2015 SIGMOD PROGRAMMING CONTEST

Team

CUT HERE

Given processed transactions on relations
Concurrent validation requests on the transactions
e.g. (Rel. 1: Q1 A Q2 A Q3) v (Rel. 2: Q4 A Qs5)
A Query consists of
Column index
Operator (==, >, >=, <, <=, =)
Value (64-bit integer)
Evaluate the validation queries ASAP

OUR APPROACH

DATASET FEATURE EFFICIENT
ANALYSIS IMPLEMENTATION

DATASET FEATURES

Validation results: Operator type:
00010000000000000000000000 ‘
00000100100010010000000000

00000000000000100000000000

(o)
000000000010000000000000. .. Equal 86.2%
Most validations falil Most operators are equal
Transaction size: Dist. of column values:
Ta Insert rows: 4 Substantial Ci(dense) = Ca(sparse)
Delet 4 .
- Ien:e?tr%v\\,/vss. 1 small-sized 3074 8896128387
n+ ' . 3077 6811549715
Delete rows: 2 transactions
The2 Insert rows: 1 d 3075 7782881939
Delete rows: 1 an 3077 5819204839

Th+3 Insert rows: 2380 exceptional

Delete rows: 1643 .
Tnsa Insert rows: 1 large-sized

? ?
C1=3076 C2=5739273029

Delete rows: 3 transactions C2 has lower prob. of
conflicting with equal

IMPLEMENTATION DESIGN OVERVIEW

Input stream

Transactor " Pre-validator

Queueing)

| | Validafor ~ °

Output

Reader reads input messages and writes to the buffer.

Transactors store transactions and construct bloom filters.
Pre-validators separate and reorder validation requests by
conjunctions, and push the result into the queue.
Validators validate the requests from the queue.

[readThreadMain.... [2313] A 1[0 W gy

] impl<_Bind_sim... [25322] i WO e e e e
] impl<_Bind_sim... [25326] Il I L1
[] impl<_Bind_sim... 25323} Il 1L L 11

SIMPLIFIED BLOOM FILTER Ro | ¥ | T] 4

- Only utilize bloom filters for equal queries
-+ A row is non-conflicting if any corresponding bits of its bloom filter are 0.

-+ The bloom filters are stored column-wise to easily compute bitwise AND of the columns.
- SIMD bitwise AND can process one column of bloom filters of 256 rows at once.

PROFILING RESULT

[] impl<_Bind_sim... [25320] i ISl GO R OGN OO0 |G OGO (GO0 O G
[] impl<_Bind_sim... 25318] T - GINNINNNI OGSE OGTIS 1 EHMGII O 1 Gl 161 G 1)

oo llll||||I||||l|lIlIl||||I|I|||I|I|I|I|I|I|I|EEMHIE“" "" "|||||||||m|||H'nmﬂﬂfllﬂ |||| Hﬁﬁ' |u|"HﬂI|1|II"""Iuﬁ ||I m H"' IHI|||||||||||||||||||||"| Iﬁu | Iun'mE f@llllhu” HHH £ threading —¥
_Impl<_Bind_sim... [25317] ~ ea n crvsvons [
[2]_impl<_Bind_sim... [25327] Il 1 AV O Y 5 9
[2]_Impl<_Bind_sim... [25332] Il 1 111 1 S | Ml | - ~
8 JERMENER GRNINC bloom filters—- 4
_Impl<_Bind_sim... [25331] R .
(] impi<_Bind_sim... [25329] Il I O A i input buffer—"¢ =« & optimizations
e -l I Y I 1000 & T
(2] impi<_Bind_sim... [25321] Ll I T T T i 1 Weo g
e 25 i W0 W i * .t 3

K% A=ty HFE SR I(AIST School of

'ﬁ}&’; % Seoul National University

Computing

'.__'___.

o\ Dept. of Computer Science and Engineering

Eunjin Song, Seoung Gook Sohn, Wonha Ryu

eunjin@csap.snu.ac.kr sgsohn@dbs.snu.ac.kr wonha.ryu@gmail.com

TRANSACTION
i/mall TXS
Transactions are stored as tables for each relation. Relation; = [T,T2T3.s, ...]

Each relation object holds its own list of transactions
Store in column-store fashion for cache efficiency Ri 1 ‘
Group small transactions into one transaction | | R '
to reduce overhead

Construct bloom filters for each row

- Each value is viewed as a pair of column index and value
[40, 20, 10] = equivalent set: {(1, 40), (2, 20), (3, 10)}
Only a single hash function is used for performance issues
Also stored in column-store fashion per transaction

e ——— G A1)
_______________________________ T et S0
R: | 40 | 20 | 10 1 0/1/0|/0/|1]|: BF(R)
Rx: | 40 | 22 | 10 1 0/1/1|0|0]|: BF(R,)

VALIDATION REQUESTS

Independently process each conjunction in validation requests
Optimize according to dataset features:

Reorder queries in a conjunction

Check if the value of a condition is within minimum and maximum

Prune candidate rows using bloom filters for equal queries
Survived candidates are validated naively

REORDERING QUERIES

Original: (C1 < V1) A (Cz == Vz) A (C3 == V3) A (C4 >= V4)
Reordered:l(Cz == Vz) /\2(C3 == V3) /\3(C1 < V1) A (C4 >= V4)

Reorder queries in the following order to reject ASAP
1. Query with == operator having the widest range of values
2. Queries with == operators
3. Queries with other operators

PRUNING WITH BLOOM FILTERS

Validation: C; == 234 A C7 == 56 A Cjp ==

0 0 0 | 0

BF(R): | O 0, 0 1 1 0 NO!
BF(R2): | 1 1 0 0 1 0 1 0, O O 0, NO!
BF(R3):| O 1 0 0, 0, 1 1 0, 0 1 0, Possible

‘\ / e
256-bit AVX SIMD Bitwise AND (VANDPS)

- In above example, it is guaranteed that R1 doesn’t have 234 in the C;.

PERFORMANCE TIMELINE

10,000

column store

