
• Reader reads input messages and writes to the buffer.

• Transactors store transactions and construct bloom filters.

• Pre-validators separate and reorder validation requests by

conjunctions, and push the result into the queue.
• Validators validate the requests from the queue.

_CUT_HERE___________________
Team

Eunjin Song, Seoung Gook Sohn, Wonha Ryu

Task Overview Transaction

Simplified Bloom Filter

R1: 40 20 10

R2: 40 22 10
1 0 1 0 0 1 : BF(R1)
1 0 1 1 0 0 : BF(R2)

h(3, 10)
h(2, 20)h(1, 40)

Relation1 = [T1,T2,T3-8, …]
Small Txs

Transactions are stored as tables for each relation.

• Each relation object holds its own list of transactions

• Store in column-store fashion for cache efficiency

• Group small transactions into one transaction  

to reduce overhead

• Construct bloom filters for each row

• Each value is viewed as a pair of column index and value

• [40, 20, 10] ⇒ equivalent set: {(1, 40), (2, 20), (3, 10)}

• Only a single hash function is used for performance issues

• Also stored in column-store fashion per transaction

Validation Requests
• Independently process each conjunction in validation requests

• Optimize according to dataset features:

• Reorder queries in a conjunction

• Check if the value of a condition is within minimum and maximum

• Prune candidate rows using bloom filters for equal queries

• Survived candidates are validated naively

BF(R1): 0 0 0 0 0 0 1 0 1 1 0 … NO!
BF(R2): 1 1 0 0 1 0 1 0 0 0 0 … NO!

BF(R3): 0 1 0 0 0 1 1 0 0 1 0 … Possible

Validation: C1 == 234 ∧ C7 == 56 ∧ C12 == 2
h(1, 234) h(7, 56) h(12, 2)

256-bit AVX SIMD Bitwise AND (VANDPS)

Our Approach

Reader

Input stream

Transactor Pre-validator

Transactions Validation Requests

Validator

Output

Store

Queueing

• Given processed transactions on relations

• Concurrent validation requests on the transactions

• e.g. (Rel. 1: Q1 ∧ Q2 ∧ Q3) ∨ (Rel. 2: Q4 ∧ Q5)

• A Query consists of

• Column index

• Operator (==, >, >=, <, <=, !=)

• Value (64-bit integer)

• Evaluate the validation queries ASAP

+

✁

R1

R2

…

Rn

Dataset Features

Equal 86.2%

00010000000000000000000000
00000100100010010000000000
00000000000000100000000000
000000000010000000000000…

Most validations fail

Validation results:

Most operators are equal

Operator type:

Dist. of column values:

C2 has lower prob. of
conflicting with equal

C1 (dense)
 C2 (sparse)

 3074 8896128387

3077 6811549715
3075 7782881939
3077 5819204839

C1 = 3076 C2 = 5739273029??

Transaction size:
…

Tn Insert rows: 4

 Delete rows: 4

Tn+1 Insert rows: 1

 Delete rows: 2

Tn+2 Insert rows: 1

 Delete rows: 1

Tn+3 Insert rows: 2380

 Delete rows: 1643

Tn+4 Insert rows: 1

 Delete rows: 3

…

Substantial 
small-sized 
transactions 

and 
exceptional 
large-sized 

transactions

Implementation Design Overview

• Only utilize bloom filters for equal queries

• A row is non-conflicting if any corresponding bits of its bloom filter are 0.

• In above example, it is guaranteed that R1 doesn’t have 234 in the C1.

• The bloom filters are stored column-wise to easily compute bitwise AND of the columns.

• SIMD bitwise AND can process one column of bloom filters of 256 rows at once.

Pruning with Bloom Filters

Conflict?

Performance Timeline

Efficient
Implementation

Dataset Feature 
Analysis

✁
Profiling Result

2015 SIGMOD Programming Contest

column store

threading
bloom filters

input buffer optimizations …

Reordering queries

 Original: (C1 < V1) ∧ (C2 == V2) ∧ (C3 == V3) ∧ (C4 >= V4)

Reordered: (C2 == V2) ∧ (C3 == V3) ∧ (C1 < V1) ∧ (C4 >= V4)

Reorder queries in the following order to reject ASAP

1. Query with == operator having the widest range of values

2. Queries with == operators

3. Queries with other operators

1. 2. 3.

eunjin@csap.snu.ac.kr sgsohn@dbs.snu.ac.kr wonha.ryu@gmail.com

