
Iterative Dynamic Programming: A New Class of

Query Optimization Algorithms

Donald Kossmann Konrad Stocker

Universit�at Passau

Lehrstuhl f�ur Informatik

94030 Passau, Germany

hlastnamei@db.fmi.uni-passau.de

Abstract

The query optimizer is one of the most important components of a database sys-

tem. Most commercial query optimizers today are based on a dynamic-programming

algorithm, as proposed in [SAC+79]. While this algorithm produces good optimiza-

tion results (i.e., good plans), its high complexity can be prohibitive if complex

queries need to be processed, new query execution techniques need to be integrated,

or in certain programming environments (e.g., distributed database systems). In this

paper, we present and thoroughly evaluate a new class of query optimization algo-

rithms that are based on a principle that we call iterative dynamic programming, or

IDP for short. IDP has several important advantages: First, IDP-algorithms produce

the best plans of all known algorithms in situations in which dynamic programming

is not viable because of its high complexity. Second, some IDP variants are adap-

tive and produce as good plans as dynamic programming if dynamic programming

is viable and as-good-as possible plans if dynamic programming turns out to be

not viable. Three, all IDP-algorithms can very easily be integrated into an existing

optimizer which is based on dynamic programming.

1 Introduction

The great commercial success of database systems is partly due to the development of

sophisticated query optimization technology: users pose queries in a declarative way using

SQL or OQL, and the optimizer of the database system �nds a good way (i.e., plan) to

execute these queries. The optimizer, for example, determines which indices should be

used to execute a query and in which order the operations of a query (e.g., joins and

group-bys) should be executed. To this end, the optimizer enumerates alternative plans,

estimates the cost of every plan using a cost model, and chooses the plan with the lowest

cost.

One central component of a query optimizer is its search strategy or enumeration al-

gorithm. The enumeration algorithm of the optimizer determines which plans to enu-

merate, and the classic enumeration algorithm is based on dynamic programming. This

1

algorithm was pioneered in IBM's System R project [SAC
+
79], and it is used in most

query optimizers today. Dynamic programming works very well if all queries are standard

SQL-92 queries, the queries are moderately complex, and only simple textbook query

execution techniques are used by the database system. Dynamic programming, however,

does not work well if these conditions do not hold; e.g., if the database system must

support very complex applications like SAP R/3 whose queries often involve many ta-

bles [DHKK97, KKM98] or new query optimization and execution techniques need to be

integrated into the system in order to optimize queries in a distributed and/or hetero-

geneous programming environment [HKWY97, Kos98]. In these situations, the search

space of query optimization can become very large and dynamic programming is not

always viable because of its very high complexity.

In general, there is a tradeo� between the complexity of an enumeration algorithm and

the quality of the plans generated by the algorithm. Dynamic programming represents

one extreme point: dynamic programming has exponential time and space complexity

and generates \optimal" plans.
1
Other algorithms have lower complexity than dynamic

programming, but these algorithms are not able to �nd as low-cost plans as dynamic

programming. Since the problem of �nding an optimal plan is NP hard [IK84, SM97],

implementors of query optimizers will probably always have to take this fundamental

tradeo� between algorithm complexity and quality of plans into account when they decide

which enumeration algorithm to use.

In this paper, we present and evaluate a new class of enumeration algorithms that are

based on a technique that we call iterative dynamic programming or IDP for short. The

main idea of IDP is to apply dynamic programming several times in the process of opti-

mizing a query; either to optimize di�erent parts of a plan separately or in di�erent phases

of the optimization process. As we will show, IDP has reasonable (i.e., polynomial) com-

plexity and produces in most situations very good plans. In fact, our experiments show

that IDP produces better plans than any other algorithm in situations in which dynamic

programming is not viable because of its high (exponential) complexity. One particular

advantage is that certain IDP-variants adapt to the optimization problem: if the query

is simple, these IDP-variants produce an optimal plan like dynamic programming and in

the same time as dynamic programming. If the query is too complex for dynamic pro-

gramming, these IDP-variants produce sub-optimal plans, but these sub-optimal plans are

signi�cantly better than the plans produced by other algorithms that are applicable in

those situations (e.g., randomized algorithms as proposed in [IK90]).

Another advantage of IDP is that all IDP variants can very easily be integrated into an

existing query optimizer which is based on dynamic programming. As we will see, only a

couple of lines of code need to be changed and complex components of the optimizer such

as the cost model and the enumeration rules can be used in an IDP-enhanced optimizer

just as well as in an existing dynamic-programming optimizer, without any adjustments.

Using randomized algorithms, for example, practically involves re-building a completely

new optimizer from scratch, if the existing optimizer is based on dynamic programming.

Since most existing optimizers are indeed based on dynamic programming and database

1Throughout this paper, we call a plan optimal if it has the lowest cost of all plans according to the
optimizer's cost model. Since the optimizer's cost model is not always accurate, an optimal plan, in our
sense, may actually not be the best plan to execute a query.

2

vendors have invested greatly into their query optimizers, this is an important argument

in favor of IDP.

This paper also presents the results of performance experiments that show how IDP fares in

comparison to existing enumeration algorithms such as dynamic programming or random-

ized algorithms. These performance experiments are carried out using select-project-join

(SPJ) queries in a distributed database environment. Therefore, the results are directly

applicable to a wide range of database systems; e.g., standard centralized and distributed

database systems (e.g., Oracle), client-server systems such as SAP R/3 [BEG96, KKM98],

and heterogeneous database systems such as Garlic [HKWY97] or TSIMMIS [LYV
+
98].

We do not show the results of other types of complex queries which motivate the develop-

ment of IDP; e.g., queries with expensive predicates [HS93, CS96], queries with group-by

operators [CS94], or top N queries [CK97]. The presence of expensive predicates, group-

bys, or top N increases the size of the search space in a similar way as a distributed

environment.

The remainder of this paper is organized as follows. Section 2 gives an overview of related

work. Section 3 describes dynamic programming; in particular, that section shows how

dynamic programming can be extended to optimize queries for distributed databases and

analyzes the complexity of dynamic programming in this case. Section 4 describes and

analyzes greedy algorithms for query optimization. Section 5 presents iterative dynamic

programming and a whole family of algorithms based on that principle. Section 5 also

analyzes the complexity of the di�erent IDP-variants and shows that all IDP-variants have

polynomial time and space complexity. Section 6 discusses alternative plan evaluation

functions which are special functions that are needed in order to implement IDP. Section 7

contains the results of our performance experiments. Section 8 concludes this paper with

suggestions for future work.

2 Related Work

Due to its importance, a large number of di�erent algorithms have already been developed

for query optimization in database systems. All algorithms proposed so far fall into one

of three di�erent classes or are combinations of such basic algorithms [Swa89, Van98]. In

the following, we will brie
y discuss each class of algorithms; a more complete overview

and comparison of many of the existing algorithms can be found in [SMK97].

Exhaustive Search: All published algorithms of this class have exponential time and

space complexity and are guaranteed to �nd the best plan according to the opti-

mizer's cost model. As stated in the introduction, the most prominent representative

of this class of algorithms is (bottom-up) dynamic programming [SAC
+
79] which

is currently used in most database systems. E�cient ways to implement dynamic

programming have been proposed in [OL90, VM96]. Other representatives of this

class are A
�

search [KMP93] and transformation-based techniques (with top-down

dynamic programming) such as those used in EXODUS, Volcano, and some com-

mercial systems [GD87, GM93, PGLK97].

Heuristics: Typically, the algorithms of this class have polynomial time and space

complexity, but they produce plans that are often orders of magnitude more ex-

3

pensive than a plan generated by an exhaustive search algorithm. Representa-

tives of this class of algorithms are \Minimum Selectivity" and other greedy algo-

rithms [Pal74, Swa89, SYT93, SMK97], the KBZ algorithm [KBZ86], and the AB

algorithm [SI93]. We will speci�cally describe greedy algorithms in Section 4.

Randomized Algorithms: Various variants of randomized algorithms have been pro-

posed in [IW87, SG88, IK90, LVZ93, GLPK94, SMK97]. The big advantage of

randomized algorithms is that they have constant space overhead. The running

time of most randomized algorithms cannot be predicted because these algorithms

are indeterministic; typically, randomized algorithms are slower than heuristics and

dynamic programming for simple queries and faster than both for very large queries.

The best known randomized algorithm is called 2PO and is a combination of apply-

ing iterative improvement and simulated annealing [IK90]. In many situations, 2PO

produces good plans. As we will see in Section 7, however, there are situations in

which 2PO produces plans that are orders of magnitude more expensive than an

optimal plan.

IDP can be classi�ed as a generalization of dynamic programming and greedy heuris-

tics with the goal to combine the advantages of both: very good plans due to dynamic

programming and acceptable overhead using heuristics, if necessary.

Independent from our work, Shekita and Young [SY98] devised one IDP variant that

we will refer to as \IDP2-standard-bestPlan" in this paper. Incidently, they also called

their approach \iterative dynamic programming." As we will see, their variant does not

produce as good plans as the other IDP variants.

As an alternative to any of the above-mentioned algorithms and IDP, one obvious way

to process complex queries is the following: the optimizer �rst checks if the query can

be optimized using dynamic programming. If yes, the optimizer carries out dynamic

programming; if not, the optimizer applies heuristics. Such an approach has apparently

been taken in the implementation of several commercial database systems. IDP is clearly

better than such an approach: (1) As we will see in Section 7, IDP produces signi�cantly

better plans than any other heuristics we are aware of, if the query cannot be optimized

using dynamic programming. (2) It is di�cult, if not impossible, to predict for which

queries and under which circumstances dynamic programming is viable. In a distributed

system, for example, dynamic programming might be viable for certain 17-table queries

but not for certain 10-table queries, depending on the locations at which copies of the

tables are stored and other characteristics of the query and database. In either situation,

IDP makes it possible to exploit dynamic programming as much as possible and adapt

automatically if dynamic programming hits its limits.

Currently several new features are built into database systems which cause full-
edged

dynamic programming to become impractical even for fairly simple queries. To take

advantage of these features in systems that rely on dynamic programming, several special-

purpose techniques have been proposed. For example, Hong proposed a 2-step approach

to optimize queries for parallel databases [HS91], and such a 2-step approach was adopted

for distributed query optimization in the Mariposa project [SAL
+
96]. Hellerstein (among

others) proposed heuristics to optimize queries with expensive predicates [HS93, Hel94,

CS96], and Chaudhuri and Shim proposed ways to reduce the complexity of dynamic

4

programming for aggregate queries [CS94]. None of these techniques guarantee optimal

plans because they consider apriori only a small fraction of the search space of all possible

plans to execute a query. IDP takes a di�erent and more generic approach: to begin with,

IDP always considers the entire search space, and only if the search space turns out to be

too big, IDP switches and applies heuristics in order to �nd a good plan with acceptable

e�ort.

3 Query Optimization by Dynamic Programming

In this section, we will describe the classic dynamic programming algorithm for query

optimization. Speci�cally, we will give the basic algorithm, show how it can be extended

to optimize queries in distributed database systems, and analyze its complexity. For the

purpose of presentation, we will only consider select-project-join queries (SPJ queries) here

and in the following sections. Dynamic programming can, however, be applied to optimize

any kind of query; e.g., aggregate queries [CS94], queries with expensive predicates [CS96],

top N queries [CK97], or queries in heterogeneous database systems [HKWY97]. Also,

we will, like everybody else, de�ne plan to be a tree of query operators such as table scan,

index scan, sort, nested-loop join, etc.

3.1 Algorithm Description

Figure 1 gives the dynamic programming algorithm. As stated in previous sections, the

algorithm is used in most database systems today, and it has already been described

in several di�erent articles; e.g., [GHK92]. The algorithm works in a bottom-up way

as follows. First, dynamic programming generates so-called access plans for every table

involved in the query (Lines 1 to 4 in Figure 1). Typically, such an access plan consists

of one or two operators, and there are several di�erent access plans for a table. Examples

are table scan(Emp) to directly read the Emp table or idx scan(Emp.salary) to read the

Emp table using an index on the salary �eld of the Emp table.

In the second phase (Lines 5 to 14 in Figure 1), dynamic programming considers all

possible ways to join the tables. First, it considers all 2-way join plans by using the

access plans of the tables as building blocks and calling the joinPlans function to build

a join plan from these building blocks. From the 2-way join plans and the access plans,

dynamic programming then produces 3-way join plans. After that, it generates 4-way join

plans by considering all combinations of two 2-way join plans and all combinations of a

3-way join plan with an access plan. In the same way, dynamic programming continues

to produce 5-way, 6-way join plans and so on up to n-way join plans. In the third phase

(Lines 14 and 15), the n-way join plans are massaged by the �nalizePlans function so that

they become complete plans for the query; e.g., project, sort, or group-by operators are

attached, if necessary (Line 14). Note that dynamic programming uses in every step of

the second phase the same joinPlans function to produce more and more complex plans

using simpler plans as building blocks. Just as there are usually several alternative access

plans, there are usually several di�erent ways to join two tables (e.g., nested loop joins,

hash joins, etc.) and the joinPlans function will return a plan for every alternative join

method.

5

Input: SPJ query q on relations R1; : : : ; Rn

Output: A query plan for q

1: for i = 1 to n do f

2: optPlan(fRig) = accessPlans(Ri)

3: prunePlans(optPlan(fRig))

4: g

5: for i = 2 to n do f

6: for all S � fR1; : : : ; Rng such that jSj = i do f

7: optPlan(S) = ;

8: for all O � S do f

9: optPlan(S) = optPlan(S) [joinPlans(optPlan(O), optPlan(S �O))

10: prunePlans(optPlan(S))

11: g

12: g

13: g

14: �nalizePlans(optPlan(fR1; : : : ; Rng))

15: prunePlans(optPlan(fR1; : : : ; Rng))

16: return optPlan(fR1; : : : ; Rng)

Figure 1: (Classic) Dynamic Programming Algorithm

The beauty of dynamic programming is that it discards inferior building blocks after

every step. This approach is called pruning and is carried out by the prunePlans function

(Lines 3, 10, and 15 of Figure 1). While enumerating 2-way join plans, for example,

dynamic programming would consider an A 1 B plan and a B 1 A plan, but only the

cheaper of the two plans would be retained in optPlan(fA;Bg) so that only the cheaper

of the two plans would be considered as a building block for 3-way, 4-way, . . . join plans

involving A and B. Pruning is possible because the A 1 B plan and the B 1 A plan do

the sam work; if the A 1 B plan is cheaper than the B 1 A plan, then any complete

plan for the whole query that has A 1 B as a building block (e.g., C 1 (A 1 B)) will

be cheaper than the same plan with B 1 A as a building block (e.g., C 1 (B 1 A)).

As a result of pruning, dynamic programming does not enumerate inferior plans such as

C 1 (B 1 A) and runs signi�cantly faster than a naive exhaustive search.

It should be noted, however, that there are situations in which two, say, A 1 B plans are

incomparable and must both be retained in the optPlan(fA;Bg) structure, even though

one plan is more expensive than the other plan. For example, A sort-merge-join B and

Ahash-joinB are incomparable if the sort-merge-join is more expensive than the hash-join

and if the ordering of the results produced by the sort-merge join is interesting [SAC
+
79,

SSM96]; in this case the ordering of the results might help to reduce the cost of later

operations (e.g., group-bys or joins with other tables). All the �nal plans are comparable

so that only one plan will be retained after the �nal pruning in Line 15 of the algorithm

and only a single plan will be returned as output of the algorithm.

Another point to notice is that the algorithm of Figure 1 enumerates all bushy plans. With

slight modi�cations of Line 6 of the algorithm, however, the algorithm could also be used

to enumerate only so-called left-deep plans, as originally proposed in [SAC
+
79]. There has

been a great deal of discussion about \left-deep vs. bushy" (see, e.g., [SMK97]), and we

6

use the \bushy" variant of dynamic programming in this work because most commercial

query optimizers that are based on dynamic programming do the same thing [GLSW93].

3.2 Dynamic Programming for Distributed Databases

One of the nice properties of dynamic programming is that query optimizers that are

built using dynamic programming can easily be extended. In the following, we will show

how the algorithm can be extended in order to optimize queries for distributed database

systems. Similar extensions for other types of queries have been proposed in [CS94, CS96,

CK97, HKWY97]. Our extensions are along the lines of the extensions proposed for the

query optimizer of the System R
�

project [Loh88]; however, we do present a novel pruning

technique which signi�cantly speeds up query optimization without sacri�cing the quality

of the generated plans.

In addition to deciding which access paths (i.e., indices), which join order, and which join

methods to use, the query optimizer of a distributed system must decide where to carry

out all the operations. To make this decision, the accessPlans, joinPlans, and �nalizePlans

functions must be extended as follows:

� if a table is replicated, the accessPlans function must generate di�erent access

plans for every site at which the table is replicated; e.g., table scan(Emp, Passau),

idx scan(Emp.salary, Passau), or table scan(Emp, Maryland) if the Emp table is

replicated in Passau and Maryland, and there is an Emp.salary index in Passau.

� the joinPlans function must generate di�erent join plans in order to specify that a

join can be carried out at the site at which the outer table is produced, at the site

at which the inner table is produced, and at all other interesting sites. (We will

describe the concept of interesting sites below.)

� the �nalizePlans functions must attach a ship operator if the top-level operator of

a plan is not executed at the site at which the results of the query must be returned

(i.e., the client).

Furthermore, we need to adjust the prunePlans function and be careful when we prune

plans that produce their results at di�erent sites. If, for example, the Emp table is

stored in Passau and Maryland and the Dept table is stored in Passau only, then we

may not always prune the table scan(Emp, Passau) access plan in an Emp 1 Dept query

even if it is more expensive than the table scan(Emp, Maryland) access plan because the

table scan(Emp, Passau) access plan might be a building block of the best overall plan

that carries out the join in Passau. In general, we need to consider all interesting sites

when we decide which plans may be pruned. The concept is similar to the concept of

interesting orders [SAC
+
79, SSM96] and is de�ned as follows: for an access or join plan

involving tables Ri1
; : : : ; Rik

of a query involving tables R1; : : : ; Rn, all those sites are

interesting that store a copy of Rj for all j =2 fi1; : : : ; ikg. In addition, the site at which

the query results must be returned (i.e., the client) is interesting. Given this de�nition of

interesting sites, an access or join plan P1 may be pruned if there exists an access or join

plan P2 which must involve the same tables and the following criteria holds:

8i 2 interesting sites(P1) : cost(ship(P1; i)) � cost(ship(P2; i)) (1)

7

The ship operator sends tuples from one site to another. Naturally, the cost of a ship

operator is 0 if the source and target sites are identical; e.g.,

cost(ship(table scan(Emp;Passau);Passau) = cost(table scan(Emp;Passau)):

Equation (1) can be evaluated very easily if the network is homogeneous; i.e., if the cost

to ship data between any two sites is identical. Another simple case that can be tested

�rst is that P1 can be pruned if the following equation holds:

cost(P1) � cost(ship(P2; x)) (2)

if x is the site at which P1 produces its results.

3.3 Complexity of Dynamic Programming

It has been shown in [OL90, VM96] that the time complexity of dynamic programming

is O(3n) and the space complexity is O(2n) in a centralized system. In the following, we

will show that in a distributed system the time complexity of dynamic programming is

O(s3 � 3n) and the space complexity is O(s � 2n + s
3
), where s is the number of sites at

which a copy of at least one of the tables involved in the query is stored plus the site at

which the query results need to be returned. s, thus, is a variable whose value depends

on the query and which might be smaller or larger than n, depending on the number of

replicas of the tables used in the query.

Time Complexity of Dynamic Programming: The time complexity of dynamic

programming is O(s3 � 3n) in a distributed database system.

Proof: The idea is to show that dynamic programming enumerates in every step at

most s
3
times as many plans in a distributed as in a centralized system. To show this,

we consider the worst case in which all tables involved in a query are fully replicated

at s sites. As a result, s sites are interesting after every step of dynamic programming.

If we, furthermore, assume that no pruning can be carried out using the condition of

Equation (1), then we can conclude that every entry of the optPlan structure contains

s times as many plans in a distributed system than in a centralized system. Now, let

us look at the number of plans the joinPlans function generates whenever it is called

(Line 9 of Figure 1). Furthermore, let us assume that the system supports only one join

method and that there are no interesting orders. (Several join methods or the presence

of interesting orders would introduce constants and variables which are irrelevant for this

proof.) Under these circumstances, every entry of the optPlan structure contains exactly

one plan and the joinPlans function generates exactly one plan in a centralized system.

In a distributed system, every optPlan entry contains at most s plans and the joinPlans
function generates at most s

3
plans because it combines (at most) s plans of optPlan(O)

with (at most) s plans of optPlan(S � O) and it must consider all s interesting sites for

the join. For s = 2, for example, the joinPlans function would enumerate the following

eight plans:

O1 11 I1, O1 11 I2, O2 11 I1, O2 11 I2, O1 12 I1, O1 12 I2, O2 12 I1, O2 12 I2,

8

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7

A
ve

ra
ge

 O
pt

im
iz

at
io

n
T

im
e

[s
ec

s]

Sites s

experimental
mathematical

Figure 2: Running Time of (Classic) DP

10-way STAR Query

where Oi represents the ith plan of optPlan(O), Ii the ith plan of optPlan(S�O), and 1x

denotes that the join is executed at site x. Thus, as we intended to show, dynamic pro-

gramming enumerates at most s
3
times as many plans in a distributed as in a centralized

system. 2

Space Complexity of Dynamic Programming: The space complexity of dynamic

programming is O(s � 2n + s
3
) in a distributed database system.

Proof: We already observed that every optPlan entry contains at most s times as many

plans in a distributed as in a centralized system. So, the whole optPlan data structure

keeps O(s � 2n) plans. Furthermore, dynamic programming needs space for O(s3) plans

for calls of the joinPlans function. In all, therefore, dynamic programming needs space

for O(s � 2n + s
3
) plans. 2

Figure 2 shows experimentally how the running time of dynamic programming grows

with the number of sites. The query is a ten-way STAR join query and all the tables are

replicated at all sites. It becomes clear that the running time of dynamic programming

grows cubically with the number of sites, as predicted in the analysis. Furthermore, it

becomes clear that a ten-way STAR join query can be optimized very fast in a centralized

database system (for s = 1, the running time is 0.16 sec) whereas in a distributed system

with many sites, the running time to optimize the same query can become prohibitively

high. Thus, we do need alternative ways to optimize queries in a distributed database

system.

4 Greedy Algorithms for Query Optimization

As an alternative to dynamic programming, greedy algorithms have been proposed [Pal74,

Swa89, SYT93]. These greedy algorithms run much faster than dynamic programming,

but they typically produce worse plans [SMK97]. In this section, we will describe the

basic variant of such greedy algorithms. As we will show in the next section, IDP can

be classi�ed as a generalization of dynamic programming and this basic greedy algorithm

with the goal to combine the advantages of both.

9

Input: SPJ query q on relations R1; : : : ; Rn

Output: A query plan for q

1: for i = 1 to n do f

2: optPlan(fRig) = accessPlans(Ri)

3: prunePlans(optPlan(fRig))

4: g

5: toDo = fR1; : : : ; Rng

6: for i = 1 to n� 1 do f

7: �nd O, I 2 todo, P 2 joinPlans(optPlan(O); optPlan(I) such that

eval(P) = minfeval(P 0) j P 0 2 joinPlans(optPlan(O0); optPlan(I 0));O; I 2 todog

8: generate new symbol: T

9: optPlan(fT g) = fPg

10: todo = todo { fO; Ig [fT g

11: delete(optPlan(O)), delete(optPlan(I))

12: g

13: �nalizePlans(optPlan(fR1; : : : ; Rng))

14: prunePlans(optPlan(fR1; : : : ; Rng))

15: return optPlan(fR1; : : : ; Rng)

Figure 3: Greedy Algorithm

4.1 Algorithm Description

Figure 3 shows the basic greedy algorithm for query optimization. Just like dynamic

programming, this greedy algorithm has three phases and constructs plans in a bottom-

up way. This greedy algorithm also makes use of the same accessPlans, joinPlans, and

�nalizePlans functions in order to generate plans. In the second phase, however, this

greedy algorithm carries out a very simple and rigorous selection of the join order. With

every iteration of the greedy loop (Lines 5 to 11), this greedy algorithm applies a plan

evaluation function, eval, in order to select the next best join. As an example for a

�ve-way join query with tables A, B, C, D, and E, the plan evaluation function could

determine that A and D should be joined �rst; the result of A 1 D should be joined

with C next; B and E should be joined next; �nally, the results of C 1 (A 1 D)

and B 1 E should be joined. Obviously, the quality of plans produced by this greedy

algorithm strongly depends on the plan evaluation function. We will describe alternative

plan evaluation functions in Section 6.

4.2 Complexity of the Greedy Algorithm

Time Complexity of the Greedy Algorithm The time complexity of the greedy

algorithm is O(n3) in a centralized system and O(n3 � s3) in a distributed system.

Proof: Finding the best O and I in every iteration of the greedy loop can be carried out

in O(n2) steps. Since the greedy loop is carried out n � 1 times, the whole algorithm is

carried out in at most O(n3) steps. As mentioned in Section 3.3, the joinPlans function

generates at most O(s3) plans for each pair of optPlan entries in a distributed system,

10

1IDP 2IDP

balancedstandard balancedstandard

bestPlan bestRow bRbP bRbP bRbP

Iterative Dynamic Programming

Figure 4: Iterative Dynamic Programming Variants

resulting in an overall complexity of O(n3 � s3) in a distributed system. 2

For certain plan evaluation functions, it is possible to �nd the best O and I in constant

time if the tables or predicates of the query are sorted in advance. This is possible, for

instance, for the Minimum Selectivity plan evaluation function described in Section 6.1.

In such cases, the greedy algorithm has a time complexity of O(n � logn) for sorting.

Space Complexity of the Greedy Algorithm The space complexity of the greedy

algorithm is O(n) in a centralized system and O(n � s) in a distributed system.

Proof: At the beginning, the greedy algorithm keeps at most O(s � n) access plans in
the optPlan structure. As the algorithm progresses, the space requirements decrease.

5 Iterative Dynamic Programming

We are now ready to present IDP, a new class of query optimization algorithms that is

based on iteratively applying dynamic programming and can be seen as a combination

of dynamic programming and the greedy algorithm presented in the previous section. In

all, we will describe eight di�erent IDP variants that di�er in three ways: (1) when an

iteration takes place (IDP1 vs. IDP2), (2) the size of the building blocks generated in every

iteration (standard vs. balanced), and (3) the number of building blocks produced in every

iteration (bestPlan vs. bestRow). Figure 4 shows these eight di�erent variants. As in the

previous sections, we will concentrate on select-project-join queries (SPJ queries) in this

section for ease of presentation and note that all IDP variants can be applied to optimize

any query, just as dynamic programming or a greedy algorithm.

5.1 IDP1

5.1.1 Algorithm Description

We will begin and show how IDP1 works. In fact, we will describe \IDP1-standard-

bestPlan" (cf. Figure 4) here and describe the other variants in Sections 5.3 and 5.4.

IDP1 works essentially in the same way as dynamic programming with the only di�erence

that IDP1 respects that the resources (e.g., main memory) of a machine are limited or that

11

Input: SPJ query q on relations R1; : : : ; Rn, maximum block size k

Output: A query plan for q

1: for i = 1 to n do f

2: optPlan(fRig) = accessPlans(Ri)

3: prunePlans(optPlan(fRig))

4: g

5: toDo = fR1; : : : ; Rng

6: while jtoDoj > 1 do f

7: k = minfk, jtoDojg

8: for i = 2 to k do f

9: for all S � toDo such that jSj = i do f

10: optPlan(S) = ;

11: for all O � S do f

12: optPlan(S) = optPlan(S) [joinPlans(optPlan(O), optPlan(S �O))

13: prunePlans(optPlan(S))

14: g

15: g

16: g

17: �nd P , V with P 2 optPlan(V), V � toDo, jV j = k such that

eval(P) = minfeval(P 0) j P 0 2 optPlan(W), W � toDo, jW j = kg

18: generate new symbol: T

19: optPlan(fT g) = fPg

20: toDo = toDo { V [fT g

21: for all O � V do delete(optPlan(O))

22: g

23: �nalizePlans(optPlan(toDo))

24: prunePlans(optPlan(toDo))

25: return optPlan(toDo)

Figure 5: Iterative Dynamic Programming (IDP1) with Block Size k

a user or application program might want to limit the time spent for query optimization.

To see how IDP1 does this, let us assume, as an example, that a machine has enough

memory to keep all access plans, 2-way, 3-way, . . . , k-way join plans (after pruning) for

a query with n tables, but no more than that. Let us also assume that n > k. In such

a situation, dynamic programming would crash or be the cause of severe paging of the

operating system when it starts to consider (k + 1)-way join plans because at this point

the machine's memory is exhausted. IDP1, on the other hand, would generate access plans

and all 2-way, 3-way, . . . , k-way join plans like dynamic programming, but rather than

starting to generate (k + 1)-way join plans, IDP1 would break at this point, select one of

the k-way join plans, discard all other access and join plans that involve one of the tables

of the selected plan, and restart in order to build (k + 1)-way, (k + 2)-way, . . . join plans

using the selected plan as a building block. That is, just like the greedy algorithm breaks

after two-way join plans have been enumerated, IDP1 breaks after k-way join plans have

been enumerate, the memory is full, or a time-out is hit. The complete IDP1 algorithm is

shown in Figure 5, and we will describe it more closely using the following example.

12

The example is a �ve-way join query and k = 3. Figure 6 shows the six steps that IDP1

would take to optimize this query. In the �rst three steps, IDP1 works just like classic dy-

namic programming; i.e., IDP1 generates access plans, 2-way and 3-way join plans, keeping

the best plans in the optPlan structure and discarding inferior plans. In this example,

IDP1 breaks in Step 4 after noticing that, e.g., the memory is exhausted. In this step, IDP1
behaves like a greedy algorithm: it applies a \plan evaluation function," eval, to all 3-way

join plans, selects the plan with the lowest value of eval, and discards all other plans that

involve one or more tables considered in the selected plan. Speci�cally, IDP1 selects the

fA;B;Dg plan, and it discards the three access plans for A, B and D, the A 1 B, C 1 A,

E 1 D plans and all other 2-way join plans involving at least one of A, B or D, and it

discards the (A 1 B) 1 C and (E 1 D) 1 C plans and all other 3-way join plans with

A, B or D. Then, IDP1 restarts dynamic programming for the 3-way join optimization

problem with C, E, and T , where T represents the (temporary) table produced by the

selected fA;B;Dg plan. In Step 5, IDP1 considers all 2-way join plans with fT ; C; Eg

and in Step 6, IDP1 considers all 3-way join plans. The 3-way join plans generated in

Step 6 are actually 5-way join plans and after applying the �nalizePlans function, the

plan with lowest cost found in Step 6 is returned as the result of the optimization process.

2

Before we continue, we would like to make a couple of comments:

1. If desired, k, the parameter of IDP1, can be set by a user to limit the optimization

time or as an optimization level, but k need not be set by a user or a system

administrator. IDP1 can �nd out itself when the memory is exhausted and, therefore,

when to break. Impatitient users who halt the optimization process implicitly set k

at the time they press the STOP button. Obviously, the higher k (more resources),

the better are the plans generated by IDP1 because IDP1 becomes a better match to

full-
edged (classic) dynamic programming.

2. It is possible that IDP1 requires more than two iterations to optimize a query; if

n = 10 and k = 4, for example, IDP1 requires 3 iterations. (With every iteration,

the optimization problem is reduced by k � 1 = 3 tables.) If k � n, IDP1 needs

only one iteration; in this case, IDP1 behaves exactly like dynamic programming. If

k = 2, IDP1 behaves exactly like the greedy algorithm.

3. It should become clear from the example shown in Figure 6 that IDP1 carries out

the bulk of its work in its �rst iteration and that IDP1 �nds a plan very quickly after

its �rst break. In particular, IDP1 can reuse plans that were generated in the �rst

iteration. In Figure 6, for instance, the access plans for C and E, and the 2-way

join plan for C 1 E were generated in the �rst iteration and need not be generated

again in the second iteration. We will quantify this observation in Section 7.2.

4. Evidently, just like the greedy algorithm, the quality of plans returned by IDP1

strongly depends on the plan evaluation function used to select plans. We will

present alternative plan evaluation functions in Section 6. As we will see in Sec-

tion 7.3, however, IDP1 is able to produce good plans in most situations even with

very simple plan evaluation function, if k is su�ciently large. This is not true for a

greedy algorithm (i.e., IDP1 with k = 2).

13

A B C D E Step 1: access plans

A B

1

�� @@

C A

1

�� @@

. . . E D

1

�� @@ Step 2: 2-way joins

A B

1

�� @@
C

1

�� @@

A B

1

�� @@
D

1

�� @@

. . . E D

1

�� @@
C

1

�� @@

Step 3: 3-way joins

(eval = 300) (eval = 13) (eval = 2387)

T =

A B

1

�� @@
D

1

�� @@

C E

Step 4: select subplan;

start 2nd iteration

T C

1

�� @@

E T

1

�� @@

C E

1

�� @@
Step 5: 2-way joins;

2nd iteration

C E

1

�� @@
T

1

�� @@

=

A B

1

�� @@
D

1

�� @@

C E

1

�� @@

1

��
��

HH
HH

Step 6: 3-way join;

�nal plan

Figure 6: Optimizing a 5-Way Join Query with Block Size k = 3

14

5. Comparing Figures 1 and 5, we note that it is easy to extend an existing dynamic

programming-based query optimizer to become an IDP1-based optimizer: only a

couple of lines of code need to be added or changed. The implementation of the

accessPlans, joinPlans, �nalizePlans, and prunePlans functions which are typically

quite complex need not be changed at all. Also, IDP1 can be applied in the same

way as dynamic programming (and a greedy algorithm) in order to optimize queries

in a distributed database system because all the necessary adjustments to deal with

distributed databases are encapsulated in the accessPlans, joinPlans, �nalizePlans,

and prunePlans functions (Section 3.2).

5.1.2 Complexity

For k = 2, IDP1 behaves exactly like the greedy algorithm analyzed in Section 4.2 and

for k = n, IDP1 behaves like dynamic programming (Section 3.3). In the following, we

will therefore analyze the complexity of IDP1 for 2 < k < n. We will show that the IDP1

algorithm of Figure 5 has polynomial time and space complexity of the order of O(s3�nk).

In this analysis, k (the size of the building blocks) is considered to be constant, and s

(the number of sites) and n (the number of tables) are the variables which depend on the

query to optimize.

Time Complexity of IDP1 in a Centralized Database: In a centralized database

system, the time complexity of the IDP1 algorithm (Figure 5) is of the order of O(nk) for

2 < k < n.

Proof: The complete proof can be found in the Appendix of this paper. The basic idea

is to show (1) that the �rst iteration of the IDP1 algorithm can be carried out in O(nk)
steps and (2) that all the other iterations combined can also be carried out in O(nk) steps.

2

For k = 2 and k = 3, IDP1 has the same, cubic complexity. In these cases, �nding the

plan with the minimum value (Line 17) has as high or higher complexity as enumerating

subplans (Lines 8 to 15).

Time Complexity of IDP1 in a Distributed Database: In a distributed database

system, the time complexity of the IDP1 algorithm is of the order of O(s3 � nk) for 2 <

k < n.

Proof: The proof goes along the lines of the proof for the time complexity of dynamic

programming (Page 8). It can be shown that IDP1 enumerates in every step at most s
3

times as many plans in a distributed system as in a centralized systems. 2

Space Complexity of IDP1: In a distributed database system, the space complexity

of the IDP1 algorithm is of the order of O(s � nk + s
3
) for 2 < k < n.

15

Proof: This follows easily from the proof for the space overhead of dynamic program-

ming (Page 9) and the proof for the time complexity of IDP1 in a distributed database

system. 2

5.2 IDP2

5.2.1 Algorithm Description

Figure 7 shows the IDP2 algorithm. In fact, the �gure shows the \standard-bestPlan"

variant of this algorithm, and we defer the discussion of the other variants to Sections 5.3

and 5.4. This basic variant of the algorithm was originally proposed by Shekita and

Young [SY98], and a similar idea to apply dynamic programming in order to re-optimize

certain parts of a plan has also been proposed in form of the bushhawk algorithm by

Vance [Van98].

The algorithm works as follows: in every iteration, the algorithm applies a variant of

the greedy algorithm described in Section 4.1 in order to �nd k (or more tables) which

should be joined early (Lines 7 to 16 of Figure 7). After that, the IDP2 algorithm applies

dynamic programming, as described in Section 3, in order to �nd a good plan for the

tables selected by the greedy algorithm (Line 22). After that, the algorithm continues

to optimize the processing of the temporary table (denoted T) generated by the subplan

produced by dynamic programming and all the other tables of the query by iteratively

applying greedy heuristics and dynamic programming until a complete plan for the query

is found. It should be noted that the IDP2 algorithm actually uses the greedy algorithm

to �nd more than k tables that should be joined in the same subplan and then breaks up

this set of tables so that dynamic programming is applied to at most k tables (Lines 18

to 21). In this respect, other variants of the IDP2 algorithm are conceivable; we chose this

variant because it coincides with the proposal by [SY98].

Comparing IDP1 and IDP2, we observe that the mechanisms are essentially the same:

both algorithms apply heuristics (i.e., plan evaluation functions) in order to select sub-

plans, and both algorithms make use of dynamic programming. Also, both algorithms

can (fairly) easily be integrated into an existing optimizer which is based on dynamic

programming. The di�erence between the two algorithms is that IDP2 makes heuristic

decisions a priori and applies dynamic programming after that; IDP1, on the other hand,

starts with dynamic programming and makes heuristic decisions a posteriori, only when

it is necessary. In other words, IDP1 is adaptive and k is an optional parameter of the

algorithm which may or may not be set by a user in order to limit the optimization time.

For IDP2, k must be set before the algorithm starts. As we will see in the next subsection,

another di�erence is that IDP2 has lower asymptotic complexity than IDP1. We will study

the quality of plans produced by IDP1 and IDP2 in Section 7.

5.2.2 Complexity

In the following, we will give upper bounds for the time and space complexity of the

IDP2 algorithm in a distributed database system. Again, we consider s and n as variables

which depend on the query and k as a constant which must be set by a user or system

administrator.

16

Input: SPJ query q on relations R1; : : : ; Rn, maximum block size k

Output: A query plan for q

1: for i = 1 to n do f

2: optPlan(fRig) = accessPlans(Ri)

3: prunePlans(optPlan(fRig))

4: g

5: toDo = fR1; : : : ; Rng

6: while jtoDoj > 1 do f

7: // apply greedy algorithm to �nd a good building block

8: bblocks = ;

9: for all V 2 toDo do f

10: �nd P 2 optPlan(V) such that eval(P) = minfeval(P 0) j P 0 2 optPlan(V)g

11: bblocks = bblocks [fPg

12: g

13: do f

14: �nd L, R 2 bblocks, P 2 joinPlans(L, R) such that

eval(P) = minfeval(P 0) j L0; R0 2 bblocks, P 0 2 joinPlans(L0, R0)g

15: bblocks = bblocks [fPg { fL;Rg

16: g while P involves no more than k tables and jbblocksj > 1

17: // reoptimize the bigger of L and R, selected in the last iteration of the greedy loop

18: if (L involves more tables than R)

19: reopTables = ftables involved in Lg

20: else

21: reopTables = ftables involved in Rg

22: P = dynamic programming(reopTables)

23: generate new symbol: T

24: optPlan(fT g) = fPg

25: toDo = toDo [fT g { reopTables

26: for all O � V do delete(optPlan(O))

27: g

28: �nalizePlans(optPlan(toDo))

29: prunePlans(optPlan(toDo))

30: return optPlan(toDo)

Figure 7: Iterative Dynamic Programming (IDP2) with Block Size k

17

Time Complexity of IDP2: The time complexity of the IDP2 algorithm is of the order

of O(n � (n2 + s
3 � 3k)).

Proof: First, we note that the IDP2 algorithm carries out O(n) iterations. (In the best

case, d n

k�1
e iterations are necessary because the number of tables in the toDo list are

reduced by k � 1 tables in the best case.) In every iteration, the greedy loop requires

O(n2) steps and dynamic programming enumerates O(s3 � 3k) plans, as shown in the

proof for the time complexity of dynamic programming (Page 8). 2

For large n, IDP2 therefore, has a complexity of O(n3) which is lower than O(nk), the

complexity of IDP1, for k > 3.

Space Complexity of IDP2: The space complexity of the IDP2 algorithm is of the order

of O(n+ s � 2k + s
3
).

Proof: Inbetween iterations (i.e., for the toDo list) and for the greedy loop (i.e., for

the bblocks structure), we need to keep O(n) plans. Furthermore, we need space for

O(s � 2k + s
3
) plans to apply dynamic programming in every iteration, as shown in the

proof for the space complexity of dynamic programming (Page 9). 2

For large n, therefore, IDP2 has linear space complexity which is better than O(nk), the

space complexity of IDP1.

5.3 Standard vs. Balanced Iterative Dynamic Programming

In this section, we will describe two variants of IDP1 and IDP2 that we call standard

and balanced and that di�er in the restrictions they impose on the size of the selected

building blocks. The �rst variant, standard, imposes no restrictions; in fact, this is the

variant described in Figures 5 and 7. The second variant, balanced, restricts the size of

the selected building blocks in two ways:

1. the number of tables involved in the selected subplans must be even

2. the number of tables involved in the selected subplans must be less or equal to dd
2
e,

where d is the number of tables in the toDo list.

So, for a 10-way join query and k = 7, the balanced variant of the IDP1 algorithm would

enumerate all 2-way, 3-way, . . . and 7-way join plans, break, select a 4-way join plan, and

construct plans for the whole query in its second iteration. Likewise, the balanced variant

of the IDP2 algorithm would make sure that the dynamic programming step is only applied

to produce 2-way or 4-way join plans for a query that involves ten tables; that is, the

algorithm would break up L or R which are selected in the greedy loop to meet the two

restrictions.

The motivation to consider balanced variants of the IDP1 and IDP2 algorithms is demon-

strated by Figure 8. Figure 8a shows the optimal plan for an example 4-way join query.

Now let us assume that k = 3 and we use the IDP1 algorithm (the same observations hold

for the IDP2 algorithm). The standard IDP1 algorithm (as of Figure 5) enumerates all

3-way join subplans, breaks, and selects, say, the 3-way join subplan shown in Figure 8b.

18

BA

1

�� @@

C D

1

�� @@

1

��
��

HH
HH

A B

1

�� @@
C

1

�� @@

A B

1

�� @@
C

1

�� @@
D

1

�� @@

A B

1

�� @@
C

1

�� @@
D

1

�� @@

(a) Optimal Plan (b) Selected Subplan (c) Complete Plans from Selected Subplan

Figure 8: Example: Restrict the Size of Selected Subplans

After restart, the IDP1 algorithm constructs complete plans for the query using this sub-

plan as a building block, but there is no way for the optimizer to construct the optimal

plan from the selected 3-way join subplan. (All the complete plans that the optimizer is

able to construct are shown in Figure 8c.) In fact, for k = 3 and n = 4, the standard IDP1

algorithm is a-priori never able to produce a bushy plan like the one shown in Figure 8a,

regardless of which 3-way join plan is selected when the algorithm breaks. The balanced

variant of the IDP1 algorithm would select a 2-way (rather than 3-way) join plan and is,

thus, able to consider all bushy plans, including the bushy plan shown in Figure 8a. So,

the balanced variants of IDP1 and IDP2 are likely to produce better plans than the stan-

dard variants in situations in which bushy plans are desirable. On the negative side, the

standard variants might produce better plans in other situations because they consider

bigger building blocks. We will quantify these observations in Section 7.2.

5.4 Selecting Plans or Rows

In this section, we will describe two further variants: bestPlan and bestRow. Both variants

can be combined with standard IDP1 and IDP2 as well as with balanced IDP1 and IDP2 so

that we have, in all, eight di�erent IDP variants, as shown in Figure 4. bestPlan speci�es

that only a single plan is selected in every iteration. For IDP1 this means that whenever the

algorithm breaks, the join plan with the smallest value according to the plan evaluation

function is retained and all other join plans that involve the same number of tables are

discarded. For IDP2, bestPlan speci�es that a single plan is kept in every step of the greedy

loop of the algorithm and a single plan is produced in the dynamic-programming step.

bestPlan is the variant used in the algorithms of Figures 5 and 7.

bestRow extends bestPlan by retaining a whole entry of the optPlan structure; recall

that every such entry contains several incomparable plans involving the same tables. To

integrate this strategy into the IDP1 algorithm, we simply need to change Line 19 of the

IDP1 algorithm shown in Figure 5 to

optPlan(fT g) = optPlan(V)

That is, all the plans of the optPlan entry of Plan P are retained rather than just keeping

Plan P which is the join plan with the minimum value of the plan evaluation function.

For IDP2, we need to change the call to dynamic programming so that dynamic program-

ming produces a set of incomparable plans (Line 22 of the algorithm of Figure 7). In

a distributed system, for example, we call dynamic programming in such a way that it

19

...............

flat ballooning hybrid

Plan Evaluation Functions

min Sel.

min Cost

min IntRes. min Sel.

min Cost

min IntRes. min Sel.

min Cost

min IntRes.

Figure 9: Alternative Plan Evaluation Functions

produces di�erent plans for all interesting sites of the selected subplan. (interesting sites

as de�ned in Section 3.2.)

The tradeo�s of the bestPlan and bestRow variants are fairly straightforward, and we

will quantify them in Section 7.2. Obviously, the bestRow variants produce better plans

than the bestPlan variants because they consider more plans. On the negative side, the

running time and memory requirements of the bestRow variants are higher, just for the

same reason.

It should be noted that a third variant that we call bestRows is conceivable for the IDP1

algorithm. This variant would keep, say, 10 entries of the optPlan structure or 1% of all

the entries of the optPlan structure whenever IDP1 breaks. We will not study this variant

in more detail in this paper for the following two reasons: (1) using this bestRows variant,

the complexity of the IDP1 algorithm increases sharply because only few plans can be

discarded whenever the algorithm breaks; and (2) we could not �nd a way to produce

better plans with such a bestRows variant than with the (plain) bestRow variant.

6 Selecting Good Subplans

We will now turn to the question of how to select a good subplan which is important

for all IDP variants. Obviously, we are not shooting for perfect decisions (i.e., �nding

subplans which are guaranteed to be part of an optimal plan for the whole query), since

making such perfect decisions is just as hard as the original problem of �nding an optimal

plan for the query. So, instead, we will try to select \promising" subplans which are likely

to be part of a good plan for the query. In this section, we will present three classes of

plan evaluation functions that can be used by all eight IDP variants for this purpose. The

�rst class consists of very simple functions that are very easy to implement and can be

evaluated in constant time; we refer to this class as
at plan evaluation functions. The

functions of the second class are more di�cult to implement and have higher complexity;

we refer to the technique exploited by this class of functions as ballooning. The third class

of plan evaluation functions, termed hybrid, combines the ideas of the two other classes.

Within each class, we will look at three di�erent plan evaluation functions; many more

are conceivable. The whole spectrum of plan evaluation functions is depicted in Figure 9.

20

6.1 Flat Plan Evaluation Functions

Flat plan evaluation functions evaluate a subplan by looking at the properties of the

subplan only. In this work, we consider the following three di�erent
at plan evaluation

functions:

Minimum Cost: This plan evaluation function chooses the subplan with the smallest

(estimated) cost.

Minimum Intermediate Result: This plan evaluation function chooses the subplan

with the smallest (estimated) result cardinality.

Minimum Selectivity: This plan evaluation function chooses the subplan by the selec-

tivity of the predicates applied in the subplan; i.e.,

eval(subplan) =
result cardinality

jRs1
j � jRs2

j � : : : jRsk
j

if the subplan involves tables Rs1
; : : : Rsk

.

Of course, many other plan evaluation functions are conceivable; e.g., functions that

combine the cost of a subplan with the result cardinality. We chose these plan evaluation

functions because of their simplicity and because these plan evaluation functions have

been used at di�erent occasions in previous work. Min. Selectivity is, for example, used

in [Pal74, SMK97]; Min. Intermediate Result is used in [SYT93]; and we know of one

commercial database product that uses a Min. Cost plan evaluation function. We also

experimented with other, new plan evaluation functions, but none of these new plan

evaluation functions showed signi�cantly better performance than the best of these three

plan evaluation functions.

6.2 Ballooning

The idea of ballooning is to peek into the future in order to evaluate a subplan; that is,

ballooning quickly generates a complete plan from the subplan and uses the cost of this

complete plan as a metric to evaluate the subplan.
2
This way, IDP can choose a subplan

and be fairly sure that a low-cost complete plan can be constructed from it.

Obviously, there are many ways to generate a complete plan from a subplan, but we

want to emphasize again that we are interested in generating such a plan very quickly

because all IDP variants need to evaluate a large number of subplans. To quickly generate

a complete plan, we chose to apply the greedy algorithm described in Section 4.1. That

is, given a subplan, we add join by join to the subplan until we have a complete plan, and

with every step a
at plan evaluation function decides which join to add to the subplan.

For the bestPlan IDP variants, we balloon every plan of an optPlan entry individually

using exactly the same code as in the greedy loop of the IDP2 algorithm and a
at plan

evaluation function. For the bestRow variants, we balloon all the plans of an optPlan

2The name \ballooning" was adopted from [KMP93] where a technique was proposed to quickly
construct a complete plan from a subplan. Our \ballooning" should, however, not be confused with their
\ballooning"; the two are di�erent techniques used for di�erent purposes.

21

entry simultaneously and keep whole optPlan entries (i.e., set of incomparable plans)

rather than individual plans in every step of the greedy loop. Again, we experimented

with a Min. Cost, Min. Intermediate Result, and Min. Selectivity
at plan evaluation

function for this purpose.

It should be noted that the use of ballooning increases the complexity of IDP. Ballooning

with a Min. Cost or Min. Intermediate Result plan evaluation function can be carried out

in O(n3) steps. Ballooning with a Min. Selectivity plan evaluation function is cheaper and

can be carried out in O(n) steps because the predicates of a query can be sorted at the be-

ginning of the optimization process so that the next join during ballooning can be selected

in constant time (Section 4.2). In all, therefore, the time complexity of the IDP1 variants

in a distributed database system increase to O(s3 � nk+1
) if ballooning with Min. Se-

lectivity is used and to O(s3 � nk+3
) if ballooning with Min. Cost or Min. Intermediate

Result is used. The complexity of the IDP2 variants increase to O(n
4
) (Min. Selectivity)

or O(n6) (Min. Cost or Min. Intermediate Result) because ballooning would be applied

to every plan considered in the greedy loop in the IDP2 algorithm. The space complexity

of the IDP1 and IDP2 algorithms is not a�ected by ballooning because all subplans can be

ballooned using the same (small) piece of memory.

To summarize: IDP with ballooning has certainly got a higher running time than
at

IDP. Ballooning is also more di�cult to implement, although most of the code used for

ballooning can be reused. On the positive side, ballooning is likely to make better decisions

than any
at plan evaluation function. Another advantage of ballooning is that the cost of

the ballooned, complete plans can be used to prune subplans, at any time; this advantage

might in many situations compensate for the additional overhead of ballooning. (The

advantages of having complete plans early in the optimization process have been studied

in more detail in [VM96].)

6.3 Hybrid Plan Evaluation Functions

Hybrid plan evaluation functions work in the following way:

1. use a
at plan evaluation function to select x subplans (for bestPlan variants) or x

optPlan entries (for bestRow variants); here, x is a tuning parameter which must be

set by a user or system administrator

2. apply ballooning to these x subplans (or optPlan entries) in order to select a single

subplan (or optPlan entry, respectively); during ballooning the same or a di�erent

(
at) plan evaluation function as in the �rst step can be used

Obviously, hybrid plan evaluation functions have higher complexity than
at plan eval-

uation functions and lower complexity than full-
edged ballooning. At the same time,

it should be expected that they produce better plans than
at plan evaluation functions

and worse plans than full-
edged ballooning.

7 Performance Experiments and Results

In this section, we will discuss the results of experiments that assess the running times and

the quality of the plans produced by the di�erent IDP variants, dynamic programming

22

SELECT �

FROM R0, R1, ..., R9

WHERE R0:a0 = R1:i ^ R1:i = R2:a1 ^

R2:a2 = R3:i ^ R3:i = R4:a4 ^

R4:a5 = R5:i ^ R5:i = R6:a5 ^

R6:a6 = R7:a7 ^ ...^ R8:a9 = R9:a

Figure 10: 10-way Join Chain Query

SELECT �

FROM R0, R1, ..., R9

WHERE R0:i = R1:i ^

R0:i = R2:i ^

R0:i = R3:i ^

R0:a4 = R4:a ^ ...^ R0:a9 = R9:a

Figure 11: 10-way Join Star Query

(as described in Section 3), greedy algorithms (i.e., IDP-bestPlan with k = 2), and a

randomized algorithm called 2PO which is today the best known algorithm to process

very complex queries. An extensive set of experiments with other query optimization

algorithms is reported in [SMK97]. That paper shows that 2PO outperforms these other

algorithms; so we will use 2PO as a baseline for our comparisons in this work.

7.1 Experimental Environment

To assess the various IDP variants, dynamic programming, and 2PO, we used the two

10-way join queries shown in Figures 10 and 11. The �rst query is a CHAIN query, and

the second query is a STAR query. In both queries, three of the nine joins are carried out

with a shared join column (denoted as i) while the other six joins are carried out with

separate join columns. The presence of a shared join column favors the use of sort-merge

joins since R0 needs to be sorted only once to join it with R1, R2, and R3. The presence

of shared join columns also makes it more complicated to optimize these queries because

R0:i is an interesting order for all subplans that involve R0, but do not involve all of

R1, R2, R3; as a result, sort-merge join and hash-join plans might be incomparable and

neither of them may be pruned (see Section 3.1). We also carried out experiments with

20-way CHAIN and STAR queries; in those queries, six of the nineteen joins were carried

out with shared and interesting columns.

It should be noted that most modern query processors would rewrite queries with shared

join columns by adding predicates such as \R1:i = R3:i" (for the STAR query) to the

WHERE clause in order to have more
exibility during query optimization [GLSW93]. This

rewrite changes the join topology so that the queries no longer are pure CHAIN or STAR

queries. We experimented with such rewritten queries, but we saw the same e�ects as in

the experiments with the pure (un-rewritten) CHAIN and STAR queries, so we will only show

the results obtained using those pure CHAIN and STAR queries here. Of course, we also

experimented with other join topologies (e.g., CYCLE+3 or CLIQUE [VM96]) and queries

without shared join columns since such experiments are part of the standard repertoire

to validate a query optimizer. Again, we will not show the results of these experiments

here because they only con�rmed the �ndings.

We studied all queries with 100 di�erent settings for the cardinality of the base tables

and the selectivity of the join predicates. These settings were made randomly follow-

ing the approach proposed in [SMK97]. Using this approach, we were able to study a

large range of di�erent scenarios: queries with small and large base tables, low selectivity

queries that produce many results, high selectivity queries that produce few results, and

everything in between. Extending the approach proposed in [SMK97], we also carried

23

out experiments with distributed database con�gurations in which some of the tables

were replicated. A distributed environment signi�cantly increases the size of the search

space and the complexity of the algorithms in a similar way as the presence of expen-

sive predicates, group-bys or top N . If not stated otherwise, we measured a distributed

database con�guration with three sites in which three (random) tables were replicated at

all sites and the other tables were not replicated and distributed round-robin among the

three sites. Again, replicating and distributing the tables made the query optimization

problem more complex because interesting sites made alternative plans incomparable, as

described in Section 3.2. We also carried out other experiments in which we varied the

number of sites, and we will present those experiments as well. We also carried out exper-

iments in which we varied the degree of replication, but we will not present the results of

those experiments in this paper because these experiments did not reveal any new e�ects.

To validate the quality of plans, we used the optimizer's cost model rather than a real

query engine. This way, we were able to isolate the merits and de�ciencies of the individual

algorithms. The cost model we used is an extension of the cost model used in [SMK97]:

the cost formulae for the di�erent join methods, assumptions on bu�er management, etc.

are identical, and we added a simple cost formula (as of [ML86]) to model the costs of

shipping tables and intermediate results from one site to another. That is, the cost of

communication is estimated as bytes sent / bandwidth. The cost model parameters for

CPU and disk IO costs were set in the same way as proposed by [SMK97]; the cost model

parameter for the network costs (i.e., bandwidth) was set to model a wide-area network

with ISDN communication links. We also experimented with other parameter settings that

model fast local-area networks, but we will not present the results of those experiments

here because these experiments showed the same e�ects. The plans we generated consisted

of scan, sort, ship, nested-loop join, hash join, and merge join operators. Throughout this

section, we will report on the average scaled cost of the plans produced by the algorithms.

For the 10-way join queries, we applied dynamic programming to �nd the 100 optimal

plans for every query and the 100 di�erent base cardinality and selectivity settings, and

then we applied the di�erent IDP variants and 2PO in order to �nd out how much, on

an average, their plans were more expensive than the optimal plans. To compute the

average scaled cost for the 20-way join queries, the scaled cost of every plan was computed

using the best plan produced by 2PO or any IDP variant for the same parameter settings

as a baseline because the 20-way join queries could not be optimized using dynamic

programming. Since the average scaled cost results alone are often misleading because

they tend to be biased to a couple of extremely bad cases, we will also report how often

IDP and 2PO produced good, acceptable, and bad plans using the de�nitions of [Swa91];

i.e., a plan is good if its scaled cost is less than 2, a plan is acceptable if its scaled cost is

greater than 2 but less than 10, and a plan is bad if its scaled cost is greater than 10. In

addition to the quality of the plans, we measured the (average) running time of dynamic

programming (if applicable), all IDP variants, and 2PO using UNIX's getrusage system

call on a Sun Ultra with a 167 MHz SPARC processor.

An important point to note is that we implemented dynamic programming, the eight IDP

variants, and 2PO in such a way that no plans with Cartesian products are enumerated.

We did this because most commercial optimizers today do the same thing. Considering

Cartesian products would have increased the running times of the optimizer and, in a few

cases, it would have also impacted the quality of the plans produced by the optimizer.

24

7.2 The Right IDP Variants

7.2.1 Running Time

Before we compare IDP with dynamic programming and 2PO, we would like to know which

of the eight IDP variants is the best one. To this end, we will start and study the running

times of the eight IDP variants. Figures 12 and 13 show the running times of the four

IDP1 and the four IDP2 variants, respectively, varying k and using our default database

con�guration with three sites and three tables replicated at all three sites. In these and

the following experiments of this subsection we use a
at Minimum Intermediate Result

plan evaluation function (see Section 6.1). The reason for using this particular plan

evaluation function will become clear in Section 7.3, but the choice of the plan evaluation

function does not play a signi�cant role for the observations we are going to make in this

subsection. Looking at Figures 12 and 13, we see that the running time of all IDP variants

increases with k for all variants. For k = 10, all IDP1 variants have the same running

time as dynamic programming and all IDP2 variants have a slightly higher running time

because of the extra greedy loop. Recall that the basic greedy algorithm described in

Section 4 is identical with IDP1-standard-bestPlan with k = 2. Looking more closely at

the �gures, we can make the following observations:

1. In all cases, the standard variants have as high or higher running times than the

balanced variants. The reason for this is that, in e�ect, the balanced variants limit

the size of k in certain cases. For example, balanced IDP1 with k = 5 behaves

exactly like balanced IDP1 with k = 4 and is therefore cheaper than standard IDP1

with k = 5.

2. The bestRow variants are usually slightly more expensive than the bestPlan variants,

but they are never signi�cantly more expensive. Likewise, the bestRow variants

have only slightly higher space requirements (not shown). The gap between the

bestRow and bestPlan variants is so small because the bestRow variants do very little

extra work: rather than enumerating more plans, bestRow can be characterized as

discarding less plans than bestPlan.

3. For large k and k < 10, standard IDP2 is much faster than standard IDP1; the

balanced IDP1 and IDP2 variants, however, have fairly much the same running time.

Recall from Sections 5.1 and 5.2 that we expect IDP2 to have lower running times

than IDP1 for large queries with large k; for a 10-way join query using balanced IDP1

and IDP2, this advantage of IDP2 just does not become apparent. We will study the

running times of IDP1 and IDP2 in more detail in Section 7.4.

One e�ect which is not shown in Figures 12 and 13 is that the standard deviation of the

running times is quite high for all the IDP2 variants whereas the standard deviation is

almost 0 for all the IDP1 variants. (The �gures only show the average running times of

the IDP variants.) The running times of the IDP2 variants depend on the shape of the

produced plan: if the plan is deep the running time will be higher than if the plan is bushy

because IDP2 will call dynamic programming with larger building blocks for deep plans.

The shape of the produced plans strongly depends on the cardinality of the tables and

the selectivity of the join predicates and cannot be predicted in advance.

25

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 O
pt

im
iz

at
io

n
T

im
e

[s
ec

s]

k

standard - best plan
standard - best row

balanced - best plan
balanced - best row

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 O
pt

im
iz

at
io

n
T

im
e

[s
ec

s]

k

standard - best plan
standard - best row

balanced - best plan
balanced - best row

Figure 12: Running Time of IDP1

vary k, 10-way CHAIN Query

Figure 13: Running Time of IDP2

Vary k, 10-way CHAIN Query

k Total 1st Iteration All Other Iterations

2 0.05sec 40% 60%

3 0.12sec 64% 36%

4 0.23sec 74% 26%

5 0.36sec 95% 5%

6 0.46sec 98% 2%

7 0.57sec 99% 1%

8 0.69sec 100% 0%

9 0.77sec 100% 0%

10 0.79sec 100% 0%

Figure 14: Running Time of First vs. All Other Iterations

IDP1-standard-bestRow, Vary k, 10-way CHAIN Query

One of the interesting properties of the IDP1 variants is that those variants �nd a complete

plan for a query very quickly after their �rst iteration. This e�ect is demonstrated in Fig-

ure 14. It becomes clear that for k � 5 the portion of time spent for the 2nd and all other

iterations is negligible compared to the e�ort spent in the �rst iteration. Furthermore it

becomes clear that for all k, IDP1 spends no more than a fraction of a second to complete

a plan after the �rst iteration. In practice, this behavior of IDP1 is important because it

means that it is possible to press the STOP button at any time and IDP1 will break and

virtually immediately return a complete plan for the query.

Of course, we also studied the running times of the eight IDP variants for the 10-way join

STAR query. We do not show the results in detail here because they demonstrate the same

e�ects. The di�erence is that STAR queries are signi�cantly more di�cult to optimize than

CHAIN queries. For example, it would have taken more than six seconds rather than 0.8

seconds to optimize the STAR query using dynamic programming or IDP1 with k = 10.

7.2.2 Quality of Plans

Figures 15 and 16 show the average scaled cost (in logscale) of the plans produced by the

four IDP1 variants for the 10-way join STAR and CHAIN queries, varying k and using again

26

1

10

100

1000

10000

2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 S
ca

le
d

C
os

t (
lo

gs
ca

le
)

k

standard - best plan
standard - best row

balanced - best plan
balanced - best row

1

10

100

1000

10000

2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 S
ca

le
d

C
os

t (
lo

gs
ca

le
)

k

standard - best plan
standard - best row

balanced - best plan
balanced - best row

Figure 15: Quality of Plans, IDP1

Vary k, 10-way STAR Query

Figure 16: Quality of Plans, IDP1

Vary k, 10-way CHAIN Query

our default distributed database con�guration. We can see that the balanced-bestRow

variant is the clear winner. For the STAR query, it produces very good plans for k � 7,

and for the CHAIN query, it produces very good plans for all k. The other variants produce

in many cases plans which are orders of magnitudes more costly than the plans produced

by the balanced-bestRow variant. Recall again that the basic greedy algorithm of Section 4

corresponds to IDP1-standard-bestPlan with k = 2. In general, we can make the following

two observations:

� the bestRow variants produce signi�cantly better plans than the bestPlan variants

� the balanced variants produce signi�cantly better plans than the standard variants;

this observation demonstrates the importance to consider all bushy plans during

query optimization.

One particular feature of the balanced variants is that these variants produce better and

better plans, the larger k gets; that is, these variants guarantee that the plans get better

and better the more resources are available or the more resources a user is willing to invest

into the optimization process. The standard variants have not got this property.

Figures 17 and 18 assess the quality of plans produced by the four IDP2 variants. We

observe essentially the same e�ects: (1) the bestRow variants produce better plans than

the bestPlan variants, and (2) the balanced variants produce better plans than the standard

variants. A little surprisingly, the di�erence between the bestRow and bestPlan variants

are particularly pronounced for IDP2 whereas the gap between balanced and standard is

negligible in most cases. In all, however, we can safely conclude that balanced-bestRow

is the best variant for IDP1 and IDP2 because it has low running time and produces the

best plans. Note that the algorithm proposed by Shekita and Young [SY98] corresponds

to the IDP2-standard-bestPlan variant which is the overall worst variant of IDP2.

7.3 The Best Plan Evaluation Functions

Having studied the eight IDP variants (including the basic greedy algorithm), let us now

see what the best plan evaluation function is. Figures 19 and 20 show the quality of plans

produced by the IDP1-balanced-bestRow variant for STAR and CHAIN queries using the

three alternative
at plan evaluation functions described in Section 6.1. We observe that

27

1

10

100

1000

10000

100000

2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 S
ca

le
d

C
os

t (
lo

gs
ca

le
)

k

standard - best plan
standard - best row

balanced - best plan
balanced - best row

1

10

100

1000

10000

2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 S
ca

le
d

C
os

t (
lo

gs
ca

le
)

k

standard - best plan
standard - best row

balanced - best plan
balanced - best row

Figure 17: Quality of Plans, IDP2

Vary k, 10-way STAR Query

Figure 18: Quality of Plans, IDP2

Vary k, 10-way CHAIN Query

1

10

100

1000

10000

2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 S
ca

le
d

C
os

t (
lo

gs
ca

le
)

k

flat(Sel)
flat(Cost)

flat(IntRes)

1

10

100

2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 S
ca

le
d

C
os

t (
lo

gs
ca

le
)

k

flat(Sel)
flat(Cost)

flat(IntRes)

Figure 19: Quality of Plans, IDP1

Vary k, 10-way STAR Query

Figure 20: Quality of Plans, IDP1

Vary k, 10-way CHAIN Query

IDP1 generates the overall best plans ifMin. Intermediate Result is used as a criterion. We

experimented with many di�erent plan evaluation functions, combined the plan evaluation

functions with all IDP variants and looked at di�erent queries and distributed database

con�gurations, and in all casesMin. Intermediate Result was the winner or not much worse

than the winner. Min. Selectivity is only competitive for STAR queries and Min. Cost is

never good.

More interesting is the comparison of
at vs. ballooning vs. hybrid plan evaluation func-

tions. Figure 21 shows the running time of IDP (more speci�cally, IDP1-balanced-bestRow)

using di�erent evaluation functions along this dimension. As expected, full-
edged bal-

looning has the highest running time,
at has the lowest running time, and hybrid is

somewhere in between. Looking closer, we can see that full-
edged ballooning has an

almost as high running time as dynamic programming (IDP with k = 10) for k � 4;

in fact, IDP with full-
edged ballooning can become even more expensive than dynamic

programming so that this variant is not very attractive. We can, however, also see that

a hybrid plan evaluation function that balloons 5% of the optPlan entries incurs only a

slight running time overhead (less than 20%) compared to a
at plan evaluation function,

so that a hybrid plan evaluation function is very well a�ordable in terms of running time.

Turning to the quality of plans produced by the di�erent variants (Figure 22), we see

that a hybrid plan evaluation function is also very good to help IDP select good subplans.

Obviously, the best plans are produced with full-
edged ballooning, but hybrid plan eval-

uation functions produce just as good plans for k � 4. Flat plan evaluation functions

28

0

1

2

3

4

5

6

7

8

2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 O
pt

im
iz

at
io

n
T

im
e

k

flat(IntRes)
hybrid(IntRes) 5%

hybrid(IntRes) 20%
balloon(IntRes)

1

10

100

1000

2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 S
ca

le
d

C
os

t (
lo

gs
ca

le
)

k

flat(IntRes)
hybrid(IntRes) 5%

hybrid(IntRes) 20%
balloon(IntRes)

Figure 21: Running Time, IDP1

Vary k, 10-way STAR Query

Figure 22: Quality of Plans, IDP1

Vary k, 10-way STAR Query

only produce good plans for large k (k � 7 in this case).

7.4 IDP vs. Dynamic Programming vs. 2PO

We are now ready to compare IDP with dynamic programming and 2PO, the best known

algorithm to optimize very complex queries for which dynamic programming is not vi-

able [SMK97]. Speci�cally, we will study the IDP1-balanced-bestRow and IDP2-balanced-

bestRow variants and use a
at Min. Intermediate Result plan evaluation function. To

implement 2PO, we used the neighbor functions (plus a neighbor function for \site selec-

tion" [FJK96]) and parameter settings proposed in [IK90]. We also experimented with

di�erent parameter settings, but we were not able to improve the results of 2PO with

di�erent parameter settings. We will �rst present the results we obtained with 10-way

join queries and then the results we obtained with 20-way join queries.

7.4.1 10-Way Join Queries

Running Time Let us �rst look at the running times of the di�erent algorithms for

10-way CHAIN queries, varying the number of sites at which copies of the tables are

stored (Figure 23). We already showed in Section 3.3 that the running time of dynamic

programming grows cubically with the number of sites and the same observation holds

for both IDP variants; the curves for the IDP variants, however, are signi�cantly
atter

than for dynamic programming. The running time of 2PO is almost independent of the

number of sites. It should be noted, however, that 2PO has the highest running time for

a centralized system. In this case, the running time of 2PO is even higher than that of

dynamic programming. In terms of running time, the virtues of 2PO only become apparent

in a distributed system and for queries that potentially involve many di�erent sites or if

n is larger than 10.

Figure 24 lists the running times of the di�erent algorithms in more detail, including the

running times for STAR queries and the running times of IDP1 and IDP2 for di�erent k. It

becomes clear that dynamic programming is prohibitively expensive for STAR queries in

distributed systems, and that the di�erences in running time between IDP2 and IDP1 are

particularly pronounced for STAR queries.

29

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

central 3 Sites 5 Sites 10 Sites

A
ve

ra
ge

 O
pt

im
iz

at
io

n
T

im
e

[s
ec

s]

2PO
IDP1 k=4
IDP2 k=4

DP

Chain Star

Sites s s = 1 s = 10 s = 1 s = 10

2PO 0.26 0.33 0.32 0.35

IDP1, k = 2 0.01 0.63 0.02 1.24

IDP1, k = 4 0.04 4.39 0.13 19.1

IDP1, k = 7 0.06 7.20 0.16 21.2

IDP2, k = 2 0.03 1.38 0.04 2.24

IDP2, k = 4 0.03 2.02 0.04 2.45

IDP2, k = 7 0.04 6.16 0.08 7.04

Dyn. Prog. 0.11 19.1 0.67 107.8

Figure 23: Running Time, 2PO, IDP, DP

Vary s, 10-way CHAIN Query

Figure 24: Running Time, 2PO, IDP, DP

Vary s, 10-way Join Queries

Quality of Plans Figures 25 to 28 assess the quality of plans produced by the di�erent

algorithms for the 10-way CHAIN and STAR queries, varying the number of sites and k for

IDP1 and IDP2. The plots show the average scaled costs and the tables list the number of

good, acceptable, and bad plans produced by the algorithms. As a general trend, the plans

produced by 2PO become worse with an increasing number of sites: while at least 70% of

the plans produced by 2PO are good in a centralized system, only about every third plan

can be classi�ed as good in a distributed system. In other words, the plans produced by

2PO get worse the more di�cult it is to optimize a query. In all, these experiments show

that 2PO is not an attractive algorithm for query optimization: in a centralized system,

2PO often produces good plans, but it is slow (in some cases, even slower than dynamic

programming); in a distributed system, 2PO is fast, but it only rarely produces good plans.

Both IDP1 and IDP2 produce reasonably good plans for k � 4 in these experiments. For

k = 7, the plans are almost perfect. Comparing IDP1 and IDP2, IDP1 is typically as good

or slightly better than IDP2 for CHAIN queries and both are almost identical for STAR

queries. Of course, dynamic programming is always perfect (scaled cost of 1 and 100%

good plans).

Graceful Degradation One of the arguments in favor of randomized algorithms such

as 2PO is that such algorithms degrade gracefully. That is, 2PO produces plans very quickly

and it �nds better and better plans the longer it runs. Dynamic programming and IDP2

do not have this property: these two algorithms do not produce plans until the very end,

making it impossible for a user to \press a STOP button" in the middle of the optimization

process. As shown in Section 7.2, however, IDP1 also degrades gracefully: at any time

during the optimization process, it is possible to press the STOP button and IDP1 will

return a plan within fractions of a second. Also, the plans produced by IDP1 will become

better and better the later the STOP button is pressed, if a balanced IDP1 variant is used.

This is the main argument in favor of IDP1 in comparison to IDP2.

Figures 29 and 30 show how quickly 2PO and IDP1 produce good plans. To carry out this

experiment, we ran these two algorithms for the 100 di�erent STAR and CHAIN queries,

pressed the STOP button at di�erent times, and computed the average scaled cost. The

two �gures show that IDP1 always wins, regardless of when the STOP button is pressed. In

30

1

10

central 3 Sites 5 Sites 10 Sites

A
ve

ra
ge

 S
ca

le
d

C
os

t (
lo

gs
ca

le
)

2PO
IDP1 k=4
IDP2 k=4

Sites s s = 1 s = 3 s = 10

G A B G A B G A B

2PO 92 7 1 57 41 2 31 64 5

IDP1, k = 2 80 15 5 86 13 1 84 15 1

IDP1, k = 4 91 7 2 93 7 0 94 6 0

IDP1, k = 7 99 1 0 98 2 0 98 2 0

IDP2, k = 2 80 15 5 86 13 1 84 15 1

IDP2, k = 4 89 7 4 94 5 1 92 8 0

IDP2, k = 7 99 1 0 99 1 0 99 1 0

Dyn. Prog. 100 0 0 100 0 0 100 0 0

Figure 25: Average Scaled Cost (logscale)

Vary s, 10-way CHAIN Query

Figure 26: Good, Acceptable, Bad Plans

Vary s, 10-way CHAIN Query

1

10

100

central 3 Sites 5 Sites 10 Sites

A
ve

ra
ge

 S
ca

le
d

C
os

t (
lo

gs
ca

le
)

2PO
IDP1 k=4
IDP2 k=4

Sites s s = 1 s = 3 s = 10

G A B G A B G A B

2PO 73 9 18 31 54 15 34 45 21

IDP1, k = 2 56 18 26 45 41 14 67 19 14

IDP1, k = 4 70 17 13 79 15 6 80 14 6

IDP1, k = 7 96 3 1 96 3 1 96 3 1

IDP2, k = 2 56 18 26 45 41 14 67 19 14

IDP2, k = 4 70 17 13 79 15 6 80 14 6

IDP2, k = 7 96 3 1 96 3 1 96 3 1

Dyn. Prog. 100 0 0 100 0 0 100 0 0

Figure 27: Average Scaled Cost (logscale)

Vary s, 10-way STAR Query

Figure 28: Good, Acceptable, Bad Plans

Vary s, 10-way STAR Query

fact, IDP1 produces very good plans in this experiment after at most one second whereas

for some STAR queries, 2PO never produces acceptable plans (the average scaled cost is 60

or more).

7.4.2 20-Way Join Queries

We now turn to the results of the experiments with the 20-way join STAR and CHAIN

queries. These queries could not be optimized using dynamic programming so we can

only compare 2PO and IDP. The results essentially con�rm that 2PO is not competitive.

Figures 32 and 34 show that 2PO produces signi�cantly worse plans than IDP1 and IDP2

in all cases, even for k = 2. These �gures also show that the quality of plans produced by

both IDP variants improves with growing k, but that the improvements are fairly small

beyond k = 5 (less than a factor of 5). Figures 31 and 33 show that 2PO has a higher

running time than IDP for small k and even for fairly large k the running time of IDP2 and

2PO are comparable. These experiments also con�rm that IDP1 has higher running time

than IDP2 and that the quality of plans produced by IDP1 and IDP2 is almost the same.

(IDP1 is, again, slightly better for CHAIN queries.) We also ran experiments with even

more joins (up to n = 30), but could not get any new insights from these experiments. In

31

0.1

1

10

100

1000

0 1 2 3 4 5 6

A
ve

ra
ge

 S
ca

le
d

C
os

t (
lo

gs
ca

le
)

Running Time [secs]

2PO
IDP1

0.1

1

10

100

1000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 S
ca

le
d

C
os

t (
lo

gs
ca

le
)

Running Time [secs]

2PO
IDP1

Figure 29: Quality by Running Time

s = 3, 10-way STAR Query

Figure 30: Quality by Running Time

s = 3, 10-way CHAIN Query

0.1

1

10

100

2 3 4 5 6 7 8 9 10 11

A
ve

ra
ge

 O
pt

. T
im

e
[s

ec
s]

 (
lo

gs
ca

le
)

k

2PO
IDP1
IDP2

1

10

2 3 4 5 6 7 8 9 10 11

A
ve

ra
ge

 S
ca

le
d

C
os

t (
lo

gs
ca

le
)

k

2PO
IDP1
IDP2

Figure 31: Running Time, 2PO, IDP

s = 3, 20-way CHAIN Query

Figure 32: Quality of Plans, 2PO, IDP

s = 3, 20-way CHAIN Query

Figures 31 to 34, we do not show any results for which the optimization time was larger

than 100 seconds (e.g., IDP1 for k > 6 and STAR queries).

8 Conclusion

In this paper we presented a new class of query optimization algorithms which are based

on a principle that we call iterative dynamic programming (IDP). We believe that existing

optimizers should be extended to employ IDP and that new optimizers should be based on

IDP. First of all, IDP is clearly better than dynamic programming which is used in most

database systems today: IDP is able to produce as good plans as dynamic programming if

there are enough resources available, and IDP is, in addition, able to adapt in cases where

there are not enough resources available or the query is too complex for dynamic program-

ming. Furthermore, we showed that IDP is better than a randomized approach and other

heuristic approaches for query optimization. We compared IDP to 2PO which is the best

known randomized algorithm and was shown to outperform other heuristics [SMK97]. 2PO

is both slower and produces worse plans than simple IDP variants with a setting of k = 2.

Furthermore, the 2PO algorithm is very di�cult to integrate into an existing optimizer

which is based on dynamic programming. Maybe, randomized algorithms such as 2PO are

attractive to optimize very complex queries that involve dozens of tables and for which

32

0.1

1

10

100

1000

2 3 4 5 6 7 8 9 10 11

A
ve

ra
ge

 O
pt

. T
im

e
[s

ec
s]

 (
lo

gs
ca

le
)

k

2PO
IDP1
IDP2

1

10

100

2 3 4 5 6 7 8 9 10 11

A
ve

ra
ge

 S
ca

le
d

C
os

t (
lo

gs
ca

le
)

k

2PO
IDP1
IDP2

Figure 33: Running Time, 2PO, IDP

s = 3, 20-way STAR Query

Figure 34: Quality of Plans, 2PO, IDP

s = 3, 20-way STAR Query

even polynomial time algorithms like IDP are too expensive; however, we did not exper-

iment with such queries because such queries do not occur in any database applications

we are aware of.

We identi�ed eight di�erent IDP variants. Our experiments showed clearly that what we

call \balanced" IDP with \bestRow" should be used. No clear winner could be identi�ed

between the basic algorithm variants IDP1 and IDP2. The overall picture is that IDP2 is

faster than IDP1 and produces as good plans as IDP1. On the negative side, however,

IDP2 requires a-priori tuning by a user or system administrator (i.e., setting of the k

parameter) whereas IDP1 is adaptive. Our conclusion is that both IDP1 and IDP2 should

be combined. That is, the optimizer should use IDP2 with some default value of k in its

main loop (e.g., k = 15), and the optimizer should employ IDP1 (rather than dynamic

programming) whenever it optimizes a building block. This way, the optimizer will always

safely generate plans because IDP1 is adaptive, and users can overwrite the default value

of k in order to use IDP2 to speed-up the optimization process.

As future work, we plan to look for ways to tune the implementation of IDP. We will, for

example, devise models to predict the running time and memory requirements of IDP in

order to avoid enumerating, say, all 7-way join subplans of a query and then falling back

to select a 4-way join subplan as described in Section 5.3 for IDP1. Another point of future

work is to compare our IDP variants with, say, a 2-step optimization process as proposed

in [SAL
+
96] for distributed databases or to compare IDP with the query optimization

heuristics of [HS93, Hel94, CS96] for the optimization of queries with expensive predicates.

We would also like to see how IDP can be used to better control the optimization process;

for instance, spend more time to optimize queries with a high estimated execution time

and when it is worth it. Finally, we are curious to see how well IDP works for other,

non-database optimization problems.

Acknowledgments

We would like to thank Johann Christoph Freytag, Alfons Kemper, Guy Lohman, and

Bennet Vance for many helpful comments on this work.

33

References

[BEG96] R. Buck-Emden and J. Galimow. SAP R/3 System, A Client/Server Technology.

Addison-Wesley, Reading, MA, USA, 1996.

[CK97] M. Carey and D. Kossmann. On saying \enough already!" in SQL. In Proc. of the

ACM SIGMOD Conf. on Management of Data, pages 219{230, Tucson, AZ, USA,

May 1997.

[CS94] S. Chaudhuri and K. Shim. Including group-by in query optimization. In Proc. of the

Conf. on Very Large Data Bases (VLDB), pages 354{366, Santiago, Chile, Septem-

ber 1994.

[CS96] S. Chaudhuri and K. Shim. Optimization of queries with user-de�ned predicates.

In Proc. of the Conf. on Very Large Data Bases (VLDB), pages 87{98, Bombay,

India, September 1996.

[DHKK97] J. Doppelhammer, T. H�oppler, A. Kemper, and D. Kossmann. Database perfor-

mance in the real world: TPC-D and SAP R/3. In Proc. of the ACM SIGMOD

Conf. on Management of Data, pages 123{134, Tucson, AZ, USA, May 1997.

[FJK96] M. Franklin, B. J�onsson, and D. Kossmann. Performance tradeo�s for client-server

query processing. In Proc. of the ACM SIGMOD Conf. on Management of Data,

pages 149{160, Montreal, Canada, June 1996.

[GD87] G. Graefe and D. DeWitt. The EXODUS optimizer generator. In Proc. of the ACM

SIGMOD Conf. on Management of Data, pages 160{172, San Francisco, USA, May

1987.

[GHK92] S. Ganguly, W. Hasan, and R. Krishnamurthy. Query optimization for parallel

execution. In Proc. of the ACM SIGMOD Conf. on Management of Data, pages

9{18, San Diego, USA, June 1992.

[GLPK94] C. Galindo-Legaria, A. Pellenkoft, and M. Kersten. Fast, randomized join-order

selection|why use transformations? In Proc. of the Conf. on Very Large Data

Bases (VLDB), pages 85{95, Santiago, Chile, September 1994.

[GLSW93] P. Gassner, G. M. Lohman, K. Schiefer, and Y. Wang. Query optimization in the

IBM DB2 family. IEEE Data Engineering Bulletin, 16(3):4{18, September 1993.

[GM93] G. Graefe and W. J. McKenna. The Volcano optimizer generator: Extensibility and

e�cient search. In Proc. IEEE Conf. on Data Engineering, pages 209{218, Vienna,

Austria, April 1993.

[Hel94] J. M. Hellerstein. Practical predicate placement. In Proc. of the ACM SIGMOD

Conf. on Management of Data, pages 325{335, Minneapolis, MI, USA, May 1994.

[HKWY97] L. M. Haas, D. Kossmann, E. L. Wimmers, and J. Yang. Optimizing queries across

diverse data sources. In Proc. of the Conf. on Very Large Data Bases (VLDB),

pages 276{285, Athens, Greece, August 1997.

[HS91] W. Hong and M. Stonebraker. Optimization of parallel execution plans in xprs.

In Proc. of the Intl. IEEE Conf. on Parallel and Distributed Information Systems,

pages 218{225, Miami, Fl, USA, December 1991.

34

[HS93] J. M. Hellerstein and M. Stonebraker. Predicate migration: Optimizing queries

with expensive predicates. In Proc. of the ACM SIGMOD Conf. on Management

of Data, pages 267{276, Washington, DC, USA, May 1993.

[IK84] T. Ibaraki and T. Kameda. Optimal nesting for computing N -relational joins. ACM

Trans. on Database Systems, 9(3):482{502, 1984.

[IK90] Y. E. Ioannidis and Y. C. Kang. Randomized algorithms for optimizing large join

queries. In Proc. of the ACM SIGMOD Conf. on Management of Data, pages 312{

321, Atlantic City, USA, April 1990.

[IW87] Y. E. Ioannidis and E. Wong. Query optimization by simulated annealing. In Proc.

of the ACM SIGMOD Conf. on Management of Data, pages 9{22, San Francisco,

USA, May 1987.

[KBZ86] R. Krishnamurthy, H. Boral, and C. Zaniolo. Optimization of nonrecursive queries.

In Proc. of the Conf. on Very Large Data Bases (VLDB), pages 128{137, Kyoto,

Japan, 1986.

[KKM98] A. Kemper, D. Kossmann, and F. Matthes. SAP R/3: a database application

system. Tutorial handouts for the ACM SIGMOD Conference, Seattle, WA, USA,

June 1998.

[KMP93] A. Kemper, G. Moerkotte, and K. Peithner. A blackboard architecture for query

optimization in object bases. In Proc. of the Conf. on Very Large Data Bases

(VLDB), pages 543{554, Dublin, Ireland, 1993.

[Kos98] Donald Kossmann. The state of the art in distributed query processing. 1998.

Submitted for publication.

[Loh88] G. M. Lohman. Grammar-like functional rules for representing query optimization

alternatives. In Proc. of the ACM SIGMOD Conf. on Management of Data, pages

18{27, Chicago, IL, USA, May 1988.

[LVZ93] R. Lanzelotte, P. Valduriez, and M. Zait. On the e�ectiveness of optimization search

strategies for parallel execution spaces. In Proc. of the Conf. on Very Large Data

Bases (VLDB), pages 493{504, Dublin, Ireland, 1993.

[LYV+98] C. Li, R. Yerneni, V. Vassalos, H. Garcia-Molina, Y. Papakonstantinou, J. Ullman,

and M. Valiveti. Capability based mediation in TSIMMIS. In Proc. of the ACM

SIGMOD Conf. on Management of Data, pages 564{566, Seattle, WA, USA, June

1998.

[ML86] L. Mackert and G. M. Lohman. R� optimizer validation and performance evaluation

for distributed queries. In Proc. of the Conf. on Very Large Data Bases (VLDB),

pages 149{159, Kyoto, Japan, 1986.

[OL90] K. Ono and G. M. Lohman. Measuring the complexity of join enumeration in query

optimization. In Proc. of the Conf. on Very Large Data Bases (VLDB), pages

314{325, Brisbane, Australia, 1990.

[Pal74] F. Palermo. A database search problem. In Information Systems, pages 67{101.

Plenum Publ., New York, NY, 1974.

35

[PGLK97] A. Pellenkoft, C. Galindo-Legaria, and M. Kersten. The complexity of

transformation-based join enumeration. In Proc. of the Conf. on Very Large Data

Bases (VLDB), pages 306{315, Athens, Greece, August 1997.

[SAC+79] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price.

Access path selection in a relational database management system. In Proc. of the

ACM SIGMOD Conf. on Management of Data, pages 23{34, Boston, USA, May

1979.

[SAL+96] M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfe�er, A. Sah, J. Sidell, C. Staelin, and

A. Yu. Mariposa: A wide-area distributed database system. The VLDB Journal,

5(1):48{63, Jan 1996.

[SG88] A. Swami and A. Gupta. Optimization of large join queries. In Proc. of the ACM

SIGMOD Conf. on Management of Data, pages 8{17, Chicago, IL, USA, May 1988.

[SI93] A. Swami and B. Iyer. A polynomial time algorithm for optimizing join queries.

In Proc. IEEE Conf. on Data Engineering, pages 345{354, Vienna, Austria, April

1993.

[SM97] W. Scheufele and G. Moerkotte. On the complexity of generating optimal plans with

cross products. In Proc. ACM SIGMOD/SIGACT Conf. on Princ. of Database Syst.

(PODS), pages 238{248, Tucson, AZ, USA, May 1997.

[SMK97] M. Steinbrunn, G. Moerkotte, and A. Kemper. Heuristic and randomized optimiza-

tion for the join ordering problem. The VLDB Journal, 6(3):191{208, 1997.

[SSM96] D. Simmen, E. Shekita, and T. Malkemus. Fundamental techniques for order op-

timization. In Proc. of the ACM SIGMOD Conf. on Management of Data, pages

57{67, Montreal, Canada, June 1996.

[Swa89] A. Swami. Optimization of large join queries: Combining heuristics and combina-

tional techniques. In Proc. of the ACM SIGMOD Conf. on Management of Data,

pages 367{376, Portland, OR, USA, May 1989.

[Swa91] A. Swami. Distributions of query plan costs for large join queries. Technical Report

RJ 72891, IBM Research Division, IBM Almaden Reseach Center, San Jose, CA,

January 1991.

[SY98] E. Shekita and H. Young. Iterative dynamic programming. IBM Technical Report,

1998.

[SYT93] E. Shekita, H. Young, and K.-L. Tan. Multi-join optimization for symmetric multi-

processors. In Proc. of the Conf. on Very Large Data Bases (VLDB), pages 479{492,

Dublin, Ireland, 1993.

[Van98] B. Vance. Join-order Optimization with Cartesian Products. PhD thesis, Oregon

Graduate Institute, 1998. in preparation.

[VM96] B. Vance and D. Maier. Rapid bushy join-order optimization with Cartesian prod-

ucts. In Proc. of the ACM SIGMOD Conf. on Management of Data, pages 35{46,

Montreal, Canada, June 1996.

36

Appendix: Time Complexity of IDP1 in a Centralized

Database (2 < k < n)

We carry out the proof (Page 15) in two steps. In the �rst step, we show that the �rst

iteration of the basic IDP1 algorithm can be carried out in O(nk) steps. In the second

step, we show that all the other iterations combined can be carried out in O(nk) steps.

In this proof, k is considered as a constant, and n is the variable.

Step 1: To prove that no more than O(nk) steps are carried out in the �rst iteration of

the IDP1 algorithm, we will generously overestimate the cost of IDP1 and count the number

of subplans enumerated by IDP1 in the �rst iteration assuming that no pruning is carried

out. To do this counting, we �rst observe that there are
(2�m�2)!

(m�1)!
bushy plans for a query

with m tables [GHK92]. As a result, at most
(2�m�2)!

(m�1)!
subplans need to be enumerated to

determine the optPlan(P) entry if P involves m tables. (With pruning, signi�cantly fewer

plans would be enumerated.) Now, we observe that we have

�
n

2

�
optPlan entries for all

2-way join subplans,

�
n

3

�
entries for all 3-way join subplans, . . . ,

�
n

k

�
entries for all k-way

join subplans. In all, IDP1, therefore, enumerates

A = n +

kX
m=2

n

m

!
�
(2 �m� 2)!

(m� 1)!

(3)

subplans in its �rst iteration (the �rst n subplans are the access plans). Now, we conclude

A � n+
(2 � k � 2)!

(k � 1)!

�
kX

m=2

n

m

!
2 O(nk)

because
n

m

!
=

n � (n� 1) � : : : � (n�m)

m!

2 O(nm)

and
kX

m=2

n
m 2 O(nk)

Step 2: We now prove that all other iterations (except the �rst) combined require

less than O(nk) steps. First, we observe that IDP1 carries out dn�k
k�1

e iterations after

the �rst iteration, since the optimization problem is reduced by k � 1 tables with every

iteration. Next, we observe that in the ith iteration of these, the optimization problem

has n� i � (k � 1) tables. As a result,

kX
m=2

n� i � (k � 1)

m

!
�
(2 �m� 2)!

(m� 1)!

join plans need to be considered in the ith iteration (just as in Equation (3)). Now, we

observe that in every of these iterations only the join plans involving the new temporary

table that is produced by the selected subplan of the previous iteration need to be newly

37

generated; or putting it di�erently, all join plans involving the n� i� (k�1)�1 old tables

already exist and need not be generated again. As a result,

kX
m=2

n� i � (k � 1)

m

!
�
(2 �m� 2)!

(m� 1)!

|

kX
m=2

n� i � (k � 1)� 1

m

!
�
(2 �m� 2)!

(m� 1)!

join plans need to be newly generated in the ith iteration. With some tricks, we can

show that this equation is in O(n(k�1)
), and since we need O(n) iterations after the �rst

iteration, all these iterations combined can be carried out in O(nk) steps. 2

38

