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Abstract. Current developments show that tomorrow’s information
systems and applications will no longer be based on monolithic archi-
tectures that encompass all the functionality. Rather, the emerging need
for distribution and quick adaptation to new requirements stemming
from, e.g., virtual enterprises, demands distributed systems that can be
extended dynamically to compose new services from existing software
components. However, usage of mobile code introduces specific security
concerns which a security system must be aware of. We present a com-
prehensive security architecture for extensible, distributed systems using
the example of an Internet query processing service which can be ex-
tended by user-defined operators. Before an operator is actually used
in queries for the first time, our OperatorCheck server validates its se-
mantics and analyzes its quality. This is done semi-automatically using
an oracle-based approach to compare a formal specification of an opera-
tor against its implementation. Further security measures are integrated
into the query processing engine: during plan distribution secure com-
munication channels are established, authentication and authorization
are performed, and overload situations are avoided by admission con-
trol. During plan execution operators are guarded using Java’s security
model to prevent unauthorized resource access and leakage of data. The
resource consumption of operators is monitored and limited with rea-
sonable supplementary costs to avoid resource monopolization. We show
that the presented security system is capable of executing arbitrary op-
erators without risks for the executing host and the privacy and integrity
of data. In the paper we will concentrate on the OperatorCheck server,
as this server can itself be viewed as an e-service that can be used by
developers and independent associations.

1 Introduction

The recent trend towards extensible and distributed systems demands new so-
phisticated security systems to meet the challenges of mobile, user-defined code.
Examples for such systems are Web browsers executing Applets, Web application
servers executing Servlets and Java Server Pages, and extensible database man-
agement systems implementing, e.g., the SQL99 [22] standard for user-defined
functions. Nowadays even more and more wireless devices execute code in form of
WML scripts [9], e.g., to interact with a mobile e-commerce system. In this paper
we use ObjectGlobe [2], a distributed and extensible query processor written in



Java, as an example for such a system. To describe it in short, ObjectGlobe can
execute a query with—in principle—unrelated query operators, cycle providers
(used to execute operators), and data sources.

The openness of a system like ObjectGlobe creates new demands on a secu-
rity system. The code of external, i.e. user-defined, operators is unknown. Thus,
users of operators do not know, if the operator calculates the correct result,
crashes, or manipulates data given to it. For this reason quality assurance is
necessary, because users of external operators want to feel certain about the
semantics and functioning of operators to be able to rely upon the results of a
query. As in every distributed system, it is necessary to protect communication
channels against tampering and eavesdropping. Cycle providers execute arbi-
trary external operators, thus cycle providers need a security architecture which
prevents external operators from accessing resources like the file system of the
cycle provider, monopolizing resources like memory or CPU time, or manipulat-
ing vital components of the ObjectGlobe system. Additionally, cycle providers
need an authorization framework to be able to determine the identity of a user.

The goal of this work is to provide a security architecture for ObjectGlobe ad-
dressing all mentioned challenges, which is generally appropriate for distributed
and extensible systems. Due to space limitations we will concentrate on qual-
ity assurance. In order to achieve these goals we have to rely upon some basic
assumptions about the environment of ObjectGlobe. First, we assume that the
operating system which is running ObjectGlobe is secure and that the admin-
istrators of the cycle provider are trustworthy, because we cannot protect the
system against the operating system. Second, we assume that the code and the
Java Virtual Machine (JVM) used to run ObjectGlobe are unmodified. These
requirements are enforced in ObjectGlobe by giving the user the possibility to
restrict the cycle providers to a set of trusted cycle providers. The last and most
serious assumption is, that the security system of Java 2 [19] works as designed.
There have been some security related bugs and implementation flaws of Java,
but it seems that there are no elementary flaws in the design of the security
model.

The remainder of this paper is organized as follows: Section 2 gives an
overview of ObjectGlobe. Section 3 points out the security requirements of such
an open system. Section 4 gives a survey about the security measures during
plan distribution and Section 5 outlines runtime guarding and monitoring mea-
sures used to detect malicious or defective operators. Section 6 describes in detail
preventive measures appropriate to detect the majority of low quality and mali-
cious external operators before actually executing them in queries. Related work
is addressed in Section 7 and Section 8 concludes this paper.

2 Overview of the ObjectGlobe System

ObjectGlobe distributes powerful query processing capabilities (including those
found in traditional database systems) across the Internet. The idea is to create
an open market place for three kinds of suppliers: data providers supply data,
function providers offer query operators to process the data, and cycle providers
are contracted to execute query operators. Of course, a single site (even a single



machine) can comprise all three services, i.e., act as data-, function-, and cycle
provider. In fact, we expect that most data and function providers will also act
as cycle providers. ObjectGlobe enables applications to execute complex queries
which involve the execution of operators from multiple function providers at
different sites (cycle providers) and the retrieval of data and documents from
multiple data sources. In this paper we assume that all data is in a standard
format (e.g., relational or XML) or wrapped [21]. Furthermore, we assume that
there is a meta-schema that can be used to describe all relevant properties of all
services.

2.1 Query Processing
Processing a query in ObjectGlobe involves four major steps (Fig. 1):
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Fig. 1. Processing a Query in ObjectGlobe

1. Lookup: In this phase, the ObjectGlobe lookup service [16] is queried to
find relevant data sources, cycle providers, and query operators that might
be useful to execute the query. In addition, the lookup service provides the
authorization data—mirrored and integrated from the individual providers—
to determine what resources may be accessed by the user who initiates the
query and what other restrictions apply for processing the query.

2. Optimize: The information obtained from the lookup service is used by a
query optimizer to compile a valid (as far as user privileges are concerned)
query execution plan. This plan—represented as XML document—is anno-
tated with site information indicating on which cycle provider each operator
is executed and from which function provider the external query operators
involved in the plan are loaded. Such annotations are used as well for other
information, e.g., authentication data and estimated resource requirements.

3. Plug: The generated plan is distributed to the cycle providers and external
query operators are loaded and instantiated at each cycle provider. Further-
more, the communication paths (i.e., sockets) are established. If necessary,
communication is encrypted and authenticated.

4. Execute: The plan is executed following an iterator model [11]. In addition to
the external query operators provided by function providers, ObjectGlobe
has built-in query operators for selection, projection, join, union, nesting,
unnesting, and sending and receiving data. The execution of the plan is
monitored in order to detect failures.

The whole system is written in Java for two reasons1. First, Java is portable
so that ObjectGlobe can be installed with very little effort; in particular, cycle
providers which need to install the ObjectGlobe core functionality can very
1 Currently, the optimizer is written in C++, but we plan to rewrite it in Java.



easily join an ObjectGlobe system. The only requirement is that a site runs
the ObjectGlobe server on a JVM. Second, Java provides secure extensibility.
Although many people complain about the execution speed of Java programs, we
noticed that by avoiding some pitfalls in the Java I/O library the execution speed
of the Java Virtual Machine is no bottleneck in wide area distributed systems.
Like ObjectGlobe itself, external query operators are written in Java: they are
loaded on demand (from function providers). Just like data and cycle providers,
function providers and their external query operators must be registered in the
lookup service before they can be used. Up to now ObjectGlobe uses a simple
classification system for operators: every external operator is associated with a
class (e.g., Join). The optimizer chooses the operator actually used within a class
considering different aspects, e.g., execution time and time needed to load the
operator.

2.2 Example Plan
Figure 2 shows an example of distributed query processing with ObjectGlobe.
Suppose you are going on holiday to Nassau, Bahamas, and you are looking for
a hotel that is cheap and close to the beach. This task is known as the “maxi-
mum vector problem” [20] (actually we are searching for the minimal vectors).
Formulated precisely, we are looking for all hotels, which are not dominated by
other ones. A hotel dominates another one, if it is cheaper and closer to the
beach. Dominance imposes a partial ordering on the hotels.
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Fig. 2. Processing a Query in ObjectGlobe

A naive solution for this problem is to compare each hotel against each other
and delete dominated hotels yielding quadratic runtime. However, a more so-
phisticated algorithm with a lower complexity has been developed by [17]. [1]
have investigated this algorithm in the context of databases and adapted it to
constrained primary memory. They called the operation “Skyline”.

The resources used to find the desired cheap hotel near the beach are as
follows: two web sites, www.hotelbook.com and www.hotelguide.com, supply



hotel data and all external operators are provided by the function provider
www.operators.org. Two wrappers, HotelBookWrapper and HotelGuideWrap-
per, are responsible for querying the two web sites and transforming the data
into ObjectGlobe’s internal format. They are executed at cycle providers located
near the data sources in order to minimize transfer time. As the following equa-
tion holds for the Skyline operator, it can be applied to each database directly
in order to further reduce data shipping costs:

Skyline(Skyline(A)∪ Skyline(B)) = Skyline(A∪ B)
Thus, only the best hotels are passed to the client. The send/receive iterator

pairs performing the transmission of data are installed automatically during the
plug phase. The client calculates the Skyline of the union of both data sources,
and the user can choose a hotel from the result.

3 Security Requirements

We will now analyze the security requirements of users and cycle providers.
First, we will concentrate on security issues introduced by external operators:
cycle providers want to be able to execute arbitrary external operators in a safe
way, i.e., they want to be sure that operators do not monopolize resources, access
resources like the file system unauthorized or manipulate vital components of
the system. We now demonstrate some attacks and the implications they would
have without an effective security system using modified versions of the Skyline
operator.

Example Resource Monopolization
public class Skyline extends IteratorClass {

public TypeSpec open() throws CommandFailedException,IOException {

List l = new LinkedList();

while(true)

l.add(new Object());

...}...}

The example above shows a code snippet which monopolizes the memory
by continuously generating and storing new Object instances in a LinkedList.
The execution of this operator would result in a denial of service because there
would be not enough memory for other operators. Of course, an external operator
could just as well monopolize CPU time, secondary memory, or any other limited
shared resource. It would also be possible for an operator to, e.g., access the file
system to modify arbitrary files or to steal confidential data.

Apart from security requirements of providers there are requirements of users.
They want to be certain about the semantics of external operators to be able to
rely upon the results of a query even when they use external operators. Recall
the query using a Skyline operator to find the hotels which are cheap and near
the beach. And now assume a modified Skyline operator that filters all hotels
of the Sheraton hotel chain. The result of a query using this modified Skyline
would be all cheap hotels near the beach being not member of the Sheraton
hotel chain, which is not the result the user asked for. Privacy is another severe
requirement endangered by external operators: an operator could calculate the



result as supposed to do, but it could send a copy of the processed data to
an arbitrary host in the Internet or leak data to a concurrent query, possibly
compromising confidentiality of data. For that reason it is necessary that the
security system can guarantee, that data given to an operator can only flow
using communication channels which are obvious to and authorized by the user.

In addition to the security requirements induced by external query operators
there are some which are common to many distributed systems. First, using
our terminology, cycle and data providers may have a legitimate interest in
obtaining the identity of users for authorization purposes. It must be considered
that users normally want to stay anonymous as far as possible, therefore it must
not be mandatory to give authentication data to cycle providers. Second, the
communication channels between different collaborating hosts must be protected
against tampering to avoid unnoticed modifications of the data. Additionally
it must be possible to encrypt confidential data to prevent other parties from
eavesdropping. Third, cycle providers need an admission control system to guard
themselves against overload situations.

To meet these requirements we use a multilevel security architecture com-
bining preventive measures, security measures during plan distribution, and a
runtime security system. Preventive measures take place before an operator is
actually used in queries for the first time. They are used to validate the seman-
tics and analyze the quality of the operator. Based upon the validation results,
ObjectGlobe could renounce runtime security measures. As preventive measures
are optional, untested operators are regarded as malicious and all security mea-
sures apply. During plan distribution, common security measures of distributed
systems take place including admission control. The remaining security require-
ments, e.g., protection of cycle providers, are met by the runtime architecture.
For length limitations we give a brief overview of the mandatory security levels,
i.e., security measures during plan distribution and the runtime security archi-
tecture, in the next two sections. Thereafter we present the preventive measures
in detail and point out the advantages of validated operators.

4 Security Measures during Plan Distribution
We will now have a look at the common security requirements of distributed
systems, as enumerated above. We meet these requirements during plan distri-
bution, where four security related actions take place: setup of secure communi-
cation channels, authentication, authorization, and admission control.

Privacy and integrity of data and function code that is transmitted between
ObjectGlobe servers is protected against unauthorized access and manipula-
tion by using the well-established secure communication standards SSL (Secure
Sockets Layer) and/or TLS (Transport Layer Security) for encrypting and au-
thenticating (digitally signing) messages. Both protocols can carry out the au-
thentication of ObjectGlobe communication partners via X.509 certificates [14],
thus ensuring communication with the desired ObjectGlobe server. The security
level of network connections can be chosen dependent on the processed data.

If authentication is required for authorization or accounting purposes of
providers, ObjectGlobe can authenticate users using one of two possibilities: dig-



itally signed plans or password-based authentication. Of course, usage of X.509
certificates is preferred, but until certificates are widely used, password-based
authentication is supported as an alternative. Certificate based authentication
requires plans with signatures generated using the secret key of the user. The
signature is based on the XML document containing the query plan and a time
stamp to avoid reusage of signed plans. The signature of a query arriving at a
provider is verified using the user’s X.509 certificate and thereafter the originator
and the integrity of the query is known reliably. Providers can use this knowledge
to enforce their local authorization policy autonomously. Of course, users and
applications accessing only free and publicly available resources can stay anony-
mous and no authentication is required. If a user wants to access a resource
that charges and accepts electronic payment, the user can remain anonymous as
well (if the electronic payment system supports it) and the electronic payment
is shipped as part of the plug phase.

The last security related action during plan distribution, which is needed by
all systems offering services to users, is admission control. ObjectGlobe’s admis-
sion control component determines whether the estimated resource demands of
a query—calculated using the cost models of the operators—can be satisfied by
the executing host or not. This is done to be able to abort a query as early as
possible if any cycle provider executing a part of the query cannot satisfy the
resource requirements of the query. Queries whose resource requirements can be
fulfilled are scheduled using a FCFS (first come first served) scheduler consider-
ing only primary memory usage of the operators. We assume, that a sufficient
amount of all other resources like secondary memory is available. This scheduling
approach works well, because every query is only allowed to use a small fraction
of the primary memory of the server, so a certain degree of parallel execution is
guaranteed.

5 Architecture of the Runtime Security System

After plan distribution, all involved cycle providers execute the operators as-
signed to them to calculate the result of the query. Therefore, they must be
protected from damages by malicious or low quality operators as outlined above.
To satisfy security interests of users, the security system must also be able to
guarantee, that data given to an operator can only flow using communication
channels which are obvious to and authorized by the user. These security re-
quirements are met using two techniques: guarding and monitoring.

The guarding mechanisms are realized using Java’s security architecture, i.e.
security manager and class loaders—to control and restrict access to resources
of the cycle provider and components of the ObjectGlobe system. The class
loader’s task is to load the bytecode of a class into memory, monitor the loaded
code’s origin (i.e., its URL), and to verify the signatures of signed code. Addi-
tionally, every class loader generates its own name space. To prevent external
operators from abusing a connection to a function provider as covert commu-
nication channel by requesting classes with data coded into the names of the
classes, all (non built-in) classes required by the external operator must be com-
bined into a JAR file. This file is loaded and cached by the class loader during



the plug phase, so only one connection to the function provider is necessary. The
security manager controls the access to safety critical system resources, such as
the file system, network sockets, peripherals, etc. The security manager is used
to create a so-called sandbox in which untrusted code is executed. Privileges
can be granted to code based on the origin and whether or not it is digitally
signed. Of course, it would be unreasonable to grant unprotected access to system
resources to unknown code. Therefore, all user-defined operators are normally
executed in a “tight” sandbox. Furthermore, queries running in parallel are sep-
arated from each other to prevent them from exchanging information with each
other via, e.g., static class variables. This is done by using a new class loader
instance (called OGClassLoader) for each query which implicitly separates the
name spaces. In this way, external operators are isolated and leakage of data is
prevented, because they are only able to communicate with their children and
parent operators. Additionally, only selected classes of the name space of the
ObjectGlobe system are known to the name spaces of operators, thus protecting
vital components of the system. For example, TmpFile is a class available to op-
erators and implements a secure interface to the file system to enable operators
to use temporary files. The sandbox, the name space separation, and the class
loaders are illustrated schematically in Fig. 3.
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Monitoring measures are necessary to avoid resource monopolization. We use
our own (platform-dependent) resource accounting library which supervises CPU
and primary memory usage of external operators2, because Java does not offer
such functionality. Accounting of secondary memory and data volume produced
by an operator is done using pure Java. External operators must be endowed
with (worst-case) cost models written in MathML [15] for their CPU usage,
consumption of primary and secondary memory, number of temporary files in
2 Using our library, accounting results in overheads between 5% and 10%.



use simultaneously and the number and size of tuples they produce. The last two
cost models are necessary to prevent operators from blocking the network and
from flooding their parent operators. If an external operator is not equipped with
its own cost models, ObjectGlobe uses default cost models, which of course might
not be very appropriate. The optimizer annotates query plans with estimated
values for the number and size of the tuples that the different operators will
produce. Using these values and the cost models a cycle provider is able to
calculate the initial resource limits for an external operator. To be able to keep
track of resource consumption, every external operator is executed by a separate
thread and disconnected from other operators using buffers, each managed by a
send/receive iterator pair.

If there is any limit violation, the monitoring component checks, if the limits
have to be adapted dynamically. This is done, if changes to the calculation basis
of the cost models occurred, e.g., the optimizer estimated that the underlying
operator will produce 100 tuples but it produced 110 tuples up to now. If the
newly calculated resource demands of the operator exceed the upper resource
limits set by the cycle provider, the plan is aborted. The plan is also aborted,
when the newly calculated resource limits are still too low to satisfy the current
resource demand of the operator. Otherwise the operator is allowed to resume
work until there is another limit violation or the operator terminates normally.

6 Quality Assurance for External Operators
Using the security measures presented up to now, we are able to execute arbitrary
external operators without risk for cycle providers and privacy and integrity of
data. Nevertheless, it would be advantageous, if the system could in advance
verify the semantics of new external operators, examine their behavior under
heavy load, and compare their resource consumption with given cost models. If
an operator is well-behaved, ObjectGlobe could renounce security measures and
execute the code at full speed or it could relax the sandbox of an operator. Several
methods of software verification and testing have been developed so far (see [18]
for an overview), but it has also been shown that in general the correctness of
arbitrary code cannot be proved [13].
6.1 The Goal of Testing
Testing is a verification technique used to find bugs by executing a program.
The testing process consists of designing test cases, preparing test data, running
the program with these test data, and comparing the results to the correct
results. An oracle3 is consulted for the correct result. This could be a human,
a reference implementation, or an interpreter of a (formal) specification of the
program. While the design of good test cases requires some ingenuity, test data
can sometimes be derived automatically. For automated testing, a test driver is
necessary to feed test data to the function and to receive and record the results.

Testing methods, actually methods for deriving test cases, can be divided
into two classes, white-box and black-box testing, depending on whether the
source code is available or not. [18] provides a detailed description of the most
important techniques. We are focusing on black-box testing.
3 We think of an oracle in the true sense of the word, not of the commercial DBMS.



6.2 Methods of Formal Specification
As the correctness of a program depends on what exactly it is supposed to
do, a complete and consistent specification is necessary. If testing should be
processed automatically, a formal specification is required so that an interpreter
can determine whether a calculated result is correct. There are two classes of
formal specifications: Operational techniques describe a way how the result could
be calculated. Their advantage is that the correct result can be determined in
advance and compared to the result of the program. However, they will not
choose the most efficient way and hence are not a viable alternative to the
real program. In contrast to that, descriptive techniques specify what the result
should look like. Although the correct result cannot be calculated, the result of
the program can be checked against them. Moreover, they usually are even more
concise than operational specifications.

We have investigated several methods of formal specifications, e.g., SQL,
Haskell, Prolog, and mathematical formulae. Table 1 shows these specification
methods for the Skyline operator. For our purpose, the best choice is to use
a (purely) functional language like Haskell, because coding is quite straight-
forward and functional languages are Turing-complete and thus (theoretically)
every operator can be specified that way. Another advantage of Haskell is that
there are interpreters that can execute the specification and thus the correct
result can easily be calculated.

Especially in the database context, not only the correctness of the result
is important but also the efficiency of its computation. Therefore, the specifi-
cation of an external operator is augmented with several cost models. For each
supervised resource the user can specify a worst-case cost model, which is a func-
tion of the extents of the input relations, namely their number of tuples, their
maximum tuple size, and their total data size. If any resource is overconsumed,
the operator is considered faulty and aborted immediately in a real application.
Nevertheless, the cost models should not be chosen too generous, because then
a cycle provider might refuse to instantiate the operator.

6.3 User-Directed Test Data Generation
As stated before, the design of good test cases requires some ingenuity. Thus, in
our implementation, it is possible to direct the generation of test data so that
they fulfill the preconditions of operators as well as meet the testers’ strategies.
Testers may want to specify single attribute values, enforce functional dependen-
cies between attributes, establish relationships between relations, and control the
order of the tuples. Therefore, the generation is done in three steps. First, the
relation is created and the attribute types and the number of tuples are specified.
Second, all attribute rows are filled by random values or by referencing other
relations. Third, the relation can be sorted or permuted some other way.

For a single attribute column, the values can be generated randomly or de-
terministically. The latter means that the values are taken one after the other
in increasing order. If there are more tuples than different values, the procedure
is started cyclically again. Random values can be taken uniformly from their
possible values. In order to simulate functional dependencies and primary keys,



Table 1. Specification Methods for Database Operators (Skyline)

Skyline (S,�) Explanation
F
o
rm

u
la {s | s∈S ∧ ¬∃t∈S : t 6= s ∧ t � s} This formula can be derived directly from the definition:

“The Skyline of a set S consists of all tuples s that are
in S and for which no tuple t exists in S that is different
from s and dominates s.”

C
o
n
d
it

io
n
s

Pre ≡ true
Post ≡ ∀s∈Skyline(S) :

(s∈S ∧¬∃t∈S : t 6= s∧ t � s)
∧ ∀s∈S \ Skyline(S) :
(∃t∈S : t 6= s ∧ t � s)

There is no precondition, i.e., the Skyline operator can
be applied to any arbitrary set on which a partial order-
ing relation is defined.
The postcondition describes which tuples may be in the
Skyline (cf. the formula above) and which must not be
left out, defining exactly the result.

S
Q

L

SELECT *
FROM S s
WHERE NOT EXISTS (
SELECT * FROM S t
WHERE t 6=s AND t�s);

This is the naive approach to calculate the Skyline. Each
tuple is compared to each tuple and is only selected if
it is not dominated by any other tuple. 6= and � must
be adapted to the specific scenario.

P
ro

lo
g

skyline(S,R) :- skyline’(S,S,R).
skyline’([],T,[]).
skyline’([X|S],T,R) :-
dominated(X,T),
skyline’(S,T,R).

skyline’([X|S],T,[X|R]) :-
not(dominated(X,T)),
skyline’(S,T,R).

dominated(X,[Y|T]) :-
dominance(Y,X).

dominated(X,[Y|T]) :-
dominated(X,T).

dominance(Y,X) :- Y 6=X, Y�X.

The Skyline of a list S is R, if the result of a function
skyline’ that filters S with itself, i.e., compares each
tuple with each tuple and deletes dominated tuples, is
also R. If the empty list [] is filtered, the result is also
empty.
Now consider a list that contains at least one element X.
If X is dominated by any tuple of the filter T , the result
consists only of the rest of the list still to be filtered by
T . Otherwise, X is taken over into the result.
X is dominated by a non-empty list, if it is dominated
by the first element or by the rest. If the list is empty, X
is considered not dominated (closed world assumption).

H
a
sk

e
ll

skyline :: [α] → [α]
skyline ss = skyline’ ss ss
skyline’ [] ts = []
skyline’ (s:ss) ts =
if dominated s ts

then skyline’ ss ts
else s:skyline’ ss ts

dominated s [] = False
dominated s (t:ts) =
dominance t s || dominated s ts

dominance t s = (t 6=s && t�s)

skyline is a function that takes a list of elements of some
type α and returns a list of elements of the same type.
Like in Prolog, the Skyline of a list ss is the result of a
function skyline’ that filters ss with itself.
Again, there is a distinction between the empty list []
and a list containing at least one element. This element
is only taken over into the result if it is not dominated
by any element of the filter ts.

it is important that unique values can be generated. [7] presents an algorithm
that produces random numbers with this property. For Real values, other dis-
tributions are possible, e.g., normal distribution, exponential distribution, etc.
Foreign key relationships can also be simulated. For 1:1 relationships, the at-
tributes of the other relation can be copied one after the other or be referenced
unique-randomly. For 1:N relationships, a uniform random reference should be
applied. Occasionally the order of the tuples matters. Thus, the relation can be
sorted by the values of an attribute. Moreover, a shuffle operation has been im-
plemented that permutes the tuples of a relation. This is useful to create a slight
disorder. A factor between 0.0 (identity) and 1.0 (completely random shuffle)
describes how far a tuple can move relative to the cardinality of the relation.

6.4 The OperatorCheck Server
We have implemented a server that checks external operators in ObjectGlobe by
performing some tests on them. This server can itself be viewed as an e-service
that can be used by developers during development to test the implementation of
operators. Trustworthy independent associations can use the server to check ex-



ternal operators and to generate digitally signed test reports. For demonstration
purpose, an installation is accessible via a Web interface at
http://www.db.fmi.uni-passau.de/projects/OG/OnlineDemo/operatorcheck.phtml

Figure 4 shows the architecture of the server. The tester provides a Java
Archive containing the external operator to be tested, a formal specification of
the operator in Haskell (for a correctness test) or a cost model (for a benchmark
test), and some directives on how the test data should look like.

save

load

test operatororacle (Haskell interpreter)

O
bjectG

lobe Q
uery E

ngine

generating signature for test results

- digitally signed test results

- description of test data
- cost models

- executable formal specification
- JAR-archive containing external operator

test data generation

program generation /  plan generation

analysis of results

Validation Server

consultation of the oracle / query execution

test datatest
data

Fig. 4. Architecture of the Operator Check Server

For a correctness test, the server generates test data based on the directives
and stores them on the hard disk. A Haskell program is built out of the formal
specification and the generic ObjectGlobe query execution plan is assembled.
Now the test is performed: The Haskell interpreter and the ObjectGlobe system
calculate their results. Afterwards, the results are loaded and compared, and the
user receives the result of the test. For comparison, the semantics of the result
must be taken into account. If the resulting relation is a list, the order of the
tuples and hence their count is important. A multiset is a set where an element
may occur several times. The order of the elements, however, is arbitrary. In a
set, neither order nor count of elements matters. Furthermore, it is possible to
perform a reference test. Instead of providing a Haskell specification, the user
can also nominate another ObjectGlobe operator that should serve as the oracle.
The testing process works in an analogous way.

In a benchmark test, no oracle is consulted, but the test operator is executed
several times using different sizes of input data. Instead of a formal specification,
the user provides cost models for several resources. The consumption of these
resources is measured and compared to the cost models. The test result shows the
actually consumed resources and the maximum allowed by the cost models. Using
large input sizes, a stress test can be carried out that examines the behavior of
the operator under heavy load and checks whether its performance degenerates
or is still in accordance with the cost models.

6.5 Limitations of Testing
E. W. Dijkstra noted that “program testing can be used to show the presence
of bugs, but never to show their absence” [4]. Nevertheless, testing provides a



practicable and promising way to find bugs in a piece of code, thus improving the
trust in it. Several sophisticated methods of deriving “good” test cases have been
developed. Under the hypothesis that the tested program behaves the same way
for all test data of an equivalence class, the correctness can even be guaranteed
by successful tests with one representative of each class. Malicious operators,
however, intentionally destroy the uniformity hypothesis. This can only be de-
tected by a white-box test which can inspect the source code. Therefore, it is
still necessary to take some more measures for absolute security.

7 Related Work

There are a lot of extensible database systems allowing the implementation of
user-defined functions as predicates or general functions/operators, in C, C++,
or Java. Examples for such systems include POSTGRES [23], Iris [25], and Star-
burst [12], but there are also several commercially available systems like Informix,
Oracle, and DB2. These systems are all more or less exposed to the same security
risks as ObjectGlobe even if they do not load untrusted code dynamically from
function providers like ObjectGlobe. The security measures of most systems are
not appropriate to guard the database system against attacks from such code.
Thus, only administrators are allowed to augment the functionality and they
have to take care that the extensions are well-behaved and non-malicious. For
example, DB2 implements the SQL99 standard for user-defined functions and
provides the possibility to specify a function as FENCED to execute it in an own
process. In this way, the internal structures of the database system are protected,
but denial of service attacks are still possible. Only recently, with the develop-
ment of Java as a secure programming language, some new considerations have
been taken into account. [10] have compared the efficiency of several designs
using the PREDATOR database server, namely the naive approach of putting
user-defined functions directly into the server process, running them in a sep-
arate process and communicating with the server process via shared memory,
and accessing Java user-defined functions via the Java Native Interface. Their
conclusion is that Java is a bit slower in the average case but a viable and secure
alternative, still facing the problem of denial of service attacks. [5] recommend
to use a resource accounting system like JRes to guard against denial of service
attacks, bill users, and obtain feedback that can be used for adaptive query op-
timization. To neutralize resource-unstable functions, they restrict CPU usage,
number of threads, and memory usage to a fixed limit, which is not appropriate
for complex operators.

Beside database systems, there are, e.g., Java operating systems, which have
to care about security, because enforcing resource limits has been a responsibil-
ity of operating systems for a long time. Another task of operating systems is
to separate applications to avoid interference. Using our security system, a Java
operating system could limit the amount of damage that a compromised appli-
cation could do to the system and other applications on the system as described
in [6]. This paper proposes the usage of Trusted Linux as secure platform for
e-services application hosting, because it adequately protects the host platform
as well as other applications if an application is attacked and compromised.



The OperatorCheck approach is used to validate the semantics and to ana-
lyze the quality of operators. Thus, the quality of service of validated operators
is higher than of untested operators. This leads to a more reliable query execu-
tion, continuously available cycle providers, and to better result quality. A more
detailed motivation for the importance of these aspects can be found in [24].
Obviously, for upcoming e-service composition frameworks like eFlow [3] and
E-speak [8] those quality considerations will also play a very important role.

8 Conclusion

We presented an effective security framework for distributed, extensible systems
and used ObjectGlobe as an example. We focused on security requirements of
cycle providers and users. The security requirements of users are satisfied by
the OperatorCheck server which is used to rate the quality of external opera-
tors and test their semantics. Privacy and integrity of data are guaranteed by
isolating external operators and by usage of secure communication channels. Cy-
cle providers are protected using a monitoring component which tracks resource
usage of external operators to prevent them from resource monopolization and
an admission control system to guard providers against overload situations. A
security manager and class loaders are used to protect cycle providers from unau-
thorized resource accesses and to shield the ObjectGlobe system from external
operators. Additionally we presented the authorization framework of Object-
Globe which can be used by cycle providers to determine the identity of users
in a reliable way.

The security system can easily be adapted to other applications, e.g., Web ap-
plication servers using server-side Java components such as Servlets, Java Server
Pages and Enterprise Java Beans to generate dynamic Web content. Nowadays
it is common, not to operate an own Web server, but to out source this to spe-
cialized suppliers. Using our security system, suppliers of such services can set
resource limits to, e.g., Java Server Pages. Of course, there are some necessary
adaptions to the security system. For example, server-side components usually
do not have real cost models, but in most cases (e.g., primary and secondary
memory) it is sufficient to use fixed resource limits. Additionally, the resource
monitoring component can be used to establish a “per-resource” instead of, for
example, a flat-rate tariff structure.
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