
The VLDB Journal 10: 48–71 (2001) / Digital Object Identifier (DOI) 10.1007/s007780100043

ObjectGlobe: Ubiquitous query processing on the Internet

R. Braumandl1, M. Keidl 1, A. Kemper1, D. Kossmann2, A. Kreutz1, S. Seltzsam1, K. Stocker1

1 Universität Passau, Lehrstuhl f¨ur Informatik, 94030 Passau, Germany; E-mail: <lastname>@db.fmi.uni-passau.de
2 Technische Universit¨at München, Institut f¨ur Informatik, 81667 M¨unchen, Germany; E-mail: kossmann@in.tum.de

Edited by F. Casati, M.-C. Shan, D. Georgakopoulos. Received: 30 October 2000 / Accepted: 14 March 2001
Published online: 7 June 2001 –c© Springer-Verlag 2001

Abstract. Wepresent thedesignofObjectGlobe, adistributed
andopenquery processor for Internet data sources.Today, data
is published on the Internet via Web servers which have, if at
all, very localized query processing capabilities. The goal of
the ObjectGlobe project is to establish an open marketplace
in which dataandquery processing capabilitiescan be dis-
tributed and used by any kind of Internet application. Further-
more, ObjectGlobe integratescycle providers(i.e., machines)
which carry out query processing operators. The overall pic-
ture is to make it possible to execute a query with – in prin-
ciple – unrelated query operators, cycle providers, and data
sources. Such an infrastructure can serve as enabling tech-
nology for scalable e-commerce applications, e.g., B2B and
B2C market places, to be able to integrate data and data pro-
cessing operations of a large number of participants. One of
the main challenges in the design of such an open system is
to ensure privacy and security. We discuss the ObjectGlobe
security requirements, show how basic components such as
the optimizer and runtime system need to be extended, and
present the results of performance experiments that assess the
additional cost for secure distributed query processing. An-
other challenge is quality of service management so that users
can constrain the costs and running times of their queries.

Key words: Distributed query processing – Query optimiza-
tion – Open systems – Cycle-, function- and data provider –
Security – Privacy – Quality of service

1 Introduction

The World Wide Web has made it very easy and cheap for
people and organizations all over the world to exchangedata.
Today, virtually everybody can publish a document by gen-
eratingHTML(or XML) and placing it on some Web server;
likewise, it is more or less standard to make data stored in re-
lational (or other) databases publicly available on theWeb by

This research is supported by the German National Research Foun-
dation under contract DFG Ke 401/7-1 and the German Isreali Foun-
dation (GIF).

establishing form-based interfaces and by using CGI scripts
or Servlets. WWW clients can retrieve individual documents
by a simple “click” and they can get specific information from
a database (behind the Web server) by filling out a form. In
other words, WWW clients today can easily execute “point
queries” (i.e., given URL, return document) and they can ex-
ecute queries that can be handled by a single database behind
aWeb server.

The goal of the ObjectGlobe project is twofold. First, we
would like to create an infrastructure that makes it as easy
to distributequery processing capabilities(i.e., query opera-
tors) as it is to publish data and documents on theWeb today.
Second, we would like to enable clients to execute complex
queries which involve the execution of operators from mul-
tiple providers at different sites and the retrieval of data and
documents from multiple data sources. In contrast to Applets,
all query operators should be able to interact in a distributed
query plan and it should be possible to move query opera-
tors to arbitrary sites, including sites which arenear the data.
Thus, distributed query plans can be composed of arbitrary
query operators obtained from various function providers; the
only requirement we make is that all query operators must be
written in Java and conform to the secure interfaces of Object-
Globe.

We believe that our ObjectGlobe system can help to de-
velop new application scenarios and new ways in which peo-
ple and organizations interact on the Internet. An organiza-
tion, for instance, could outsource all or part of its data pro-
cessing to specialized providers on the Internet. As another
example, WWW clients canquerythe Web and carry out dif-
ferent operations on different data sources. Providers could
charge for data and new query operators. A data provider
(e.g., a car dealer or a real estate broker) could also be in-
terested in participating in ObjectGlobe in order to supply
its product catalog for free. Open, distributed query process-
ing, as in ObjectGlobe, is an essential enabling technology
for scalable Internet applications, suchasbusiness-to-business
(B2B) e-commerce systems likeSAP’s electronicmarketplace
“mySAP.com” [SAP99]which comprises hundreds of compa-
nies.One of the key challenges is to facilitate query processing
over the various heterogeneous data sources in order to build
integrated product catalogs, match product availability with

R. Braumandl et al.: ObjectGlobe: Ubiquitous query processing on the Internet 49

demand forecasts, or perform price comparisons for procure-
ment.

In some sense, the ObjectGlobe system can be seen as a
distributed query processor. ObjectGlobe has a lookup service
(i.e., a meta-data repository) which registers all data sources,
operators, andmachinesonwhichqueries canbeexecuted.Ev-
ery time a newprovider joins or leaves anObjectGlobe federa-
tion the corresponding meta-data is added to or removed from
the respectivemeta-data repository. The lookup service is used
by the ObjectGlobe optimizer in order to discover relevant re-
sources for aquery.Theoptimizer generatesaqueryevaluation
plan with the goal to execute the query in a way, which ful-
fills the user’s quality constraints. This plan is then initiated
and executed by the distributed execution engines (i.e., the
ObjectGlobe servers). The design of all of these components
has been addressed in previous work. Jini, for example, has
a related lookup service [Wal99], and projects like Mariposa
[SAL+96], Garlic [HKWY97] or AmosII [JR99] (to name
just a few) have recently studied wide-area distributed query
processing.What makes the ObjectGlobe system special is its
“brutal” openness that allows one to execute a query with –
in principle – unrelated query operators, cycle providers and
data sources. This transparent ad hoc integration of opera-
tors and functions is a demanding task for query optimization
which must take into account the logical and physical prop-
erties of these operations. One particular issue that needs to
be addressed in this kind of system is “security” and how to
protect data (and other resources) from unauthorized access.
Another challenge is to ensure scalability in the number of cy-
cle and data providers. On behalf of the users, this means that
they must be able to constrain the execution of their queries in
such a system regarding monetary costs, execution time, and
the amount of data involved in the execution. In other words,
quality of service management is necessary so that the behav-
ior of the system becomes predictable and the investment of a
user to execute a query is guaranteed.

In this paper, we will describe the approaches we have
chosen to address all these challenges and give some initial
performance results obtained using our system. The develop-
ment of techniques for “schema integration” in a distributed
and heterogeneous environment is not the target of our work
because this has been addressed in other work (e.g., [SL90]
or [JR99]). In particular, we do not report on work on ontolo-
gies [BCV99]. We assume that all data is in a standard format
(e.g., relational or XML) or wrapped [RS97]. Furthermore,
we assume that there is a meta-schema that can be used to
describe all relevant properties of all services; for example,
the ObjectGlobe meta-schema specifies that data sources are
described among others by the set ofthemes(i.e., collections)
they provide, a set of access methods or wrappers to read
theses collections and statistics about value distribution and
the cost to read these collections. How to (semi-) automati-
cally extract all this information is beyond the scope of this
paper. The emergence of XML, however, has initiated a num-
ber of standardization approaches for various businesses. For
instance, global schemas for the real estate and financial sec-
tors have been proposed in [Pet99] and [Gur00], respectively.
Based on such standards, ObjectGlobe can very well be used
in order to implement the remaining infrastructure (i.e., secure
and reliable query processing).

Although “selling” services is one of the main motiva-
tions for our project, the system does not require a particular
business model; many different business models can be im-
plemented on top of ObjectGlobe. Devising specific business
models for data processing on the Internet is also beyond the
scope of this paper.

The remainder of this paper is structuredas follows:Sect. 2
gives an overview of the ObjectGlobe system and compares it
with other system architectures. Sections 3 and 4 describe the
basic components of the system. Section 5 discusses security
concerns in different scenarios and shows the advantages of
implementing an electronic marketplace on top of an Object-
Globe system. Section 6 contains the results of some initial
performance experiments conducted with ObjectGlobe on the
Internet. Section 7 concludes this paper.

2 Overview of the ObjectGlobe system

The goal of the ObjectGlobe project is to distribute powerful
query processing capabilities (including those found in tra-
ditional database systems) across the Internet. The idea is to
create an open marketplace for three kinds of suppliers:data
providerssupply data,function providersoffer query opera-
tors to process the data, andcycle providersare contracted to
execute query operators. Of course, a single site (even a sin-
gle machine) can comprise all three services, i.e., act as data-,
function-, and cycle-provider. In fact, we expect that most
data and function providers will also act as cycle providers.
ObjectGlobe enables applications to execute complex queries
which involve the execution of operators from multiple func-
tion providers at different sites (cycle providers) and the re-
trieval of data and documents from multiple data sources. In
this section, we will outline how such queries are processed,
give an example, and discuss the security requirements of the
system.

2.1 Query processing in ObjectGlobe

Processing a query in ObjectGlobe involves four major steps
(Fig.1):
1. Lookup: in this phase, the ObjectGlobe lookup service

is queried to find relevant data sources, cycle providers,
and query operators that might be useful to execute the
query. In addition, the lookup service provides the autho-
rization data –mirrored and integrated from the individual
providers – to determine what resources may be accessed
by the user who initiates the query and what other restric-
tions apply for processing the query.

2. Optimize: the information obtained from the lookup ser-
vice, is usedbyaquality-aware query optimizer to compile
a valid (as far as user privileges are concerned) query ex-
ecution plan, which is believed to fulfill the users’ quality
constraints. This plan is annotated with site information
indicating on which cycle provider each operator is exe-
cuted and fromwhich function provider the external query
operators involved in the plan are loaded.

3. Plug: thegeneratedplan isdistributed to thecycleproviders
and the external query operators are loaded and instanti-
ated at each cycle provider. Furthermore, the communica-
tion paths (i.e., sockets) are established.

50 R. Braumandl et al.: ObjectGlobe: Ubiquitous query processing on the Internet

lookup
service

optimize execute
XML

plugparse/lookup
XML

query

XML

res-list

resources
XMLsearch

query
plan

query
result

Fig. 1.Processing a query in ObjectGlobe

4. Execute: the plan is executed following an iterator model
[Gra93]. In addition to theexternalquery operators pro-
vided by function providers, ObjectGlobe hasbuilt-in
query operators for selection, projection, join, union, nest-
ing, unnesting, and sending and receiving data. If neces-
sary, communication is encrypted and authenticated. Fur-
thermore, the execution of the plan is monitored in order
to detect failures, look for alternatives, and possibly halt
the execution of a plan.

The whole system is written in Java for two reasons1. First,
Java isportableso that ObjectGlobe can be installed with very
little effort; in particular, cycle providers which need to install
the ObjectGlobe core functionality can very easilyjoin an
ObjectGlobe system. The only requirement is that a site runs
theObjectGlobeserveronaJavavirtualmachine.Second, Java
provides secure extensibility.Althoughmanypeople complain
about the execution speed of Java programs, we noticed that
by avoiding some pitfalls in the Java I/O library the execution
speed of the Java virtual machine is no bottleneck in wide area
distributed systems. Like ObjectGlobe itself, external query
operators arewritten in Java: they are loaded on demand (from
function providers), and they are executed at cycle providers
in their own Java “sandbox” (more details in Sect.4). Just like
data and cycle providers, function providers and their external
query operatorsmust be registered in the lookup servicebefore
they can be used.

ObjectGlobe supports a nested relational data model; this
way, relational, object-relational, andXMLdata sources can
easily be integrated. Other data formats (e.g.,HTML), how-
ever, can be integrated by the use of wrappers that transform
the data into the required nested relational format; wrappers
are treatedby thesystemasexternal queryoperators.As shown
in Fig.1,XMLis used as a data exchange format between the
individual ObjectGlobe components. Part of the ObjectGlobe
philosophy is that the individualObjectGlobe components can
be used separately;XML is used so that the output of every
component can be easily visualized and modified. For exam-
ple, users can browse through the lookup service in order to
find interesting functions which they might want to use in the
query. Furthermore, a user can look at and change the plan
generated by the optimizer.

2.2 Example plans

To illustrate query processing in ObjectGlobe, let us consider
the example shown in Fig.2 – the corresponding query plan is

1 Currently, the optimizer is written in C++, but we are planning
to rewrite it in Java.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

lo
ad

 f
un

ct
io

ndata provider A

Client
ObjectGlobe
Query Engine

data provider B

ObjectGlobe
Query Engine

FctProv

Query Engine
ObjectGlobe

thumbnail
wrap_S

scanscan

recv

T

wrap_S

send

display

recv

R S

send

thumbnail

Fig. 2.Distributed query processing with ObjectGlobe

sketched in Fig.3. The realXMLplan is given in theAppendix.
In this example, there are two data providers,A andB, and
one function provider. We assume that the data providers also
operateascycleproviders so that theObjectGlobesystem is in-
stalledon themachinesofAandB. Furthermore, theclient can
act as a cycle provider in this example. Data providerA sup-
plies two data collections, a relational tableR and some other
collectionS which needs to be transformed (i.e., wrapped) for
query processing. Data providerB has a (nested) relational
tableT . The function provider supplies two relevant query
operators: a wrapper (wrapS) to transformS into nested re-
lational format and a compression algorithm (thumbnail) to
apply on an image attribute ofT .

Figure 3 shows themost important annotations – in partic-
ular, thecycle-provider, partition, andcodebaseannotations
– of the query plan. Thecycle-providerannotation of an op-
erator indicates at which machine the operator is executed,
e.g., the final join and thedisplayoperators are executed at
the client. Thepartitionannotation of ascaniterator indicates
which collection is to be read. Thecodebaseannotation indi-
cates fromwhich function provider an external query operator
is loaded.scan, display, and thejoinsare built-in operators so
that they do not have acodebaseannotation.

Although the example above is rather small (in order to
be illustrative) we expect ObjectGlobe systems to comprise a

R. Braumandl et al.: ObjectGlobe: Ubiquitous query processing on the Internet 51

http://www.FctProv.com

thumbnail

scan

cycle-provider=beta.B.com

codebase=

cycle-provider=beta.B.com

partition=T

cycle-provider=client

http://www.FctProv.com

cycle-provider=alpha.A.com

scan

partition=R

wrap_S

codebase=

cycle-provider=...

display
cycle-provider=client

cycle-provider=alpha.A.com

Fig. 3.Annotated query execution plan

nn_10nn_10

scanscan

nn_10

scan

data prov. Zdata prov. Bdata prov. A

nn_10

real estatereal estate

FctProv

real estate

nn_10

Fig. 4.Parallel execution in ObjectGlobe

large number of cycle providers and far more data providers,
with several of them contributing data to a specific theme. Fig-
ure 4 shows the structure of an example query which extracts
information from a number of online databases that belong
to different real estate brokers. The query uses a user-defined
nearest neighbor operator (callednn10 in the figure) loaded
from a function provider that is specialized on real estate data.
Thenearest neighbor logical operator is transitiveand reflexive
and hence allows us to perform the search for the ten nearest
neighbors of a user-defined feature vector by first computing
the ten nearest neighbors at every data provider and then com-
bining these results for computing the ten nearest neighbors
of the whole real estate data set. The union operator could be
carried out by one of the cycle providers that carry out the
low-levelnn10operations or by a dedicated cycle provider in
order to increase (pipelined) parallelism. Pure, dedicated cy-
cle providers are also necessary in this example if one of the
real estate data providers is not capable (e.g., not enoughmain
memory) or not willing (e.g., for security reasons) to serve as
a cycle provider.

2.3 Quality of service (QoS)

As seen in the real estate example query, query execution in
ObjectGlobe can involve a large number of different function,
cycle, and data providers. A traditional optimizer produces a
plan that reads all the relevant data (i.e., considers all real-
estate data providers). Therefore, the plan produced by a tra-

real estate

nn_10

real estate real estate

data prov. A data prov. B data prov. Z

Fig. 5.Execution in a middleware system

ditional optimizer will consumemuchmore time and cost than
anObjectGlobe user is willing to spend. In such an open query
processing system it is essential that a user can specify quality
constraints on the execution itself. These constraints can be
separated in three different dimensions:

Result: there are several important properties of a query result
a user should be able to specify. For example, a user may
want to restrict the size of the result set returned by his/her
query in the form of a lower or an upper bound (an upper
bound corresponds to a stop after query [CK98]). Con-
straints on the amount of data used for answering the query
(e.g., at least 50%of the data registered for the theme “real
estate” should be used for a specific query) and its fresh-
ness (e.g., the last update should have happened within the
last day) can be used to get results which are based on a
current and sufficiently large subset of the available data.

Cost: since providers can charge for their services in our sce-
nario, a user should be able to specify an upper bound for
the respective consumption by a query.

Time: the response time is another important quality param-
eter of an interactive query execution. A user can be inter-
ested first, in a fast production of the first answer tuples and
second, in a fast overall execution of the query.A fast pro-
duction of the first tuples can be important so that the user
can look at these tuples while the remainder is computed
in the background.

52 R. Braumandl et al.: ObjectGlobe: Ubiquitous query processing on the Internet

In many cases not all quality parameters will be interesting.
As in real-time systems some constraints could be strict (or
hard) and others could be soft and handled in a relaxed way.

An overview of processing a query in the context of our
QoS management is depicted in Fig.6. The starting point for
query processing in our system is given by the description of
the query itself, the QoS constraints for it and statistics about
the resources (providers and communication links). As shown
in the figure, QoS constraints will be treated during all the
phases of query processing:

• The optimizer which generates the query evaluation plan
(QEP) looks for data providers which will contribute
enough and sufficiently current data so that the constraints
regarding completeness, cardinality, and freshness are ful-
filled.

• During optimization we estimate the quality parameters
of all enumerated sub-plans and plans. Only a plan which
fulfills all constraints is executed and its plan description
will be annotatedwith the quality estimations and resource
requirements for every sub-plan. Additionally, if the opti-
mizer can find equivalent alternatives for resources used
in the query evaluation plan, these are also annotated in
the plan. It should be noted here that the cardinality is es-
timated by the normal selectivity estimation mechanisms
of the optimizer, for example, by the use of histograms.

• During the plug phase, sub-plans are distributed to cycle
providers, functions are loaded from function providers
and connections to data providers are established.When a
sub-plan of a query uses the services of a specific provider,
it is checked, if the resource requirements resulting from
the quality constraints for that sub-plan can actually be
satisfied by this provider. For instance, the load of a cycle
provider is checked before the execution of a sub-plan is
started. If the load is too heavy, the sub-plan is demoted
to another cycle provider or the query is aborted. Other
actions admission control might carry out are to refine
the priorities of queries or, in extreme cases, to call the
optimizer in order to re-optimize a (sub-) plan [IEE00].

• During query execution, estimation errors by the opti-
mizer and fluctuations regarding resource availability for,
e.g., CPU time or network bandwidth, jeopardize the con-
straints on the quality parameters. Therefore, amonitoring
component traces the current status of these parameters for
every relevant sub-plan of the query. If this component de-
tects a potential violation of the quality constraints for a
sub-plan, it first tries to adapt the sub-plan so that it will
meet its constraints again, or if this is not possible, it will
abort the execution of this sub-plan. The plan adaptations
during the instantiation phase can be performed rather eas-
ily, because theplan is not instantiated yet.Theadaptations
for the execution phase have to conserve the work already
done by the plan until the adaptation was triggered. Thus,
these adaptations are more complex than those for the in-
stantiation phase.

In summary, the optimizer first generates a query evaluation
plan whose estimated quality parameters are believed to fulfill
the user-specified quality constraints of the query. For every
sub-plan the optimizer states the minimum quality constraints
it must obey in order to fulfill the overall quality estimations
of the chosen plan and the resource requirements which are

believed to be necessary to produce these quality constraints.
If, during the plug phase, the resource requirements cannot
be satisfied with the available resources, the plan is adapted
or aborted. The QoS management reacts in the same way, if
during query execution the monitoring component forecasts
an eventual violation of the QoS constraints.

2.4 Privacy and security requirements in ObjectGlobe

Safety is one of the crucial issues in an open and distributed
system like ObjectGlobe. ObjectGlobe provides the infras-
tructure to deal with the following privacy and security issues:

Protection of cycle and data providers:it has to be ensured
that the resources of the cycle and data providers are protected
from (possibly malicious) external operators loaded from un-
known function providers. Based on the Java security model,
all external query operators are therefore executed in a pro-
tected area, a so-calledsandbox(Sect.4.4).

Privacy and confidentiality:data and function code that is
processed in theObjectGlobesystem isprotectedagainstunau-
thorized access and manipulation. The communication
streams between ObjectGlobe servers are protected using the
well-established secure communication standards SSL (Se-
cure Sockets Layer) [FKK96] and/or TLS (Transport Layer
Security) [DA99,TLS] for encrypting and authenticating (dig-
itally signing) messages. Both protocols can carry out the
authentication of ObjectGlobe communication partners via
X.509 certificates [HFPS99,PKI]. Furthermore, confidential
information or function code is protected from being trans-
ferred to untrusted cycle providers by enforcing an authoriza-
tion scheme on the flow of data and operator code specified in
the site annotations of the query plan.

User authentication/anonymity:ObjectGlobe supports a
flexible authentication policy. Users and applications that only
access free and publicly available resources can be anony-
mous and no authentication is required. If a user accesses a
resource that charges and accepts electronic money, then the
user can again stay anonymous and the electronic money is
shipped as part of the “plug” step. Authentication is only re-
quired for authorization or accounting purposes of providers.
Cycle providers can also require authenticated external opera-
tors to restrict the function providers, e.g., to execute only code
originating from trusted sources within the same company or
Intranet.

Authorization: some providers constrain the access or use
of their resources to particular user groups. As already men-
tioned, providers can also constrain the information (function
code) flow to ensure that only trusted cycle providers are used
in the query execution plan. In general, providers apply their
own autonomous authorization policy and control the execu-
tion of, say, query operators at their site themselves. In order to
generate valid query execution plans and avoid failures at exe-
cution time,ObjectGlobemust knowabout theseauthorization

R. Braumandl et al.: ObjectGlobe: Ubiquitous query processing on the Internet 53

static plan adaptation

QEP with annotations:
- QoS constraints for subplans
- resource requirements
- resource alternatives

estimation resource
fluctuations

dynamic plan adaptation

errors

Resource statistics

abort abort

Execute

admission control:

PlugOptimize

QoS monitoring:

QoS Constraints

Query

Meta-Data

Lookup

Fig. 6.The interaction of query processing and QoS management

constraints, which means, that they must be incorporated in
its lookup service.

2.5 Comparison to other system architectures

Distributed database systems have been studied since the late
1970s in projects like System R∗, SDD-1, or Distributed In-
gres. A survey of existing distributed query processing tech-
niques studied in these projects is given in [Kos01]. Object-
Globe shareswith all theseprojects the vision that a distributed
system can be used as easily as a centralized system (i.e.,
transparency) and that good performance can be achieved by
sophisticated query optimization. The architecture of Object-
Globe is more general than that of a traditional system like
System R∗. In a traditional system, every site acts as a data
and cycle provider which executes built-in query operators;
obviously, ObjectGlobe supports such a scenario as well. In
addition, ObjectGlobe provides the flexibility to integrate ex-
ternal operators and a large number of non-database (legacy)
data sources.

Today, external operators and/or legacy data sources are
typically integratedusingamiddlewarearchitecture; examples
areGarlic [C+95] from IBM, InformationManifold [LRO96],
TSIMMIS [PGGMU95], DISCO [TRV98] or Tukwila
[IFF+99]. Again, ObjectGlobe’s architecture is more flexible,
resulting in better performance. Let us see how our example
query shown inFig.2would beprocessed in amiddleware sys-
tem.As shown in Fig.7, middleware systems can only exploit
the (limited) query processing capabilities that are hard-wired
into the (legacy) data sources. If new operators are needed,
such aswrapS and thumbnail, these operators are executed
at a central middleware site. This is also true for distributed
middleware systems like AmosII [JKR99], because the cor-
responding server processes are restricted to the mediator’s
capabilities and cannot be extended by dynamically loaded
mobile code. This means that only specific servers, which can
be prepared by a user in advance, can execute his/her appli-
cation specific code. In Fig.4 the ObjectGlobe version of the
nearest neighbor example plan is depicted. In contrast to the
traditional execution plan of middleware systems as shown
in Fig.5 the ObjectGlobe plan, which uses dynamic opera-
tor loading, can exploit parallel execution of several nearest
neighbor operators and causes much less network traffic. As a
result, a middleware system incurs high communication costs
for shipping the data to the middleware; i.e., for data shipping
[FJK96].ObjectGlobehelps reducesuchcommunicationcosts

by allowing one to execute new and external query operators
at or near the data providers.

Various aspects of the ObjectGlobe project have already
been studied in other projects. The notion of an open mar-
ketplace in which different providers compete for queries is
borrowed from Mariposa [SAL+96] – even though Object-
Globe does not enforce a particular business model like Mari-
posa. Mariposa also has some notion of QoS, but we consider
user-defined quality constraints during all phases of query ex-
ecution, whereasMariposa tries to obey these constraints only
during its plan fragmentation step, which takes place after op-
timization. We believe that this is not sufficient in such an
Internet-wide open query processor.

Extensibility has been studied in a number of database
projects, e.g., Postgres [SR86], Starburst [HCL+90], or more
recently in Predator [SLR97]. The safe execution of external
functions has been studied in [GMSvE98], but the scope of
that work is too limited for our context.

There has also been a large body of related work on the
integration of services in open distributed object systems. The
most prominent examples are Jini [Wal99] and CORBA
[MZ95]. A related lookup service is HP’s Chai (Plug & Play)
system [HPI99]. The UDDI standard [UDD00] defines a
framework for the management of meta-data about electronic
commerce Web services. Architectures for distributed object
systems have been devised in the SHORE [CDF+94], Ninja
[GWBC99], andAutO [Kri98] projects. TheAutO project was
also conducted at the University of Passau and we adopted
many results such as the AutO security model and infrastruc-
ture forObjectGlobe.As part of theNinja project, a secure dis-
tributed directory service has been developed [CZH+99]. Ob-
jectGlobe’s lookup service also bears somesimilarity toX.500
[CCI88] and LDAPdirectory services [WHK97].Whatmakes
ObjectGlobedifferent fromall theseworks is thatObjectGlobe
is capable of complex query processing; that is, a single Ob-
jectGlobe query can involve the lookup and execution ofmany
different services and it requires optimization because of the
large amounts of data that need to be processed. In this re-
spect, ObjectGlobe’s lookup service is similar to [MRT98]’s
WebSemantics project which usesWeb documents to publish
the location of components (wrappers and data sources) and
a uniform query language to locate data sources based on this
meta-data and to access the sources.

In other lines of work, researchers have tried to “query the
Web” using languages like WebSQL [MMM97,KS98]; these
efforts, however, only support a navigational style of access of
Web pages. Junglee [GHR97] follows a data warehousing ap-
proach in order to integrate Internet data for query processing.

54 R. Braumandl et al.: ObjectGlobe: Ubiquitous query processing on the Internet

thumbnail

U
se

r-
D

ef
in

ed
 O

pe
ra

to
rs

Middleware System

data provider Bdata provider A

wrap_Sget get

S T

wrap_S

thumbnail
R

Fig. 7.Query evaluation in a centralized middleware system

Furthermore,Web site management has been studied in a few
recent projects, e.g., Strudel [FFK+98]. The goal of systems
like Strudel, however, is to improve the services (andmanage-
ability) of a single site, rather than integrating services from
multiple sites.

3 Generating query plans

In this section, we show howObjectGlobe produces a plan for
a query. In particular, we describe theObjectGlobelookup ser-
vicethat finds relevant resources for a query and the parser and
the optimizer that tries to find a good plan to execute a query.
The next section then shows how such a plan is executed. Cur-
rently, ObjectGlobe supports a subset of SQL; ObjectGlobe,
however, does support the use of external functions as part of
a query.

3.1 Lookup service

The lookup service plays the same role in ObjectGlobe as
thecatalogor meta-data managementof a traditional query
processor. Providers are registered before they can partici-
pate in ObjectGlobe. In this way, the information about avail-
able services is incrementally extended as necessary.A similar
approach for integrating various business services in B2B e-
commerce has been proposed recently in the UDDI standard-
ization effort [UDD00].

Weexpect the registration of providers’services to become
a similar market as the market for the providers themselves.
Thus, someone interested in using a service will register this
service; service providers themselves need not necessarily do
this on their own. For example, wrapper developers are of
course interested in registering data sources for which they
have written the corresponding wrappers. Such an incremen-
tal schema enhancement by an authorized user is possible in
the ObjectGlobe lookup service just as in any other database
system. This means, that an ObjectGlobe system is normally
not tailored for a specific data integration problem, but can
dynamically be extended with new data, cycle, and function
providers by augmenting the meta-data of its lookup service.

The ObjectGlobe parser and optimizer consult the lookup
service in order to find relevant resources to execute a query
andobtainstatistics.Furthermore,enduserscanuse the lookup
service to browse through the meta-data and search for avail-
able query capabilities and data sources for their applications.

3.1.1 ObjectGlobe’s meta-data

The ObjectGlobe lookup service records the following infor-
mation:

Data provider: each collection of objects stored by a data
provider and theattributesof each collection are recorded
by the lookup service.A collection is either a materialized
partition conforming to ObjectGlobe’s internal nested re-
lational format or a virtual collection, i.e., an Internet data
source transformed into the collection’s recorded schema
by a wrapper. Collections are associated to a specific
theme. A theme describes a special concept with a set
of terms, calledattributes. A theme’s attributes can be
viewed as the union of all attributes meaningful for the
theme. Queries are formulated over the themes and their
attributes. Integration of a new data source is achieved by
registering it as a new collection and associating it to a
theme. Thus, collections can be seen as horizontal (possi-
bly overlapping) partitions. The attributes provided by the
new collection must be a subset of the attributes defined
by the associated theme. Currently ObjectGlobe uses a
non-hierarchical set of themes, but more complex ontolo-
gies [BCV99] could be added on top of our flat theme
structure. As an example,www.HotelBook.com and
www.HotelGuide.com provide different collections
which are associated to the themehotel.
Furthermore, the lookup service stores binding patterns of
a collection, statistics about a collection like histograms
for estimating the selectivity of simple (i.e., non-external)
predicates, and information about replicas (i.e., mirrors)
of a collection, which could be provided by some other
data provider.

Cycle provider: the CPU power, size of main memory, and
temporary disk space of each cycle provider is recorded.
The load on the cycle provider regarding CPU power and
available main memory is stored as a function of time and
likewise we store the latency and bandwidth information
for the network links between cycle providers.

Function provider: the name and signature of each query op-
erator is recorded. Furthermore, formulas to estimate the
consumption of CPU cycles, main memory, disk space,
and the selectivity for each query operator are kept by the
lookup service. These formulas use a set of parameters
which describe the characteristics of the executing cycle
provider (e.g., the available CPU power/main memory)
and the input data for a specific application of this opera-
tor.

R. Braumandl et al.: ObjectGlobe: Ubiquitous query processing on the Internet 55

ObjectGlobe differentiates betweeniterators like join or
display andtransformerssuch asthumbnail. (In addition,
ObjectGlobe has also special categories forpredicatesand
aggregate functions.) Any kind of function, however, will
automatically be wrapped by ObjectGlobe into an iterator
so that we ignore these distinctions in this paper and use
thewordsfunctionandquery operatorinterchangeably for
the general concept.

Authorization information: the lookup service maintains au-
thorization informationwhich isobtained from theproviders
and indicates which data may be processed at which cy-
cle provider and by which query operator. To guarantee
privacy and confidentiality, the providers can also restrict
the flow of information (and code) in order to prevent
data (and functions) from being processed on untrusted
cycle providers. Following the ObjectGlobe authorization
model, it is possible to specify positive and negative au-
thorizations [RBKW91,BJS99]. In addition, it is possible
to group collections, functions, and cycle providers into
“authorization classes” – using role-based authorization
[SCFY96] – in order to reduce the overhead of maintain-
ing and processing this information in the lookup service.

The Appendix shows an exampleRDFdocument that can be
used by a data provider to register ahotelcollection.Themeta-
data kept in the lookup service can be outdated or incomplete.
It is possible, for instance, that a data provider revokes the
privilege of some cycle providers to process its data without
notifying the lookup service; as a result, the execution of a
query might fail due to an authorization violation which is de-
tected at execution time. ObjectGlobe relies on data, function,
and cycle providers to notify the lookup service if important
meta-data changes. If a plan fails due to stale meta-data in
the lookup service, all the relevant meta-data is invalidated so
that providers that do not update their meta-data are eventu-
ally excluded from the ObjectGlobe federation. As an alter-
native, [CZH+99] proposes to use atime-to-livescheme; in
that scheme, providers must periodically contact the lookup
service if they want to continue to remain in the federation.

3.1.2 Using the ObjectGlobe lookup service

As mentioned before, data, function, and cycle providers are
registered by generatingRDFdocuments describing their ser-
vices. We useRDFbecause it is very flexible and a WWW
standard for describing resources [BG99]. Typical collections,
such as relational orXMLdata sources, can very easily be de-
scribed usingRDF; it is also possible to automatically produce
large fractions of anRDFdescription from, say, anXML DTD
or a relational schema. AnRDFdocument is also used to up-
date themeta-data if a provider changes or extends its services
and the ID of anRDFobject is used to unregister (i.e., delete)
services.

To find relevant resources and retrieve statistics and autho-
rization information, the lookup service provides a declarative
query language. As an example, Fig.9 shows how to ask the
lookup service for all collections that supply data for theho-
tel theme. More specifically, the query of Fig.9 asks forhotel
collections which havecity, address, andpriceattributes and
the query asks for theuniqueId of the collection (used to
identify replicas) and information about allattributes. (The

“?” in the query is ananyoperator.) The result of this query
is shown in Fig.10; here, we show the results for thehotel
collection specified in theRDFdocument of the Appendix.

The lookup service also allows the definition of views.
These views can be materialized. Such materialized views are
very helpful to supportsessionsin which search results are
iteratively refined. For example, it is possible to first ask for
all cycle providers which are allowed to process objects of
a specific collection and then, in a separate search request,
ask which ofthesecycle providers are capable to execute a
specific query operator.2 This feature is important for parsing
and optimization and for users who interactively browse the
meta-data.

3.1.3 Implementation details

The lookup service is a distributed component of the Object-
Globe system and it is implemented in a hierarchical archi-
tecture (Fig.11). A relational database system serves as basic
data storage, mainly for the advantages in robustness, scala-
bility, and query abilities.Meta-data (i.e.,RDFdocuments) are
mapped to tables as described in [FK99]. Search requests are
translated into SQL join queries. This translation is not one-to-
oneas the lookupservicehides thedetails of how themeta-data
is stored. Lookup service clients, for example, can ask for all
cycle providers that are allowed to process objects of a spe-
cific collection. The lookup service will answer such a query
considering all groups of cycle providers aswell as all positive
and negative authorizations. Translating search requests into
SQL queries is quite complicated (albeit straightforward) and
describing all the details is beyond the scope of this paper.
Figure 11 shows the following lookup service components:

Providers: cycle, data, and function providersregister their
services and resources at one of the backbone meta-data
providers (MDPs).

Meta-data providers: thebackboneof theMDPscontainsglobal
meta-data, usable by everyone on the Internet. The data
registered at the backbonemeta-data providers is kept con-
sistent, i.e., the meta-data is replicated between the MDPs
of the backbone. If some data is updated at one MDP, the
update is propagated to the other MDPs of the backbone.

Local meta-data repositories: basically, a local meta-data
repository (LMR) cachesmeta-data of anMDP. If this data
is changed (at an MDP), all caching LMRs are notified.
Rules (similar to queries) are used to specify which meta-
data should be cached. An LMRsubscribesto an MDP
and registers its subscription rule set. The MDP uses the
rule set to determine the local meta-data repositories to
which newly registered meta-data must bepublished. It is
also used to forward update notifications to LMRs.
Additionally, an LMR stores local meta-data that should
not be accessible to the public. Therefore this meta-data is
not forwarded to any MDP.
For efficiency reasons (note that the meta-data lookup is
a part of the query optimization) search requests are pro-
cessed by LMRs only.An LMRuses only local and cached

2 Of course, these cycle providers could also be found in a single
search request.

56 R. Braumandl et al.: ObjectGlobe: Ubiquitous query processing on the Internet

selectprice, address
from hotel
wherecity=’NewYork’

Fig. 8.SQL Query

searchPartition d
selectd.uniqueId, d.attributes.∗
whered.theme.name=“hotel”
and d.attritutes.?.topic=“city”
and d.attritutes.?.topic=“address”
and d.attritutes.?.topic=“price”

Fig. 9.Example search query

<collection>
<uniqueId>4711</uniqueId>
<attribute topic="city" domain="String"/>
<attribute topic="price" domain="Integer"/>
<attribute topic="address" domain="String"/>

</collection>

Fig. 10.Example search result

Provider
Resourcesregister

resources
register

Meta-data

real estates

Provider
Backbone

resources

Repositories for
Meta-datasubscribe

publish

Specialized Topics

data provider

BrowserObjectGlobe
Parser

Lookup Service
Clients

subscribe

publish

function provider

local meta-data

nn_10wrap_S

thumbnail

local meta-data

meta-data
provider

meta-data
providerprovider

repository

meta-data

repository

Fig. 11.The architecture of the lookup service

meta-data to evaluate a search request. Only explicit MDP
requests are forwarded to an MDP.

Lookup service clients: clients access the lookup service by
connecting to anLMRandstating queries using the lookup
service’s query language. Figure11depicts twoclients, the
ObjectGlobe parser and an end user browsing the meta-
data of an MDP and an LMR.

Typical subscribers to anMDPwill register hundreds of rules.
The set of all registered rules is called thesubscription rule
base. If new meta-data is registered, updated, or deleted at an
MDP, all registered rules must be evaluated. To improve per-
formance, an MDP applies a prefilter algorithm that takes the
modifiedmeta-data andefficiently determinesa superset of the
rules that are affected by themodification. In a second step, all
rules of this superset are evaluated incrementally using only
the modified meta-data. Only some special rules require addi-
tional, unmodified meta-data to be included in the evaluation.
All basic parts of the prefilter algorithm are mapped to SQL
queries executed by the RDBMS used as data storage. The
scalability of RDBMSs regarding a great amount of data and

multiple queries at a time is used by the lookup service’s pre-
filter algorithm to gain scalability in terms of a large database
and amultitude of subscription rules stemming from themany
LMRs.Additionally, the lookup service’s architecture itself is
scalable in terms of the number of users by adding additional
LMRs when necessary. A forthcoming paper describes this
part of the lookup service in more detail [KKKK01].

3.2 Parser and optimizer

Plans for a query are generated by the ObjectGlobe query
parser and optimizer. As shown in Fig.1, the parser looks up
the relevant resources for a query and the optimizer produces
a plan based on (a subset of) these resources.

3.2.1 Parser

The main effort carried out during parsing is to issue search
requests to the lookup service in order to discover all relevant

R. Braumandl et al.: ObjectGlobe: Ubiquitous query processing on the Internet 57

Query
Collection

C2
Collection

C3

Theme "hotel"

Collection C1

Fig. 12.Relationship of theme, collections, and query attributes

resources (i.e., collections, functions, and cycle providers).
The parser aborts the processing of a query if for some part of
the query, no resources can be found. Relevant collections are
found using thethemesandattributesspecified in a query. All
themes used in the query’sFROMclause and their correspond-
ing attributes used in theSELECTandWHEREclauses define
the query’s schema. The relationship between the attributes
used in a query, the attributes recorded for collections in the
lookup service, and the attributes of a theme are depicted in
Fig.12. For everythemereferred to in the query, the parser
queries allmatchingcollections from the lookup service; a
collection matches if it is associated to the requested theme
and provides a superset of all attributes used in the query. For
example, assume the SQL query given in Fig.8. From this
query the parser determines a schema consisting of the at-
tributeshotel.city, hotel.address, hotel.price, represented by
the gray filled circle in Fig.12. To find all relevant collections
the parser queries from the lookup service all collections as-
sociated to thehotel theme (collections C1, C2, and C3) and
providing at least the attributescity, address, andprice (only
collections C2 and C3). The resulting search request to find
relevant collections for the query of Fig.8 is given in Fig.9.

As Fig.12 shows, collections may provide more attributes
than are actually used in a query. In the execution phase, the
schema of a collection is projected to the schema required by
the query execution plan. Thus, in Fig.12, the operator used to
access collection C2 will not return all attributes represented
by the dashed circle C2, but only the attributes of the intersec-
tion of the sets C2 and Query (the attributescity, address, and
price).

Likewise, the parser looks for function providers for each
external function used in a query; again, external functions
such asthumbnailcan have several implementations from dif-
ferent function providers; all implementations that match the
right nameand signature are considered.Query operators such
as join, union,or display are typically implicit in a query;
for join andunion the parser will consider built-in variants
and all variants provided by function providers. Fordisplay,
the parser will always consider ObjectGlobe’s built-in variant
which producesXMLto represent query results; the parser will
only consider a differentdisplayoperator if this is explicitly
requested.

In theory, every cycle provider can be useful to execute
a query. Consideringall cycle providers for every individual
querywould simplybe infeasible.Tofind relevant andinterest-
ing cycle providers, data and function providers can register a
set ofpreferred cycle providersto handle their data or execute
their functions; this set of preferred cycle providers will typi-
cally include the machines of the data or function provider. In

addition, each ObjectGlobe end user (or application program-
mer) can specify a set of preferred cycle providers; this setmay
include the client machine of the user. For a given query, the
parser determines the overall set of interesting cycle providers
from the preferred cycle providers of the user and of all rele-
vant data and function providers. From this set, the parser will
further prune cycle providerswhich are clearly not useful, e.g.,
cycle providers which are not allowed to process any function.
It should be noted that registering preferred cycle providers is
optional; therefore, it is possible that the parser stops process-
ing a query if neither the user nor any relevant data or function
provider have specifiedpreferred cycle providers, although the
query could be executed usingnon-preferredsites.

In addition to discovering the relevant resources, the parser
consults the lookup service in order to retrieve all available
statistics and authorization information.As a result, the parser
produces a (quite complex)XMLdocument which is then used
by the optimizer in order to generate a plan. Figure 13 shows
how the authorization and applicability information is repre-
sented as acompatibility matrixfor the collections, functions,
and cycle providers of the example of Sect.2.2. For each rel-
evant data collection such a compatibility matrix is generated
by the parser. A point at(c, f) in a matrix of a collection is set
if cycle providerc is authorized to see the collection, function
f is authorized to process objects of the collection,c is autho-
rized to executef , andc is capable of executingf (i.e., has
enough memory and disk space). For instance,wrapSmay
be executed at all cycle providers in order to read collection
S, but it may obviously not be used anywhere to read collec-
tion R or T . In the matrix, built-in query operators such as
display, scan, andjoin are treated in the same way as external
functions (e.g.,thumbnailandwrapS); it would be possible,
for instance, that a cycle provider only allows its own join
methods to be executed on its machines.

3.2.2 Optimizer

The goal of the optimizer is to find a good plan to execute a
query, if a plan exists. The “if a plan exists” part is important
because the ObjectGlobe optimizer, unlike a traditional opti-
mizer, might sometimes fail to find a plan, even if the parser
was able to discover relevant resources. First of all, limita-
tions due to authorizations can make it impossible to find a
valid plan; for instance, it might happen that two collections
cannot be joined because there is no cycle provider that has
permission to see both collections. Furthermore, ObjectGlobe
users and applications can specify quality parameters for the
query execution itself as described in Sect.2.3. For example,
if the user’s upper bound for the costs of a query is 10and the
optimizer does not find amatching plan for this constraint, the
user is informed about this fact and no query execution takes
place.

The optimizer enumerates alternative query evaluation
plans using a System-R style dynamic programming algo-
rithm. That is, the optimizer builds plans in a bottom-up way:
first, so-calledaccess plansare constructed that specify how
each collection is read (i.e., at which cycle provider and with
which scanor wrapper operator). After that,join plansare
constructed from theseaccess plansand (later) from simpler
join plans. To deal with unary external functions and pred-

58 R. Braumandl et al.: ObjectGlobe: Ubiquitous query processing on the Internet

✻

function

✲

cycle provider

Cl. = Client A B Cl.

scan(R)

wrapS

scan(T)

thumbnail

join

display

✉

✉ ✉ ✉

✉ ✉ ✉

✉

A B Cl.

scan(R)

wrapS

scan(T)

thumbnail

join

display

✉ ✉ ✉

✉ ✉

✉

A B Cl.

scan(R)

wrapS

scan(T)

thumbnail

join

display

✉

✉✉

✉ ✉

✉

︸ ︷︷ ︸

R

︸ ︷︷ ︸

S

︸ ︷︷ ︸

T

Fig. 13.Compatibility matrices for the example of Sect. 2.2

icates, the dynamic programming algorithm is extended as
described in [CS96]. In every step, the quality of each plan is
estimated and inferior plans are pruned in order to speed up
the optimization process. Rather than presenting the full de-
tails of the ObjectGlobe optimizer, we would like to highlight
the peculiarities that make the ObjectGlobe optimizer special:

Quality of service model.The support for user defined QoS
constraints on queries makes it necessary to use a more gen-
eral measurement model for query plans than the usually im-
plemented cost models. In contrast to the traditional one-
dimensional cost assessment ourQoS modeluses a separate
dimension for every quality parameter, like response time,
monetary cost, and result cardinality. All these dimensions
span a space, which we call QoS space, and the user-defined
constraints determine an area in that space, which we call
QoS window. This is shown in Fig.14 for a (simplified) three-
dimensional QoS space. During optimization every enumer-
ated plan is mapped to a point in that QoS space by estimating
the value for every quality parameter, which appears in the
quality model. Only plans which lie within the QoS window
fulfill the user constraints. As shown in [GHK92], where we
borrowed the basic ideas for multi-dimensional optimization,
pruning can only work with a partial order in such a setting.
This is depicted in Fig.15, where we restricted the QoS space
even further to only two dimensions in order to simplify the
illustration. The figure shows, for example, that the planP1
is superior regarding time and cost consumption to the plans
P4 andP5. AlthoughP1 produces the query result faster, its
execution is cheaper than the execution ofP4andP5.P1,P2,
andP3 are incomparable, but onlyP1 andP2 are candidate
plans, becauseP3 lies outside the QoS window. The arrows
emanating from these incomparable plans mark the area in
the QoS space, which is dominated by the respective plan.
The planP4 lies inside the QoS window (i.e., the plan fulfills
the user constraints), but it is no candidate plan, because it is
dominated by the plansP1 andP2 both of which are superior
toP4 in all dimensions of theQoS space. Thus,P1andP2are
the only plans “surviving” the pruning. The decision between
P1 andP2 is made according to a heuristic, which chooses
the plan with the largest, minimumnormalized distance to any
of the borders of the QoS window.

Cost

Response
Time

Cardinality
of Result

max

min

max

QoS Window

QoS Space

Fig. 14.The QoS space and the QoS window

P4

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

����������������������������

Time

Cost
0

QoS Window

P3

P5

P1

P2

Fig. 15.The partial order for plans

To estimate the quality parameters of a plan the optimizer
relies on the statistics and measurement functions registered
in the lookup service. In the absence of such statistics, the
ObjectGlobe optimizer willguess(i.e., use default values),
just as any other optimizer. Work on assessing plans in dis-
tributed and heterogeneous query processors without explicit
knowledge of the involved data sources has been reported in
[ROH99] and we are extending our framework along the lines
of this work. For a more detailed description of QoS in Ob-
jectGlobe the interested readers are referred to [BKK01].

Optimization goal.The optimization goal of our optimizer is
closely related with the goal of the QoS management compo-

R. Braumandl et al.: ObjectGlobe: Ubiquitous query processing on the Internet 59

nent. There are two obvious goals for our QoS management
component and the first one concerns query optimization:

• The percentage of successful queries, whose quality con-
straints could be fulfilled, should be maximized. This per-
centage is calculated based on the overall number of
queries which are issued and not only on the number of
those for which a constraint compliant query plan could
be determined.

• The execution of queries which cannot fulfill their QoS
constraints, should be stopped as early as possible.

A query can only meet its quality constraints, if it gets a suf-
ficiently good service from all involved providers. The diffi-
culty in achieving a high percentage of QoS compliant queries
is to find at optimization time a query plan that uses providers
which can provide for a sufficiently good service at execu-
tion time. The optimizer uses estimates about the providers to
construct such a query plan and the question is now whether
these estimates also hold during execution.We cannot always
work with resource reservations at optimization time because
the administrative overhead and the inherent reduced resource
utilization are not acceptable for all providers. In our approach
we exploit that different queries often have different demands
at specific providers (e.g., batch queries in contrast to interac-
tive queries). For every involved provider we explicitly state
these demands in the form of resource requirements and qual-
ity constraints in the query plan. During the plug- and execu-
tion phases, we can use this information in order to check, if
the demands of a query are really affected by other queries.
Every query which seems to miss its quality constraints, tries
to get a greater share on the resources of the provider at the
expense of queries which can work sufficiently with a smaller
share. If such an adaptation is not possible and the query will
not fulfill its QoS constraints our second goal demands to stop
the query in order to save the time and money of the user.

Compatibility matrix. During query optimization every plan
is annotated (among others) with a compatibility matrix. The
compatibility matrix of an access plan is identical with the
compatibility matrix generated by the parser for the corre-
sponding collection (13). The matrix of a join plan which
is composed of two sub-plans is generated by ANDing the
two compatibility matrices of the two sub-plans, resulting in
a more restrictive matrix.

Sanity checks.Some sub-plans can be immediately discarded
during plan enumeration based on the sub-plan’s compatibil-
ity matrix. As an example, consider the following situation:
collectionsR1 andR2 belong to the same themeR and a
query is interested inf(R) for some external functionf . For
collectionR1, f may only be executed by cycle providerx;
for collectionR2, f may only be executed by cycle provider
y. Now a sub-planR1 ∪R2 can immediately be discarded be-
cause there is noway to executef on top ofR1∪R2 (neitherx
nory work); in other words, theR1∪R2 plan has no points set
in thef row of its compatibility matrix. (Note, however, that
anf(R1) ∪ f(R2) plan is valid, if it is equivalent.) If several
variants off exist, then theR1 ∪ R2 plan can be discarded if
there is no point set in theshelf of f rows. (A shelf is a set

of rows in the matrix for different variants of the same func-
tion.) Obviously, a plan can also be immediately discarded if
an estimated value for one of its quality parameters exceeds
the specified limit.

We also carry out more sophisticated sanity checks at the
beginning of query optimization. For example, there must be
at least one cycle providerwhich haspermissionand is capable
to execute thedisplayoperator for each collection. Typically,
this must be the client machine at which the query was issued.
If such a cycle provider does not exist, then no plan exists
and the optimizer can stop without enumerating any plans.
In theory, such sanity checks that span several compatibility
matrices could be applied in order to discard certain sub-plans
during the plan enumeration process; since these sanity checks
are quite costly, however, they are only carried out once, at the
beginning before plan enumeration starts.

UNION queries.As shown earlier, collections can be hori-
zontal partitions which need to beunionedand different col-
lections of the same theme can have different authorization re-
quirements (i.e., different compatibility matrices).As a result,
the optimizer must consider each collection individually, even
collections of the same theme which are not treated individ-
ually by traditional optimizers. Considering every collection
individually involves extending the dynamic programming al-
gorithm for plan enumeration; essentially, the optimizer enu-
meratesR1 ∪ R2 in the same way as a two-way join plan and
R1 ∪ R2 ∪ R3 in the same way as a three-way join plan, if
R1, R2, R3 belong to the same theme. The ObjectGlobe opti-
mizer would also consider plans like(R1 ∪ R2) ✶ S as well
as(R1 ✶ S) ∪ (R2 ✶ S) for queries that involve these three
collections.

IDP. Evidently, the search space can become too large for
full dynamic programming to work for complex ObjectGlobe
queries. To deal with such queries, we developed another ex-
tension that we calliterative dynamic programming(IDP for
short).IDP is adaptive; it starts like dynamic programming
and if the query is simple enough, thenIDP behaves exactly
like dynamic programming. If the query turns out to be too
complex, thenIDP applies heuristics in order to find an ac-
ceptable plan. Details and a complete analysis ofIDP is given
in [KS00].

4 Query plan distribution and execution

As mentioned before, ObjectGlobe was implemented in Java
for two reasons: portability and security. In this section we
will describe how we utilized Java’s features to achieve ex-
tensibility and query operatormobility without compromising
security.Wewill also describeObjectGlobe’smonitor concept
for controlling the progress of distributed query plans.

4.1 Distributing query evaluation plans

Query plans are distributed in a straightforward way using the
cycle-providerannotations of the iterators in the plan. Every

60 R. Braumandl et al.: ObjectGlobe: Ubiquitous query processing on the Internet

cycle provider loads the code of the external operators with
a specialized ObjectGlobe class loader (OGClassLoader); the
URLof the code is given in thecodebaseannotation. If a cycle
provider requires that the code is signed (authenticated), then
the OGClassLoader will check the signature of the code. Fur-
thermore, all communication paths are established by (built-
in) send and receive iterators. If desired (i.e., specified in the
annotations of the plan) secure communication paths are es-
tablished using secure protocols (Sect.2.4).

4.2 Authentication and authorization

If a provider restricts the use of its resources and therefore re-
quires some kind of authentication of users the authentication
information will be part of the query plan (again, as part of
an annotation). Two possible authentication schemes are sup-
ported: (1) auser canprovideapassword.Thepassword isused
to generate a secret key (using the PKCS#5 Password-Based
Encryption Standard [RSA99]) which is afterwards used to
calculate a MAC (MessageAuthentication Code) of the query
plan and some additional data; and (2) The user possesses a
valid X.509 certificate [HFPS99,PKI]. The certificate is used
to calculate a digital signature of the query plan and some
additional data.

Oneproblemremains.What if adataproviderdoesnot sup-
port one of these schemes, i.e., requires the password in plain
text?Thepassword is included (as authentication information)
in the query plan. The wrapper accessing the data provider ex-
tracts the password and passes it to the data provider. To keep
the password secure it is encrypted with the public key of the
cycle provider that executes the wrapper. Thus, no other cycle
provider is able to access the plain password.

Authorization is carried out by the individual providers
when a query is instantiated. Each provider autonomously de-
cides if it allows the local execution of the query plan de-
pending on the local policy. Most providers will delegate this
decision to a local security provider which is included in the
ObjectGlobe system. Data providers may also have their own
security system (as most DBMSs have) that they can use in-
stead of the ObjectGlobe security provider.

The security provider uses a role-based access control
(RBAC) model [SCFY96] to specify authorization rules.
RBAC distinguishes between users, roles which are assigned
to users and permissions which are assigned to roles. Object-
Globe provides permissions for allowing or denying access to
a relation (i.e., executing a wrapper), loading and executing
an operator and using a cycle provider (i.e., execute a query
plan at the cycle provider).

4.3 Extensibility

To integrate an external function, a function provider must
implement a simple predefined interface. To implement an
iterator, for example,open , next , close , and reopen
methods must be implemented following the iterator model
described in [Gra93]. The interface of other external functions
(e.g.,transformerssuch as thumbnail) is simpler; these exter-
nal functions are wrapped by generic (built-in) ObjectGlobe
iterators.

In the following we briefly describe theopen method for
iterators, since it has a special requirement. Theopen method
returns an object of a class namedTypeSpec . Such an object
describes the type of the tuples which will be produced with
every call of thenext method. Type specifications are also
recorded in the lookup service; just like authorization informa-
tion, however, the type specifications recorded in the lookup
service might be outdated or incomplete. Based on these (run-
time)TypeSpecs polymorphic functionscanbeconstructed.
Furthermore, it is possible to compute theouter unionof two
collections that have different attributes; for example, twoho-
teldata sources on the Internet (e.g.,www.HotelBook.com
andwww.HotelGuide.com) might have slightly different
attributes and it is nevertheless possible in ObjectGlobe to
ask aSELECT *query that retrieves all attributes from both
sources.

4.4 Secure query engine extensibility

We have utilized Java’s security model [Oak98] to guaran-
tee security of ObjectGlobe servers while executing external
operators from possibly unknown function providers. Java‘s
five-layer security model is illustrated in Fig.16. Java is a
strongly typed object-oriented programming language with
information hiding. The adherence to typing and informa-
tion hiding rules are verified by the compiler and again by
the class/bytecode-verifier before a Class object is generated
from the bytecode because code could be generated by an evil
compiler. The class loader’s task is to load the bytecode of a
class into memory, monitor the loaded code’s origin (i.e., its
URL) and to verify the signature of the authenticated code.The
security manager controls the access to safety critical system
resources suchas the file system, network sockets, peripherals,
etc. The security manager is used to create a so-calledsand-
boxinwhichuntrustedcode is executed.Aspecial, particularly
restrictive sandbox is used, for example, by Web browsers to
executeApplets.TheObjectGlobesystem isbasedon the latest
Java Release 2, in which the Security Manager interfaces with
theAccess Controller. TheAccess Controller verifies whether
an access to a safety-critical resource is legitimate based on
a configurable policy, which is stored in thePolicyFile .
Privileges can be granted based on the origin of the code and
whether or not it is digitally signed (i.e., authenticated) code.
In addition, the Access Controller allows one to temporarily
give classes the ability to performan action on behalf of a class
that might not normally have that ability by marking code as
privileged. This feature is essential, e.g., for granting access to
temporary files as explained below. Finally, the Java program
is executed by the interpreter (the JVM) which is responsible
for runtime enforcement of security by checking array bounds
and object casts, among others. From a security perspective,
it is irrelevant whether or not parts of the code are compiled
by a just-in-time (JIT) compiler to increase performance.

Of course, it would be unreasonable to grant unprotected
access to system resources – such as the file system, the net-
work sockets, etc – to unknown code. Therefore, all external
operators are executed in a “tight” sandbox. Furthermore, the
name spaces of concurrent queries are separated from each
other (to be accurate every external operator runs within its
own namespace to avoid problems with name clashes and ver-

R. Braumandl et al.: ObjectGlobe: Ubiquitous query processing on the Internet 61

PolicyFile

SecurityManagerClassLoader Interpreter/JIT
code Verifier
Class-/Byte-Compiler

AccessController Fig. 16. Java’s five-
layer security model

sion mismatches). This way it is guaranteed, that they cannot
illegitimately exchange information via covert channels (“hid-
den communication paths”), e.g., via static class variables of
external operators. The name space separation is achieved by
using a new, dedicated class loader (calledOGClassLoader)
for each query. This class loader is responsible for loading any
additional functions beyond the built-in ObjectGlobe classes.
The code bases (i.e., the function providers) from which these
operators can be loaded are annotated in the query execution
plan. Since an external operator could abuse the connection to
a function provider as bidirectional communication channel,
all (non built-in) classes required by an external operator must
be combined into a JAR3 file. This archive file is loaded and
cached by a class loader and the connection to the function
provider is closed. All requests to non-built-in classes must
point to classes in the cached JAR file, otherwise they are re-
jected as illegal. Schematically, the name space separation and
the class loaders are illustrated in Fig.16a.

Some user-defined query operators may require access to
the cycle provider’s secondary memory in order to store tem-
porary results. Obviously, we cannot generally grant access
to the file system to any external operator. Instead, a particu-
lar built-in class, calledTmpFilehas to be used. This built-in
class provides a safe interface to create a temporary file, to
write into and read from the temporary file and to delete the
temporary file. Furthermore, aTmpFileobject ensures the au-
tomatic deletion of the corresponding file when it is garbage
collected. This way it is guaranteed that external operators
can only operate on temporary files that they created them-
selves (within the same query execution plan). This scenario
is illustrated in Fig.17b.

Access to network sockets is normally prohibited to exter-
nal operators to prevent them from sending any information
about the data they process (to unknown locations). This re-
striction needs to be relaxed when a cycle provider wants to
execute a wrapper which accesses data that is published by,
e.g., a Web server. Therefore the policy of the Access Con-
troller can be configured to allow a trusted and authenticated
wrapper to establish a connection to a particular host on a
given port. It is also possible to configure a relaxed policy that
gives this privilege to arbitrary wrappers. The more restrictive
policy situation is, for example, suitable for a wrapper access-
ing anFTPserver to fetch a file. Granting the right to connect
to this server to any external operator would allow operators to
store any kind of information at this server, which is certainly
not desirable. Themore relaxed policy is applicable if granting
access to a server is harmless, e.g., access to a server which
only sends up-to-date exchange rates for given currencies.

3 JAR (java archive) is a platform-independent file format that ag-
gregatesmany files (compressed) into one (like ZIP) and is supported
by the Java Runtime Environment.

The sandbox securitymodel cannot protect providers from
so-called denial of service attacks where malicious code over-
consumes CPU cycles or other resources. To protect cycle or
data providers from this kind of attack, accounting and au-
thentication can help for identifying intruders. We developed
a (system-dependent) java library based on the Java Virtual
Machine Profiler Interface (JVMPI) [Sun99], an (experimen-
tal) interface provided by Java Release 2. This library keeps
account ofmemoryandCPUusageof external operators, other
resources like the number of bytes written to secondary mem-
ory can be determined using pure Java.

As a part of a general accounting mechanism, we will de-
scribe our monitor component which is used to control the
progress of query operators. This way some simple overcon-
sumption problems, such as operators which maliciously or
accidentally consume resourceswithoutproducing results, can
be detected and repaired by halting the query execution.

4.5 Monitoring the progress of query execution

As we have mentioned in Sect.2.3, the optimizer determines
for each sub-plan of a query threshold values for the time and
cost consumption and the cardinality of intermediate results
which need to be met by the query execution in order to ful-
fill the user-defined quality constraints. Wrong estimates or
resource fluctuations can cause overdrawn thresholds, which
probably result in a violation of the quality constraints. There-
fore, our QoS management component monitors the query
execution in order to detect and to react on potential quality
violations.

As an important sub-task of this monitoring, we have to
check whether a query still makes any progress at all. The
execution of a distributed query can fail for a variety of rea-
sons: network failures, crashed servers, badly programmed
external operators, extremely overloaded servers, etc. With-
out precautions such failures can lead to live- or deadlocked
query execution plans, in which upper-level query operators
wait indefinitely for blocked sub-plans to deliver their results.
Therefore, it is important to monitor the progress of the query
execution and inform the participating ObjectGlobe servers
about failures.

4.5.1 Monitoring the liveliness of query execution

Each ObjectGlobe server uses a dedicated thread (we call it
themonitor thread) for detecting timed-out queries.Amonitor
thread operates on a data structure, which is organized as a
priorityqueue.Theobjects stored in thisqueue represent future
points in time and the object with the closest point in time has
the highest priority. Such an object (we call it atimeout object)
specifies an event inside a query, which has to occur in that

62 R. Braumandl et al.: ObjectGlobe: Ubiquitous query processing on the Internet

����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������

����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������

Query 1

Query 2

Query 3

(e. g. temporary files and network sockets)

access to local resources of the cycle provider

which are accessible

basic query operators

(e.g. TmpFile)
by external functions

runtime system

(namespace of the OG system)

classes of ObjectGlobe

(iterators) supplied

ObjectGlobe

by ObjectGlobe

interface to O
bjectG

lobe

sandbox for queries

Java Virtual Machine

system classloader

function providers
over the
Internet

OGClassLoader

namespaces for external functions

access to

access to class files in the CLASSPATH

OGClassLoader

OGClassLoader

iterators supplied by ObjectGlobe

external iterators

temporary
files

TmpFileTmpFile

sandbox for query

TmpFile

a b

Fig. 17. aSecurity of dynamically loaded code;b extending privileged access rights to user-defined operators

Monitor
Operator

Query 2Query 1
priority queue
for timeouts

Server 2

inform about failed sub-plans

terminates

sub-plan
a failed

insert
timeoutMonitor Thread

terminator 2

terminator 1

inform about failed sub-plans

Server 1

Server 3

Fig. 18.The architecture of the monitor component

query until the specified point in time has been reached. If
its time has expired, the monitor thread removes the timeout
object from the queue and checkswhether the associated event
has occurred. If this is the case, the object is discarded and
nothing else happens. Otherwise the affected sub-plan of the
query is assumed to beblockedand it is terminated by a special
“terminator” thread.Whenasub-plan is stoppeddue toanerror
condition in an operator, the ObjectGlobe servers, executing
the operators beneath and above the failed one in the plan
hierarchy will be informed about this fact. The sub-plans of
the operators below the blocked node will normally fail. The
operators above it could react to the failure in special ways
(also fail, rearrange the plan, execute an alternative sub-plan,
etc. [CD99]). The propagation of an error up the hierarchy

is performed by the standard exception handling mechanism
of Java "with a little help" from our send-/receive operator
pair for crossing network connections. The servers of child
operators cannot be informed with the exception mechanism.
A special (UDP) network protocol is used for this purpose.

So far, we have not mentioned where the timeout objects
come from.These objects are created by a special type of oper-
ator, themonitor operator. A monitor operator can be inserted
at arbitrary positions in a query evaluation plan, since it does
not change its input tuple stream. Positions where we will al-
ways insert monitor operators are above receive operators and
above any external operator. Its task is to observe the progress
of the actions performed by the sub-plan beneath. For exam-
ple, at the beginning of its open method a monitor operator

R. Braumandl et al.: ObjectGlobe: Ubiquitous query processing on the Internet 63

real estate

distances

cities

: Response Time

���
���
���
���
���

���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

: Cardinality

: Costs

account

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

overall

account
subplan

Fig. 19.QoS accounts of a query plan

real estate cities

Monitor Operator

distances

Check the

Action

Event

Event and Conditions

ECA-Rules

Fig. 20.Feedback loop for QoS adaptations

creates a timeout object for the event “end of open reached”
and inserts this object into the priority queue of the monitor
thread, while also keeping a reference to that object. After
that, the open method of its child operator is called.When the
method invocation returns, the timeout object is informed that
its awaited event has occurred.

The advantage of this architecture is that the decisions
about where to monitor in a query evaluation plan and with
whatparameters the timeoutsshouldbe initializedcanbemade
in a flexible manner. Setting timeouts is critical, just as in any
other system. One option is to set the timeout based on the
response time estimates of the optimizer. Another option is to
use a default value. Other operators and especially external
operators need not implement anything for the monitor com-
ponent. An overview of this architecture is given in Fig.18.

4.5.2 Monitoring the QoS of query execution

Monitor operators are not only used for observing the liveli-
ness of a query execution, but also measure the current status
of the quality parameters of the execution. As we have men-
tioned in Sect.3.2 the quality model, which is used for assess-
ing query execution plans during optimization, produces for
every sub-plan an estimated value for each quality parameter,
like response time, cost, and cardinality. These estimates can
be seen as balances of accounts, which can be positive or neg-
ative. A balance of 500 for the response time account and 100
for the cost account, for example, tell themonitor operator that
the execution of the sub-plan beneath it is allowed to last 500
time units andmay cost at most 100monetary units. For a car-
dinality account with a balance of -700 we can infer, that the
sub-plan should at least produce 700 result tuples.An example
account configuration is shown in Fig.19 for a query search-
ing for real estate, which are close to a bigger city (predicates
are not shown in the figure).

During query execution monitor operators keep track of
the number of tuples produced, the time and cost consumption
of the execution and some rates like cost or time consumption
per produced tuple. These rates are used for projecting the
past development of the quality parameters into the future.
For example, the formula

TN + RTN (CE − CN)

uses the time consumption for the production of all the tuples
so far (TN), the time consumption per produced tuple (RTN)
and the estimated and current result cardinality,CE andCN ,
to compute an estimate for the overall time consumption of
the sub-plan. If this estimate exceeds the balance of the corre-
sponding account, we expect that the overall execution of the
sub-plan will eventually violate the constraints for that quality
parameter.

The quality constraints of a query execution are mainly
jeopardized by inaccurate estimates during the optimization
phaseand resource fluctuations in thedistributedenvironment.
To ensure a prompt reaction of our forecasting mechanisms in
a changing environment we do not base the computation of
the consumption rates on the whole history of the query exe-
cution, but on a smaller, current window of it, i.e., we use a
moving average computation. A prompt signaling of a quality
loss event helps our QoSmanagement component in applying
a corrective adaptation of the execution early, so the adapta-
tion has more time to show an effect. If no adaptation seems
appropriate for a quality loss event, we also profit from an
early signaling, because we can stop the execution at an early
stage, when the consumption of time and cost is still low.

In the following we give an overview of the adaptations
which we apply on query execution plans. Naturally, the kind
of jeopardized quality parameter determines the set of useful
adaptations.

Prevention of response time violation.If a sub-plan seems to
miss its constraints on the response time, we can use adapta-
tions on the resource or the application level. On the resource
level, for example, we can change the priority of the respective
thread, themainmemoryallotment for the respectiveoperators
or we can renegotiate the network service quality, if the used
network supports itself QoS handling like an ATM network.
However, more promising are adaptations on the application
level like the activation of compression at runtime for the data
sent through a network link or the movement of complete
sub-plans together with their state from one cycle provider to
another – again, during the runtime of the query. For example,
if a monitor operator detects that a sub-plan suffers from too
small a percentage of CPU time which is available for it on a
cycle provider, the QoS management component can decide
to move this sub-plan with all its state information to another,
better suited cycle provider. The remainder of the sub-plan’s
work is thenperformedon thenewcycle provider.All the other
sub-plans of the same query above and beneath that sub-plan
are not affected by this move operation, because the relevant
communication links between the sub-plans are disconnected
and reestablished automatically by the runtime system of our
query processor.

64 R. Braumandl et al.: ObjectGlobe: Ubiquitous query processing on the Internet

Prevention of cardinality or completeness violation.If the
cardinality constraints or the completeness constraints are in
danger, we can use an adaptation accomplished by our union
operator, which establishes a new branch at runtime. This
means, that we integrate additional data sources in the query
execution, which were not involved in the original query exe-
cution plan. Of course, the information about these additional
data sources was appended to the plan during the optimization
phase.

Prevention of cost violation.If the costs of a sub-plan seem
to exceed the corresponding limit, we can try to reduce the
amount of processed data, by stopping input plans before they
are finished.Otherways for reducing cost consumption are the
movement of a sub-plan to a cycle provider, which charges
less money for the execution, or the exchange of externally
loaded functions, like thumbnail encoders, with versions, that
produce, for example, a result with a reduced quality, but with
less effort.

The application of an adaptation depends on a number of
conditions, as described above, and one must also see, that an
adaptation, which tries to remedy a pending quality loss in one
parameter, could make the situation worse for another param-
eter. Therefore, the application of adaptations is controlled by
an event-condition-action rule set, which is part of the feed-
back loop of the runtime QoS management. This situation is
sketched in Fig.20.

5 Usage of an ObjectGlobe federation

In the former sections we described the techniques used in the
ObjectGlobe system; now we deal with more global aspects
regardingapplicationscenarios.Firstwesketchsomecommon
network constellations of distributed information systems and
the security requirements they impose.After thatwegive some
ideas on how a highly dynamic e-commerce marketplace can
be implemented based on the ObjectGlobe system.

5.1 Usage scenarios and their security implications

The applications of an ObjectGlobe system can be distin-
guished according to the openness of the underlying network.
In the following paragraphswedescribe three different scenar-
ios with varying levels of openness and the resulting security
requirements.

Intranet

An Intranet is a controlled network within an organization
and therefore access is restricted to a limited group of au-
thorized users, the employees of the company. ObjectGlobe’s
cycle-, data-, and function providers are located within the
Intranet and all query operators are written by employees of
the company or bought from trustworthy third party suppli-
ers. Therefore, these operators can be executed in privileged
mode, e.g., these operators are granted privileges to access the

disk or establish network connections. To avoid that operators
are manipulated, they should be signed (authenticated) by a
responsible security administrator of theObjectGlobe system.
Extended privileges can then be restricted to these authenti-
cated operators. If there is a need for secure communication
(e.g., if there are outposts), ObjectGlobe can establish secure
communication channels itself or it can rely onunderlying net-
work layers (e.g., hard- or software enabling a virtual private
network).

Extranet

An Extranet is a network that is used by different companies,
e.g., by a company and its suppliers, forming a virtual enter-
prise. An important example for an extranet is an electronic
marketplace. There are many different scenarios how virtual
marketplaces can be run, but we assume in this example that
the core cycle- and function providers of the marketplace are
operatedbyan independentorganization,which isalso respon-
sible for authenticating (signing) external operators. Within
the Extranet these authenticated operators can be executed
with additional privileges. Every participant of the market-
place at least operates a data provider to supply its product
catalog and operators to access it, but it can operate additional
cycle providers, too. The task of such cycle providers could
be to execute external operators developed by the participants
themselves, either because the marketplace does not trust the
operators or because the participants do not want others to
execute their operators to prevent, e.g., decompilation of the
operators. As in the Intranet scenario there are several built-in
possibilities to achieve secure communication.

Internet

The (global) Internet is the most challenging environment. As
mentioned in Sect.4.4, protecting the sensitive resources of
cycle providers is necessary because external operators could
contain hostile code. There are a great deal of external op-
erators which are not signed or signed by unknown function
providers and, thus, cannot be trusted. With its effective se-
curity component ObjectGlobe is able to execute such oper-
ators in a protected sandbox, thereby guaranteeing security
and stability of the system. Furthermore cycle providers must
be protected against denial of service attacks. This is done
by monitoring resource consumption of external operators.
However, the existing monitoring component can only detect
simple overconsumption problems.

5.2 Example application scenario:
dynamic electronic markets

The ObjectGlobe architecture supports e-commerce in two
directions. On the one hand it enables the implementation of
current application scenarios on top of heterogeneous data
sources. That is, complete integration solutions of heteroge-
neous DBMSs based on ObjectGlobe’s query processing ca-
pabilities and wrapper technology can be developed. Even a
global information-sharing system can be architected as a dy-
namic ObjectGlobe federation due to its openness, scalability,

R. Braumandl et al.: ObjectGlobe: Ubiquitous query processing on the Internet 65

Marketplace

Real Estate

query: real estate and relocation

subquery: relocation

Relocation Agency

subquery: real estate

Private Individual

Fig. 21.Relocation marketplace

and decentralization. As another example, current electronic
marketplaces with their demand for integrated product cata-
logs, access to back-end data sources, and applications can
also be implemented with ObjectGlobe.

ObjectGlobe provides for more flexibility: it helps to de-
velop new business models and application scenarios. Fine-
grained application service providing of application logic in
the form of user-defined operators is achieved when providers
can charge for these services. Providers can confederate to
theme communities in order to offer complete service pack-
ages, e.g., relocation, travel, raw material, etc. In addition,
finding the right Internet data source, as one of the main
problems in the Internet, could be alleviated by specialized
providers offering meta-data or resource descriptions.

Since current e-commerce solutions for electronic mar-
ketplaces are mostly designed for the needs of large enter-
prises, which use complex enterprise resource planning sys-
tems (ERP-Systems), the majority of smaller enterprises re-
main excluded.While in existing solutions all available infor-
mation is mostly centralized (e.g., product and price informa-
tion, security information, special buyer-seller arrangements),
ObjectGlobe enables us to architect open and easily accessible
marketplaces.

Enterprises are able to participate in the marketplace, ei-
ther using complex ERP-wrappers or even simple text input
forms, appropriate to their back-office solution. Furthermore,
marketplace participants can define their own privacy policy
(within certain limits). Private information like prices, avail-
ability, conditions, or arrangements need not be stored cen-
tralized at the marketplace.

Figure 21 sketches an example marketplace application
where a complete service package can be requested. A pri-
vate individual searches for a real estate and relocation sup-
port. In contrast to existing marketplace solutions, users need
not search for each service separately and join the services
themselves to find the overall best/cheapest combination; the
ObjectGlobe marketplace provides this using a new query op-
erator. Private information like pricing conditions and avail-
ability are not stored centrally at themarketplace but remain at
the participants’ sites, i.e., under their direct control. For that
reason distributed sub-queries provide the requested data.

Bidders who want to participate only have to register their
service, i.e., data description, wrapper, or special query oper-

Table 1.Overheads of plan generation

Total lookup Avg. time Optimization

time per search time

Scenario I 5.64 s 0.47 s 0.83 s

Scenario II 5.64 s 0.47 s 0.07 s

ators, at the marketplace and extend the offered services. For
example, a painter can join the relocation marketplace above.
Using this approach, new service communities or service por-
tals can be established in the same easy and incremental way.
This scenario shows that ObjectGlobe helps in developing a
dynamically extensible electronic marketplace, in which new
data and service resources can easily be integrated.

6 Performance experiments

6.1 Overheads of plan generation

To determine the overheads of plan generation, we measured
the lookupandoptimizesteps of processing a five-way join
query. The optimizer ran on a Sun Ultra 10 workstation; the
lookup service ran on a Sun Ultra 1 workstation. There were
six relevant cycle providers and the optimizer considered three
different join variants (nested-loops, hash, and sort-merge).
We studied two different scenarios. In Scenario I, all joins
could be executed at all cycle providers; in Scenario II, joins
with two of the five collections could only be executed at one
specific cycle provider. Table 1 summarizes the results. Even
though the meta-database of the lookup service is very small,
most of the time is consumed in the lookup step; the reason is
that twelve search requests are required for this query and the
overhead of each search request is very high; clearly, we need
to tune this in futurework. The optimization time is acceptable
in this experiment (< 1 sec). The optimization time is much
lower for Scenario II than for Scenario I because the search
space is much smaller for Scenario II due to the authorization
restrictions.

6.2 Query execution times

6.2.1 Benefits of operator mobility

The followingexperiment shows thebenefits ofObjectGlobe’s
ability to execute query operators near data sources. We mea-
sured the execution time of a querywhich determines the hotel
in Berlin with the greatest number of hotel rooms. The infor-
mation about hotels is gathered from two Internet sites namely
HotelBook (www.hotelbook.com) and HotelGuide
(www.hotelguide.com). To perform this task wrappers
were used which first query a list of all hotels in a given city
and afterwards query detailed information for every single ho-
tel in this list; according to the query capabilities of the data
sources.Wemeasured twodifferent plans for this query, which
structurally correspond to the plans shown in Fig.4 and Fig.5,
except that we use a group operator instead of a nearest neigh-
bor operator. The traditional one is to execute the wrappers at
the client in Passau, the other one which is made available by

66 R. Braumandl et al.: ObjectGlobe: Ubiquitous query processing on the Internet

0

100

200

300

400

500

600

0 5 10 15 20

tim
e

(s
ec

)

daytime

central
distributed

Fig. 22.Centralized versus distributed execution of plans

ObjectGlobe is toexecute thewrappersand intermediategroup
operators at a cycle provider near the data sources. Because
it is impossible to execute the wrapper at the hosts serving
HotelBook or HotelGuide, we used a host in Maryland for
this experiment.

We executed these two plans every 2 h in a24-hour range
and as the results in Fig. 22 show that there is a clear benefit if
the wrappers are executed near the data sources, i.e., at a cycle
provider with a good network connection to the data sources.
Therefore, the latency time is reduced when the wrapper iter-
atively accesses the HotelBook or the HotelGuide database.
This experiment does not demonstrate how parallelism can be
used to speed up query execution, because the network costs
dominated the CPU costs by far, but performance gains from
parallelism can also be achieved with ObjectGlobe.

6.2.2 Costs of secure communication

The use of SSL sockets [FKK96] and therewith encryption
and Message Authentication Codes (MACs) is an effective
way to integrate secure communication into a distributed sys-
tem. But cryptographic algorithms have additional costs when
transmitting data across a network. To demonstrate this effect
we executed a simple scan-display plan and varied sites of
the scan operator and the usage of SSL. In all cases the scan
operator had to process 10MB of data. As Table 2 illustrates,
costs for encryption and MAC calculation can be neglected in
a WAN environment. The first column contains information
about where the scan and the display operatorswere executed4

andacrosswhat kindof network thedatawassent.The remain-
ing three columns list the times of query executions where the
data was not encrypted and no MAC was calculated (plain),
where only a MAC was calculated (SHA) and where both,
encryption and MAC calculation, were done (IDEA + SHA).
The first row shows that secure communication increases the
query execution time in LANenvironments (but theoverall ex-
ecution time is even with fully secured communication much
faster than query executions in aWANenvironmentwith unse-
cure communication). The second row shows that in a WAN

4 X →Y means that the scan operator was executed at host X and
the display operator was executed on hostY.

Table 2.Costs of secure communication in different network envi-
ronments

Plain SHA IDEA + SHA

scan[Passau→ Passau],

100 MBit LAN 3.54 s 5.31 s 11.86 s

scan[Mannheim→
Passau], WAN 81.93 s 81.86 s 82.04 s

environment there is no significant time difference between
secure and insecure query execution because costs for cryp-
tographic algorithms are CPU costs and are superimposed by
communication costs.

6.2.3 Costs of dynamic extensibility

One of the prominent features of ObjectGlobe is its dynamic
extensibility by external operators. There are, of course, addi-
tional costs caused by loading classes from the network and
the separation of name spaces of different queries compared
to loading locally available built-in operators. This separation
of name spaces is achieved by using an individual OGClass-
Loader for every query and it forbids the caching of Class ob-
jects for external operators. Instead, only the bytecode (rather
than the instantiated class object) of an external operator can
be cached and this bytecode is cached in a separate ClassFile-
Cache. To measure the overheads of loading an operator from
a remote site and from the ClassFileCache, we loaded built-in
and external operators of different size stored at different loca-
tions using our OGClassLoader: built-in operators from disk
and external operators from a local function provider in Pas-
sau and a remote function provider in Maryland. For external
operators, we measure three scenarios: (a) the bytecode is not
cached at all; (b) the bytecode is cached in theClassFileCache;
and (c) the operator is cached as a class object internally in
the OGClassLoader. Scenario (c) is used as a baseline and
simulates the behavior of a system without security measures.
Figure 23 shows the following effects:

• The costs for the initial loading of a class from disk or
network are very high (the +-lines in Fig.23) but can be
heavily reduced by caching the class object of built-in op-
erators or caching the bytecode of external operators (the
triangle lines).

• Comparing the×-lines (Scenario (c)) and triangle lines
(Scenario (b)), we see that the overheads to ensure secu-
rity are relatively high; compared to the overall costs of
query processing on the Internet, however, the overheads
for security can usually be neglected (less than a second
in all cases).

7 Conclusion

We have presented the design of ObjectGlobe, an open, dis-
tributed, and secure query processing system. The goal of Ob-
jectGlobe is to establish an open marketplace in which data,
function, and cycle providers canoffer/selltheir services, fol-
lowing some business model which can be implemented on
top of ObjectGlobe. End users and applications can use these

R. Braumandl et al.: ObjectGlobe: Ubiquitous query processing on the Internet 67

0.001

0.01

0.1

1

10

100

1000

10000

10 50 100

tim
e

[m
s]

size of class file [1000 byte]

class not cached
class cached by internal classloader
class cached by the OGClassLoader

0.001

0.01

0.1

1

10

100

1000

10000

10 50 100

tim
e

[m
s]

size of class file [1000 byte]

class not cached
class cached by ClassFileCache
class cached by OGClassLoader

0.001

0.01

0.1

1

10

100

1000

10000

10 50 100

tim
e

[m
s]

size of class file [1000 byte]

class not cached
class cached by ClassFileCache
class cached by OGClassLoader

aBuilt-In Operator b Ext. Op./Local Prov. cExt. Op./Remote Prov.

Fig. 23.Costs of loading an operator by the ObjectGlobe class loader

services with only little overhead. We gave details of the Ob-
jectGlobe lookup service, the query parser and optimizer, and
the runtime system. For each component, we showed the nec-
essary adjustments in order to produce valid plans and guar-
antee security and QoS at execution time.

The project started about three years ago. An earlier ver-
sionof this paperwaspresentedon theworkshop for e-services
[BKK+00] and a first demo was given at SIGMOD 99
[BKK99]. This demo involves twohotel servers (i.e., Hotel-
Guide, located in Switzerland, and HotelBook, located in the
USA), a server with images of tourist attractions (located in
Germany), a German server withcity information, and the
server of the German railways with all German train connec-
tions. This demo (available on our Web site) can be seen as a
simplified e-commerce platform for travel agencies.

Our current implementation is able to run the complete
parse – optimize – plug – execute process automatically given
a declarative query. While some of the ObjectGlobe compo-
nents are already quite sophisticated and highly tuned, work
on other components, for example, the QoS component, is
still in progress and we also need to do some fine tuning re-
garding the interaction of different components. For exam-
ple, we would like to reduce the number of queries that the
lookup service needs to process during parsing. Furthermore,
we would like to build data caches for ObjectGlobe. Besides
the work on meta-data management, optimization and QoS,
we recently startedanother project on security anddependabil-
ity in the ObjectGlobe context. The focus is on: (1) runtime
resource controlling in order to detect and combat denial of
service attacks; and (2) semi-automatic quality assessment of
external query operators, e.g., by data flowanalysis, automatic
stress testing, etc. In an upcoming cooperation project we are
building a more generic e-commerce application framework
that uses ObjectGlobe as the enabling technology to construct
scalable and open virtual marketplaces.

References

[BCV99] Bergamaschi S., Castano S., Vincini M. Seman-
tic integration of semistructured and structured data
sources. ACM SIGMODRecord, 28(1): 54–59, 1999

[BG99] Brickley D., Guha R.V. Resource Description Frame-
work (RDF)SchemaSpecification. ProposedRecom-
mendation. http://www.w3.org/TR/PR-rdf-schema,
WWW-Consortium, March 1999

[BJS99] Bertino E., Jajodia S., Samarati P. A flexible autho-
rization mechanism for relational data management

systems.ACMTransactions on Information Systems,
17(2): 101–140, 1999

[BKK99] Braumandl R., Kemper A., Kossmann D. Database
patchwork on the Internet (project demo description).
In: SIGMOD [SIG99] pp. 550–552

[BKK+00] Braumandl R., Keidl M., Kemper A., Kossmann D.,
Kreutz A., Pröls S., Seltzsam S., Stocker K. Object-
Globe: Ubiquitous Query Processing on the Internet.
In:Workshop on Technologies for E-Services, Cairo,
Egypt, September 2000

[BKK01] Braumandl R., Kemper A., Kossmann D. Quality of
service in an information economy. 2001. Submitted
for publication.

[C+95] Carey M., et al. Towards heterogeneous multimedia
information systems. In: Proc. of the Intl. Workshop
onResearch Issues inDataEngineering, pp. 124–131,
March 1995

[CCI88] CCITT International Telegraph and Telephone Con-
sultative Committee. The Directory. Technical Re-
port Recommendations X.500, X.501, X.509, X.511,
X.518-X.521, CCITT, 1988

[CD99] Cardelli L., Davies R. Service combinators for Web
computing. IEEE Transactions on Knowledge and
Data Engineering, 25(3): 309–316, 1999

[CDF+94] CareyM.,DeWittD., FranklinM.,HallN.,McAuliffe
M., Naughton J., SchuhD., SolomonM., TanC., Tsa-
talos O., White S., Zwilling M. Shoring up persistent
applications. In: Proc. of the ACM SIGMOD Conf.
on Management of Data, pp. 383–394, Minneapolis,
Minn., USA, May 1994

[CK98] Carey M., Kossmann D. Reducing the braking dis-
tance of an SQL query engine. In: Proc. of the Conf.
onVeryLargeDataBases (VLDB), pp.158–169,New
York, USA, August 1998

[CS96] Chaudhuri S., Shim K. Optimization of queries with
user-defined predicates. In: VLDB [VLD96] pp. 87–
98

[CZH+99] Czerwinsky S., Zhao B., Hodes T., Joseph A., Katz
R.H. An architecture for a secure service discovery
service. In: Proc. of ACM MOBICOM Conference,
pp. 24–35, Seattle, Wash., August 1999

[DA99] Dierks T., Allen C. The TLS Protocol Version 1.0.
ftp://ftp.isi.edu/in-notes/rfc2246.txt, January 1999

[FFK+98] Fernandez M., Florescu D., Kang J., Levy A., Suciu
D. Catching the boat with Strudel: experiences with a
web-site management system. In: SIGMOD [SIG98]
pp. 414–425

[FJK96] Franklin M., J´onsson B., Kossmann D. Performance
tradeoffs for client-server query processing. In: Proc.

68 R. Braumandl et al.: ObjectGlobe: Ubiquitous query processing on the Internet

of theACMSIGMODConf. onManagement of Data,
pp. 149–160, Montreal, Canada, June 1996

[FK99] FlorescuD.,KossmannD.StoringandqueryingXML
data using an RDBMS. IEEE Data Engeneering Bul-
letin, 22(3): 27–34, 1999

[FKK96] Frier A., Karlton P., Kocher P. The SSL 3.0 Protocol.
Netscape Communications Corp.,
http://home.netscape.com/eng/ssl3, November 1996

[GHK92] Ganguly S., HasanW., Krishnamurthy R. Query opti-
mization for parallel execution. In: Proc. of theACM
SIGMOD Conf. on Management of Data, pp. 9–18,
San Diego, Calif., USA, June 1992

[GHR97] Gupta A., Harinarayan V., Rajaraman A. Virtual data
technology. ACM SIGMOD Record, 26(4): 57–61,
1997

[GMSvE98] Godfrey M., Mayr T., Seshadri P., v. Eicken T. Se-
cure andportable databaseextensibility. In: SIGMOD
[SIG98] pp. 390–401

[Gra93] Graefe G. Query evaluation techniques for large
databases. ACM Computing Surveys, 25(2): 73–170,
1993

[Gur00] Gurden G. Financial Products Markup Language
(FpML). http://www.fpml.org/spec/fpml-1-0,
September 2000

[GWBC99] Gribble S., Welsh M., Brewer E., Culler D. The Mul-
tiSpace: an evolutionary platform for infrastructural
services. In: Proc. of the Usenix Annual Technical
Conference, Monterey, Calif., USA, June 1999

[HCL+90] Haas L.M., Chang W., Lohman G.M., McPherson
J., Wilms P.F., Lapis G., Lindsay B., Pirahesh H.,
CareyM.J.,ShekitaE.Starburstmid-flight: as thedust
clears. IEEE Transactions on Knowledge and Data
Engineering, 2(1): 143–160, 1990

[HFPS99] Housley R., FordW., PolkW., Solo D. Internet X.509
PublicKey InfrastructureCertificateandCRLProfile.
http://www.rfc-editor.org/rfc/rfc2459.txt,
January 1999

[HKWY97] Haas L., Kossmann D., Wimmers E., Yang J. Opti-
mizing queries across diverse data sources. In:VLDB
[VLD97] pp. 276–285

[HPI99] Hewlett Packard Inc. Chai: Internet business solu-
tions.
http://www.chai.hp.com/, 1999

[IEE00] Special issue on adaptive query processing. IEEE
Data Engineering Bulletin, 23: 2, 2000

[IFF+99] Ives Z., Florescu D., Friedman M., Levy A., Weld D.
An adaptive query execution engine for data integra-
tion. In: SIGMOD [SIG99] pp. 299–310

[JKR99] Josifovski V., Katchaounov T., Risch T. Optimizing
queries in distributed and composable mediators. In:
Proc. of the IFCIS International Conference on Co-
operative Information Systems, pp. 291 – 302, Edin-
burgh, Scotland, 1999

[JR99] JosifovskiV., RischT. Integrating heterogenous over-
lapping databases through object-oriented transfor-
mations. In: VLDB [VLD99] pp. 435–446

[KKKK01] Keidl M., Kreutz A., Kemper A., Kossmann D. Dis-
tributed metadata management on the Internet. 2001.
In preparation

[Kos01] Kossmann D. The state of the art in distributed query
processing. ACM Computing Surveys, 2001. Ac-
cepted for publication. To appear

[Kri98] Krivokapić N. Control mechanisms in distributed ob-
ject bases: Synchronization, deadlock detection, mi-
gration, volume54 ofDissertationen zuDatenbanken

und Informationssystemen. infix-Verlag, Ringstr. 32,
53757 Sankt Augustin, 1998. ISBN: 3-89601-454-4,
Dissertation, Universit¨at Passau, Germany

[KS98] Konopnicki D., Shmueli O. Information gathering in
the World Wide Web: the W3QL query languge and
theW3QSsystem.ACMTrans. onDatabaseSystems,
23(4): 369–410, 1998

[KS00] KossmannD., Stocker K. Iterative dynamic program-
ming: a new class of query optimization algorithms.
ACM Trans. on Database Systems, 25(1): 43–82,
2000

[LRO96] LevyA., RajaramanA., Ordille J. Querying heteroge-
neous information sources using source descriptions.
In: VLDB [VLD96] pp. 251–262

[MMM97] MendelzonA.O., Mihaila G.A., Milo T. Querying the
World Wide Web. International Journal on Digital
Libraries, 1(1): 54–67, 1997

[MRT98] Mihaila G.A., Raschid L., Tomasic A. Equal time for
data on the Internet with WebSemantics. In: Proc. of
the Intl. Conf. on Extending Database Technology
(EDBT),Valencia, Spain,March 1998, LectureNotes
inComputer Science, vol. 1377. Springer, BerlinHei-
delberg NewYork, 1998, pp. 87–101

[MZ95] Mowbray T.J., Zahavi R. The essential Corba – sys-
tems integration using distributed objects. Wiley,
Chichester, UK, 1995

[Oak98] Oaks S. Java Security. O’Reilly, Sebastopol, Calif.,
USA, 1998

[Pet99] Petit J. Real estate DTD.
http://www.4thworldtele.com, May 1999

[PGGMU95] Papakonstantinou Y., Gupta A., Garcia-Molina H.,
Ullman J. A query translation scheme for rapid im-
plementation of wrappers. In: Proc. of the Conf. on
Deductive and Object-Oriented Databases (DOOD),
pp. 161–186, December 1995

[PKI] Public-Key Infrastructure (X.509) (PKIX).
http://www.ietf.org/html.charters/pkix-charter.html

[RBKW91] Rabitti F., Bertino E., KimW., Woelk D. A model of
authorization for next-generation database systems.
ACM Trans. on Database Systems, 16(1): 88–131,
1991

[ROH99] Tork Roth M., Ozcan F., Haas L. Cost models DO
matter: providing cost information for diverse data
sources in a federated system. In: VLDB [VLD99]
pp. 599–610

[RS97] Tork Roth M., Schwarz P. Don’t scrap it, wrap it!
A wrapper architecture for legacy data sources. In:
VLDB [VLD97] pp. 266–275

[RSA99] RSA Laboratories. PKCS #5 v2.0: Password-Based
Cryptography Standard.
ftp://ftp.rsasecurity.com/pub/pkcs/, March 1999

[SAL+96] Stonebraker M., Aoki P., Litwin W., Pfeffer A., Sah
A., Sidell J., Staelin C., Yu A. Mariposa: a wide-area
distributeddatabase system.TheVLDBJournal, 5(1):
48–63, 1996

[SAP99] SAP. Business networking in the Internet age. Tech-
nical report, SAPWhite Paper, September 1999.
http://www.sap-ag.de/germany/products/mysap/pdf/
busnetworking.pdf

[SCFY96] Sandhu R.S., Coyne E.J., Feinstein H.L., Youman
C.E. Role-based access control models. IEEE Com-
puter, 29(2): 38–47, 1996

[SIG98] Proc. of the ACM SIGMOD Conf. on Management
of Data, Seattle, Wash., USA, June 1998

R. Braumandl et al.: ObjectGlobe: Ubiquitous query processing on the Internet 69

[SIG99] Proc. of the ACM SIGMOD Conf. on Management
of Data, Philadelphia, Pa., USA, June 1999

[SL90] Sheth A., Larson J. Federated database systems
for managing distributed, heterogeneous, and au-
tonomous databases. ACM Computing Surveys,
22(3): 183–236, 1990

[SLR97] Seshadri P., Livny M., Ramakrishnan R. The case for
enhanced abstract data types. In:VLDB [VLD97] pp.
66–75

[SR86] Stonebraker M., Rowe L. The design of POSTGRES.
In:Proc. of theACMSIGMODConf. onManagement
of Data, pp. 340–355, Washington, USA, June 1986

[Sun99] JavaVirtual Machine Profiler Interface (JVMPI). Sun
Microsystems, 1999.
http://java.sun.com/products/jdk/

[TLS] Transport Layer Security (TLS).
http://www.ietf.org/html.charters/tls-charter.html

[TRV98] Tomasic A., Raschid L., Valduriez P. Scaling acc-
cess to distributed heterogeneous data sources with
DISCO. IEEE Transactions on Knowledge and Data
Engineering, 10(5): 808–823, 1998

[UDD00] Universal Description, Discovery and Integration
(UDDI) Technical White Paper. White Paper, Ariba,
Inc., IBM Corp., and Microsoft Corp., September
2000.
http://www.uddi.org/

[VLD96] Proc. of theConf. onVery LargeData Bases (VLDB),
Bombay, India, September 1996

[VLD97] Proc. of theConf. onVery LargeData Bases (VLDB),
Athens, Greece, August 1997

[VLD99] Proc. of theConf. onVery LargeData Bases (VLDB),
Edinburgh, Scotland, September 1999

[Wal99] Waldo J. The Jini architecture for network-centric
computing. Communications of theACM, 42(7): 76–
82, 1999

[WHK97] Wahl M., Howes T., Kille S. Lightweight Directory
Access Protocol (v3).
ftp://ftp.isi.edu/in-notes/rfc2251.txt, December 1997

70 R. Braumandl et al.: ObjectGlobe: Ubiquitous query processing on the Internet

Appendix

The XML representation of a query execution plan

<?xml version="1.0" encoding=’ISO-8859-1’?>

<plan>
<iterator id="display" code="iterators.display" cycle-provider="client">

<iterator id="join1" code="iterators.NestedLoops"
cycle-provider="client">

<predicate>Sb = Tb</predicate>
<iterator id="join2" code="iterators.NestedLoops"

cycle-provider="alpha">
<predicate>Ra = Sa</predicate>
<iterator id="tbscanR" code="iterators.TbScan" cycle-provider="alpha">

<partition>R</partition>
</iterator>
<iterator id="wrapperS" code="wrapper.wrap_S"

codebase="functionProvider" cycle-provider="alpha">
</iterator>

</iterator>
<iterator id="thumb1" code="thumbnail" codebase="functionProvider"

cycle-provider="beta">
<toThumbNail>picture</toThumbNail>
<iterator id="tbscanT" code="iterators.TbScan" cycle-provider="beta">

<partition>T</partition>
</iterator>

</iterator>
</iterator>

</iterator>

<provider-information>
<og-provider id="client">
<dn-name>C=DE, O=University of Passau, OU=Department

for Mathematics and Computer Science,
CN=Mets.fmi.uni-passau.de

</dn-name>
<host-dns>Mets.fmi.uni-passau.de</host-dns>

</og-provider>
<og-provider id="alpha">
<dn-name>C=COM, O=A Incorporated, OU=Computing Center,

CN=alpha.A.com
</dn-name>
<host-dns>alpha.A.com</host-dns>

</og-provider>
<og-provider id="beta">
<dn-name>C=COM, O=B Incorporated, OU=Computing Center,

CN=beta.B.com
</dn-name>
<host-dns>beta.B.com</host-dns>

</og-provider>
<og-provider id="functionProvider">
<dn-name>C=COM, O=FctProv Incorporated, OU=Software Development,

CN=FctProv.com
</dn-name>
<code-location>http://www.FctProv.com/forGlobalUse</code-location>

</og-provider>
</provider-information>

</plan>

R. Braumandl et al.: ObjectGlobe: Ubiquitous query processing on the Internet 71

The RDF registration code for a collection

In the sample RDF-description shown below, the relevant information about a data provider can be found enclosed in the
DataProvider element. It contains information about the name of the provider and a URL with which the data provider can
be contacted. ThePartition element contains information about a collection that the data provider makes available.

At the beginning of the collection description we can find the data provider of the collection, a plain-text description of the
content of the collection, the theme (i.e., HotelTheme) this collection is associated with, etc. The elementwrapper specifies a
reference for the wrapper which performs the necessary transformations to integrate the collection into an ObjectGlobe system.
More interesting is the content of theattributes element. It contains the description of the type of the tuples, given by the
collection. In our case the type contains three attributes and for each attribute the name and the type of the attribute are specified.
It is possible to insert additional information about attributes which is omitted for brevity.

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns="http://www.db.fmi.uni-passau.de/˜objglobe/ObjectGlobe-Metaschema.rdf#">

<DataProvider rdf:ID="HotelBook">
<dataProviderName>HotelBook</dataProviderName>
<dataProviderUrl>http://www.hotelbook.com</dataProviderUrl>

</DataProvider>

<Partition rdf:ID="HotelBookPartition">
<dataProvider rdf:resource="#HotelBook"/>
<partitionDescription>Description of hotels worldwide</partitionDescription>
<theme rdf:resource="file:/home/objglobe/Themes.rdf#HotelTheme"/>
<localName>hotelBookPartition</localName>
<wrapper rdf:resource="file:/home/objglobe/Operators.rdf#HotelBookWrapper"/>
<uniqueID>4711</uniqueID>
<cardinality>30000</cardinality>

<attributes>
<rdf:Bag>

<rdf:li><Attribute>
<topic rdf:resource="file:/home/objglobe/Themes.rdf#cityTopic" />
<domain rdf:resource="file:/home/objglobe/Themes.rdf#StringDomain" />

</Attribute></rdf:li>
<rdf:li><Attribute>

<topic rdf:resource="file:/home/objglobe/Themes.rdf#addressTopic" />
<domain rdf:resource="file:/home/objglobe/Themes.rdf#StringDomain" />

</Attribute></rdf:li>
<rdf:li><Attribute>

<topic rdf:resource="file:/home/objglobe/Themes.rdf#priceTopic" />
<domain rdf:resource="file:/home/objglobe/Themes.rdf#IntegerDomain" />

</Attribute></rdf:li>
</rdf:Bag>

</attributes>
</Partition>
</rdf:RDF>

