitiont by ¢ and generate a bitmap for
— partitioned by:a set of columns indicating that the out-  ¢»; SUCh a plan is generatedd, is a join column for a

put of a plan is partitioned by these columns. When both _ J0in with a table which is lower in the hierarchies than

“sorted by” and“partitioned by” property sets are non- . ¢p —Ptngas, (t): partitiont using a bitmap; such a plan

empty, this indicates that the plan produces sorted runs 1S gengratgdviép_is the join column for a join with a table

which can be merged to produce a single unpartitioned  Which is higher in the hierarchy than _

and sorted output. 6. ¢p —>ptr.13Mcp (?5)—> ¢, partition ¢ using a bitmap and
— generated bitmapsa set of columns indicating that bit- generating a bitmap.

maps were generated as a result of a partitioning stefraple 1 shows the access plans and their properties which
carried out in the planGenerated bitmapsan only be  are generated for Query 6. (Note ti@ity is not an interesting
non-empty ifpartitioned byis also non empty. column in this query, although itis used in the group-by clause.

— consumed bitmaps set of columns indicating that bit- The reason is thatity functionally depends o6#.)
maps were consumed during indirect partitioning.

— open/closeda Boolean value which indicates whether a gnmerating joins Just as for access plans, there is a fixed
plan is executable or requires bitmaps to be executablege of ryles that tell the optimizer which join plans to enumer-
For example, a plan that specifies that heeitemtable 546 A join plan specifies how the results of two sub-plans are
should be partitioned by/# is not executable because the joined, depending on the properties of the sub-plans. These
Lineitemtable has n@’'# column. Such a plan would be gh_pjans may be access plans or other join plans. The follow-
annotated a%pen” and it would be executed as partofa g ryles are applicable to enumerate (S)OHJ plans and plans
generalized hash team which involves a plan that generatgg;ip, generalized hash teants.is the first sub-plan (as probe

bitmaps. L input), ¢, is the second sub-plan (as build input), arid the
— team breaka Boolean value which indicates the border of join attribute.

a hash team if hash teams are split. Essentially, this prop-

erty corresponds to the “pipelined/materialized” proper- 1. OHJ.(t1,%2): join ¢, andt, using an OHJ. This plan is

ties used in traditional optimizers andtisie when inter- applicable ift; andt, are partitioned by If the parti-

mediate results are written to disk. tioning of the result differs from the input partitioning, the

fine-grainedpartition—mergeoperations are inserted after
8 More precisely, properties are assigned to operators and the prop-  the join. The generated properties are:

erties of a (sub-)plan are the properties of the root of the (sub-)plan.  — sorted by= t;.sorted by
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Table 1.Access plans for Query 6

C sortc# ptnoyx Sptnox,c# ptngﬁyc# sptngﬁyc#
| | | | |
C C C C C
sorted byl| {} {C#} {} {C#} {} {C#}
partitioned by| {} {} {C#} {C#} {C#} {C#}
generated bitmaps {} {} {} {} {} {}
consumed bitmaps {} {3 {3 {3 {3 {3
open/closed closed closed closed closed closed closed
team break| yes yes yes yes yes yes
bulk bypassed {} {} {} {} {C.City} {C.City}
BMoy
O  sortcy sortoy plncy pinoy SPthcy cx SPMcp on SPMow cp SPIMo4 ox DPiNcy —
| | | \ | | | | |
C C C C C C C C C
sortedby| {} {c# {o# {} {}  {c# {c# {o# {o# 0
partitioned by| {} {} {} {C#} {O#} {C#} {O#} {C#} {O#} {C#}
generated bitmaps {} {} {} {} {} {} {} {} {} {o#
consumed bitmaps {} {} {} {} {} {} {} {} {} {}
open/closed closed closed closed closed closed closed closed closed closed closed
team break| yes yes yes yes yes yes yes yes yes yes
bulk bypassed {} {+ { {} { {} { {+ {} {}
BMoy
L sorto# Ptnoy SPogox —— ptnBMo#
| | | |
L L L L
sorted byl| {} {O#} {} {O#} {}
partitioned by| {} {} {O#} {O#} {C#}
generated bitmaps {} {} {} {} {}
consumed bitmaps {} {} {} {} {O#}
open/closed closed closed closed closed open
team break| yes yes yes yes yes
bulk bypasseq {} {} {} {} {}
Table 2. Selected plans faCustomer<ic4 Order (Query 6)
MIYon
I
ptno#
i
OHJc 4 OHJc 4 Hicy HJcy
/ AN / AN / AN / AN
8B 88 BMoyu BMoy
SNy cu Pincy, PINC L cn ptncy Ptncy pPtncy — Pine ptncy —
! ! | | ! f I |
c o) c o c o c o
sorted by {C#} {C#} {7 {}
partitioned by {C#} {O#} {C#} {C#}
generated bitmaps {} {} {O#} {O#}
consumed bitmaps {} {} {} {}
open/closed closed closed closed closed
team break yes ves yes no
bulk bypassed {C.City} {C.City} {} {}




J. Claussen et al.: Exploiting early sorting and early partitioning for decision support query processing 207

Table 3. Selected plans faDrder<io 4 Lineitem(Query 6) TPC-H/R like database ([TPC99]). In contrast to the original
" i database we used tuples and attributes of constant size. This
O# o# . . . . .
N VRN was chosen to.3|mpl|fy the |mplement§tlon — the comparative
piney "M% pingy ZM % results of the different evaluation techniques, however, are not
| P l'# e affected by this simplification. Our test database is character-
o L o L ized in Table 5.
sorted b . .
partitim:ed bfj {éi&) {éj#) 6.1 Experimental environment
genera.tez Ziﬁmaps {g#} {8#}
O en/closed o= o) We integrated our implementation of (S)OHJ and generalized
bu;ﬁ;‘pgg’; G i hash teams into an experimental query engine that is based on

the iterator model [Gra93]. This query engine also provides it-
erators for traditional (hash-based) joins and aggregation. All
— partitioned by: c,, Wherec,, is an interesting column code is written in C++. We installed the query engine onasSun

— generated bitmaps Ultra 10 with a 333 MHz processor and 128 MB of main mem-
= t;.generated bitmaps t,.generated bitmaps ory. The operating system was Solaris 7. In all experiments,
— consumed bitmaps we varied the amount of main memory available for query
= t,.consumed bitmaps ¢,.consumed bitmaps processing. We used relatively small memory sizes in order to
— open/closed- ¢,.open/closed\ t,.open/closed simulate a multi-user environment in which many queries are
— bulk bypasseek t;.bulk bypassed ¢,.bulk bypassed run concurrently and only a small amount of main memory
— team break= yes is available for each query. We made use of Soldiigct 10

2. HJ.(t1,t2): join ¢; andt, using a HJ. This plan is appli- feature in order to avoid caching at the operating system level.
cable ift; andt, are partitioned by or ¢ € ¢;.generated ~ The database and the intermediate query results were stored
bitmapsandc € t,.consumed bitmags ¢ € t;.consumed ©n a 18.2 GB IBM DNES-318350 disk drive.
bitmapsand ¢ € t,.generated bitmapdf the generated We adopted the idea presented in [DG94] to adjust the clus-
partitioning of the result differs from the input partitioning, ter size for writing and reading the partitions to the available
apartition operator is inserted after the join. The generatedmemory. This way the number of disk seeks can be reduced

properties are: enormously. In contrast to [DG94] we do not need to re-adjust
— sorted by= {} the cluster size during the execution of the query because we
— generated bitmaps assume constant memory size during query execution. The
= t,.generated bitmaps t¢,.generated bitmaps minimum cluster size is 4 kB, which is the physical page size,
— consumed bitmaps the maximum cluster size is 64 kB (16 page$ kB).

= ty.consumed bitmaps ¢.consumed bitmaps
— open/closed
= if consumed bitmaps generated bitmaps then
closed else open
— bulk bypassee- ¢, .bulk bypassed ¢,.bulk bypassed
— if team break== yesthenpartitioned by= c,, where
¢, 1S an interesting column;
if team break== nothen
partitioned by= t,.partitioned by

6.2 Order-preserving hash joins

Figure 20a shows the results of our implementation for
the binary join plans for Query 1Sam: ars.c(C > O))
(page 193). The traditional hash join (HJ) plan with subsequent
sorting shows the worst performance due to the expensive sort
operation on the entire join result. For small memory con-
figurations, the HJ plan shows particularly poor performance
Tables 2, 3, and 4 show some sample two-way and thregdecause in this case, there is not enough memory to satisfy
way join plans enumerated for Query 6. the purposes of both the hash join and the sort at the same
time — recall that these two operations run concurrently and
Postprocessing/code generatiohfter a plan has been cho- share the available memory in this plan. The (S)OHJ plans,
sen by the optimizer, this plan is translated into an executabl@n the other hand, show high performance, even if memory is
plan. The generation of an executable plan involves the genescarce, because no two memory-intensive operations run con-
ation of themergeoperators for OHJ anldergeBulkoperators ~ currently. Figure 20a also shows that the bulk bypassing (BB)
for bulk bypassing. Alsasptnoperators are replaced by a se- variants of the OHJ plans yield an additional performance gain
guence ofort—ptn—mergeperators. This postprocessing step due to reduced disk 1/O to write and re-read intermediate re-
is straightforward. sults. Evidently, the plots indicate that there is only a small
difference between OHJ and SOHJ plans which proves the
effectiveness of our sorting-on-the-fly approach. As a result,
6 Performance evaluation OHJ plans work well even in the absence of clustered indices.
Figure 20b shows the performance results for the three-
In this section we will present experimental results conductedvay join Query 2(Sake ar,c#(C > O > L)) (page 4). In
using a prototypical implementation of OHJs, generalized andaddition to the second join operator, the OHJ plans contain
“ordinary” hash teams, and traditional (hash-based) algorthe fine-grained partition/re-merge step. Evidently, the per-
ithms to carry out joins and aggregation. We will presentformance advantages observed for binary (S)OHJ plans are
the running times of our example queries, using a syntheticetained.
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Table 4. Selected plans foCustomer<icyx Order xio4 Lineitem (Query 6)a Pure SOHJ planb Pure GenTeam plarc Combined

SOHJ/GenTeam plan
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7 N /7 N\ ! 7N\
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sptngiyc# Pincy pincy pingy — ptnBMo# o) pingy — ptnBMO#
| | | | ! | |
(o} (0] c (0] L o L
Sorted by TCHEY 0 TCHY
partitioned by {O#} {C#} {C#}
generated bitmaps {3} {O#} {O#}
consumed bitmaps {} {O#} {O#}
open/closed closed closed closed
team break yes yes yes
bulk bypassed {C.City} {} {C.City}
a b ¢
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Fig. 20a,b.Order-preserving hash joins

8000

o : : : : L
| OHIBB -

7000 SOHJ - : ;
| SOHJ BB

6000 HY -

b Response time [secs]
Query 2(Sari n#.cx(C 1O L))

Table 5. Database characteristics
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lity of Order [k]

45000
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(vary #Order, 10 MB memory)

Figure 21 shows the impact of a lar@eder table on the

Table Tuple width ~ Cardinality  Size inMB
Region 124 bytes 5 <4 kB

Nation 128 bytes 25 <4 kB

Supplier 160 bytes 50000 8MB
Customer 180 bytes 750000 135MB
Order 104 bytes 7500000 780MB
Lineitem 112 bytes 30000000 3360MB

the available main memory is fixed at 10 MB. Thus, the right-
most running times of Fig. 20a correspond to the 5 measure-
ments atc = 7500, whereCustomes have 1@rders, on av-
erage. (Reported running times of the traditional HJ plans are
always for the best possible join order. Note, that for |dDge

dertables the HJ plans ugkrder as the outer, whil€ustomer

performance of the five plans for Query 1. In this experimentis always the outer in (S)OHJ plans.) We see that with increas-

the number 0Orders perCustomeis varied from 1 to 60, and

ing size of theDrdertable the advantages of our (S)OHJ plans
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selectc.City, sum(o.Totalprice) selectc.City, sum(l.Extendedprice)
from Customer ¢, Order o from Customer ¢, Order o, Lineitem |
where c.C# = 0.C# where ¢.C# = 0.C#and 0.0# = |.O#
group by c.City group by c.City
order by c.City order by c.City
Query 7: Binary join with aggregation Query 8: Multi-way join with aggregation
(Scity(Geity (C < O))) (Scity(Geity (C > O = L))
500 % T T T T T T T 1800‘. S T T T
450 OHY BB EA T 1 1600 | - W W] W] ﬁ
SOHJ EA - OHJEA —+—
400 L SOHIBBEA ] 1400 t OHJBBEA - 1
ssop g HIEA -l | SOHJ EA K-
R T U RN Y—— _ 1200 p SOHJ BB EA [
@ S f 7 KK HJEA ---B--
g g 1000[] 1
F 7 g o0 [ RO DT K
= ié K = 600 x
[
i 400
50 200
0 : : : : : : : 0 : : : :
2 3 4 5 6 7 8 9 10 10 15 20 25 30
memory [MB] memory [MB]
a Response time Query 7 [secs] b Response time Query 8 [secs]
(Seyut(Geyut (€ 0))) (Scity(Gaity (C > O 1 L))

Fig. 22a,b.Order-preserving hash joins with aggregation

increase because the final sort of the traditional HJ plans bepartitioning step for the group-by operation are significant.
comes more and more expensive and dominates the cost dfote that for small memory size, the number of false drops
the whole query. The maximum performance gain of (S)OHJis also particularly high for generalized hash teams, but the
plans to the HJ plans amounts up to a factor of six. extra cost due to false drops is much lower than the cost of
Figure 22a and b show the running times of the five planan extra partitioning step. With increasing memory size, the
alternatives for Query 7S¢ty (Geiy (C > ©O))) and Query 8 advantages of our new approaches get smaller. However, only
(Scity (Geiy (C > O 1 L)), respectively. All plans benefit  for very large memory sizes, when the join and/or group-by
from early aggregation, but the benefits are most pronouncedan be carried out completely in the memory, do the traditional
for those evaluation plans without bypassing bulk data, i.e.plans perform as well as our new approaches.
the OHJ, SOHJ and the HJ variants. These plans draw more Figure 23b shows the running time of Query&c;,, (C
benefit from collapsing duplicates because the size of the cobs O 1 L)) (page 198) for various different plans. Again,
lapsed records is substantially larger than those of the BB varigeneralized hash teams are the overall winner. In this case,
ants. Therefore, the differences between the BB and standattbwever, generalized hash teams are only beneficial if a cer-
(S)OHJ plans are less pronounced in these experiments.  tain amount of memory is available. Recall from Sect. 3.2 that
the memory requirements increase with the number of oper-
ations that participate in the team. Thus, the amount of false
6.3 Generalized hash teams drops produced during partitioning ti@rder and Lineitem
table impairs the running time at small memory configura-

Figure 23a shows the running time of Queriga:i,, (Ct<t ©))  tions. For the traditional plans, the best memory configuration
(page 197) using generalized hash teams and two traditiondfvolves carrying out the whole group-by in memory so that
plans that use an OHJ and hash aggregation to execute ti@arly aggregation does not improve the running time in these
query. The difference between the two traditional plans is thagXperiments. The traditional plans lose here because they re-
early aggregation (as described in [Lar97]) is effected in oneduire re-partitioning for the second join (i.e., the join with

of the two plans. Early aggregation reduces the size of thd-ineitem). ) )
intermediate results that must be written to disk in the parti- We ran another experiment to show the benefits of bulk
tioning phase of the group-by operdtowe observe that, as bypassing on generalized hash teams. Figure 24 shows the
expected, generalized hash teams significantly outperform throfit of bulk bypassing applied to Query(Gc, city (C <

traditional plans in the whole range of main memory sizes.O > £)). At very small memory configurations the execution
The traditional plans perform particularly poorly if there is time of GenTeam BB is about a factor of two better than that of

only little memory available — in this case, the I/0 costs of theGenTeam because the described effect of a reduced number

join and group-by operators are very high because many smafif partitions leads to less false drops. The more memory is

partitions must be created, and thus the benefits of saving thgb?atehd for the query, the more the performance gain of BB
iminishes.
® Remember not to confuse early aggregation with early sorting or

early partitioning.
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Fig. 23a,b.Generalized hash teams

6.4 Combining order-preserving hash joins

and generalized hash teams selectc.C#, c.City,sum(l.Extendedprice)

from Customer c, Order o, Lineitem |

Figure 25a and b show the results of combining OHJs and genvyherec'C# - 0.Cand 0.0%# =1.0#
roup by c.C#, c.City

eralized hash teams. We show the running times of the three?
way join queryCustomen< Order < Lineitemwith group-  Query 9: Grouping by a non-bulk attribute
ing and sorting orCity (Query 8(Scity(Gcity (C > O (Ge#, ity (C 1 O 1 L))
L))), page 209) and a grouping and sorting@# (Query 6
{Sc#Ge#, city (C > O > L))}, page 205) to demonstrate :
the impact of the size of the aggregation result. A simplified 10000 |:
version of the SOHJ GenTeam plan of Query 8 is shown in ’
Fig.17. (Here we also apply early aggregation on the hash_ 8000
team part.) The SOHJ GenTeam plan for Query 6 is similar.
Looking at Fig. 25a for the results of Query 8, where we N
group onCity, we can recognize that the SOHJ BB EA plan 4000 | ¢

12000 T T T
: GenTeam A
GenTeam BB -

‘.
6000 |,

time [secs;

shows a relative constant running time, as already shown in A

the previous experiments of Sect. 6.2. For very small memory 2| e S ]
sizes the running times of the GenTeam variants are quite high 0 G
due to many false drops. For large main memory allocations, 2 4 6 8 m:rf;my?;m 14 16 18 20

however, the GenTeam plans turn out to be slightly better than
the SOHJ plans and much better than the traditional HJ plarfig. 24.Bulk bypassing in generalized hash teams: response time of
The pure GenTeamSort plan (with sorting of the aggregatiorfuery 9 [secs]Gcx, ciry (C > O b4 L))
result) performs better than the combined SOHJ GenTeam
plan for this query, because of the fewer tuples that have t®.5 Applying generalized hash teams to TPC-H/R queries
be sorted: there are 75000 cities, as opposed to to 750000
Custometuples, which are early sorted by the SOHJ. Finally, we show an application of generalized hash teams to
Looking at Fig. 25b for the results of Query 6, where the a “real-world query” of the TPC-H/R benchmark suite. Let
grouping is done by’'#, the SOHJ BB EA plan shows al- us consider in detail Query Q5 of the TPC-H/R suite (our
most the same running times as in Fig. 25a. However, now theoncept is also applicable to other queries of TPC-H/R, e.g.,
combined SOHJ GenTeam plan performs better than the pur@uery Q10 and Query Q18):
GenTeamSort plan, due to the bigger aggregation result. So ) )
both query evaluation plans have to sort the same number dfelectn.Name sum(l.Extendedprice(1—I.Discount))
tuples, but due to the more tuples in the aggregation resul@sRevenue o .
more partitions have to be created for the pure team and sBom Customer c, Order o, Lineitem |, Supplier s,
more false drops occur, which leads to longer running timesNation n, Region r
The extremely high running times (up to 6 400 secs for 5 MB)Where c.C# = 0.C#and 0.0# = |.O#
of the traditional HJ EA plan are not shown for small memory and |.S# = S.S#and ¢.N# = s.N#
Configurations_ and s.N# = n.N#and n.R# = r.R#
These results show that — in order to choose the most efand r.Name = "[region]’
ficient plan — it is fundamental for the application of both and o.Orderdate>= DATE '[date]
algorithms and the combination of them to determine the sizénd 0.Orderdate< DATE '[date]' +

of the aggregation result. INTERVAL 1YEAR
group by n.Name

order by Revenualesc
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Fig. 25a,b.Combining OHJs and generalized hash teams

| Query || Memory | Time | SF]
GenTeam 8MB | 312secs| 5.0 Supplier

trad. HJ 8MB 870secs| 5.0 Nation X Region

trad. HJ 16 MB 867secs| 5.0

RDBMS ( “ighes‘D >8MB | 1021secs| 5.0

opt. leve|
GenTeam|| 1.5MB 59secs| 1.0

trad. HJ 1.5MB 164secs| 1.0

trad. HJ 3MB 163secs| 1.0
RDBMS ( Jighest) >2MB 209secs| 1.0

opt. leve)

Customer

Lineitem

a Running times of different scale factors ($¥F) b Underlying hierarchy and three-way partitioning

Fig. 26a,b.TPC-H/R Query Q5

This query has multiple chains of functional dependenciesboth cases superior performance. It should be noted that due
to the optimized memory usage the hash teams do not require
O# — C# — N# — R# and S# — N# — Ri#. more memory than shown in the table.

We also compared our query engine with a commercial

hierarchies as shown in Fig. 26b. So, a possible query evaludXPBMS using both scale factors 1.0 and 5.0. In the commer-

tion plan using a generalized hash team could be as in Fig. 278.“;" FD?MS it Washnot po?siblettg |I\I/|anf thfhmem(I)ryf fo: thi 0
The resulting partitioning of the entire hierarchy is illustrated wholé plan, so each operator go orthe scale factor L.

in Fig. 26b by the three different shadings, each of which rep_and 8MB fqr the scale factor 5.0. Thus, even though we could

resents one partition of the entire hierarchy which is processefOt détermine the total memory exactly, the RDBMS plans

by a single hash team. Here we firstj@nstomeyNation and ~ consumed much more memory than we allocated for the Gen-

Regiorto filter out the relevanCustometuples. During parti- Team plans, which were limited to 1.5MB (and 8 MB respec-

tioning the known set of bitmaps for indirectly partitioning the tively) intotal. The statistics for all tab_les andall “?ef.“' md_ex_es

Order table is created. Additionally a Bloom filter ([Blo70]) WE'€ generated for both database sizes. The built-in optimizer

for the join withSupplieris calculated. So the 1/0 volume can of the RDBMS ha_s chosen the plan shown in F|g.27_c. The

be reduced enormously on all participating base relations. Thgerformance_z_of this RDBMS plan was comparz_ible with our

bitmaps created for indirect partitioning contain the describect10S€n traditional hash join plans on our experimental query

usedbitvector, which acts as an implicit Bloom filter. engine. The performance gain of using generalized hash teams
The traditional hash join plan shown in Fig.27a has toamounted in both cases to a factor of 3.

write large volumes of intermediate results while joining the

big tableOrder andLineitem The only optimization that can )

be applied to the traditional plan is the final in-memory aggre-/ Conclusions

gation, which does not improve the performance significantly. ) ) ) _ o

The results of the running times are shown in Fig. 26a. InMany queries — in particular, in OLAP and decision support

order to show the advantages of the generalized hash teand@Pplications — involve joins and grouping with aggregation

we used two scale factors of the database. The teams show f#{1d/or sorting of the result. In this paper we devised two com-
plementary query evaluation techniques to push sorting and

1 1t could not be determined how much memory the RDBMS al- partitioning to the leaves of query evaluation plafatly sort-
located for the whole plan. Each operator was limited to the denotedng andearly partitioningare effective in many decision sup-
memory. port queries because they allow to perform costly operations

These functional dependencies constitute two overlappin
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Fig. 27a—c.Possible QEPs for TPC-H/R Query Q5

(involving disk 1/0O) on relatively small base relations instead "real-world” queries of the TPC-H/R benchmark suite. Sev-

of on intermediate results which become very large in someeral of the queries can be optimized using our approach, we

OLAP queries. studied one query (Q5) in detail and found out that we could
Order-preserving hash joins allow an existing order of oneachieve an improvement of a factor 3 compared to a traditional

of the base relations to be preserved or the costly run genplan of a commercial RDBMS product.

eration phase of the sorting to be pushed to a base relation.
This early sorting is applicable if the desired sort order of the
query is based on attributes of a single base relation only. On
particular advantage of order-preserving hash join plans is th

they reduce the main memory requirements of queries becau
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and the make-run phase of a sort are not carried out concur-
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