
SIGMOD 2015  
Programming Contest

Team CUT_HERE________________
KAIST and Seoul National University

1

Team Members

• Wonha Ryu: BS student at KAIST

• Seoung Gook Sohn: PhD student at SNU

• Eunjin Song: MS student at SNU

2

Our Approach

Dataset

Feature

Efficient

Implementation+

3

Feature 1: Validation Result

The majority of validation results are zero

4

Feature 2: Operator Type

Equal operators dominate the types of operators

Equal 86.2%

5

Feature 3: Column Range

Each column has a fixed-range of values

C1

 C2

3074 8896128387
3077 6811549715
3075 7782881939
3077 5819204839

6

C1 == 3076 C2 == 5739273029
??

High LowChance of conflict:
Query:

Feature 4: Transaction Size

Small-sized transactions are
substantial

Large-sized transactions are
exceptional

…

Tn Insert rows: 4

 Delete rows: 4

Tn+1 Insert rows: 1

 Delete rows: 2

Tn+2 Insert rows: 1

 Delete rows: 1

Tn+3 Insert rows: 2380

 Delete rows: 1643

Tn+4 Insert rows: 1

 Delete rows: 3

…

7

Reader

Input stream

Transactor Pre-validator

Transactions Validation Requests

Validator

Output

Store

Queueing

Design Overview 8

Transaction Format

• Delete

• Rows with PK 2 and 8 in relation A

• Insert

• Tuple (2, 3, 4) into relation A

• Tuple (4, 5, 6, 7) into relation B

Transaction1 = [A [2] , A [8], A [2, 3, 4], B [4, 5, 6, 7]]
Delete Insert

Relation A =
 [[2, 8, (2, 3, 4)], T2, T3, …]

9

Storing Transactions

• Represent a relation  
as a list of transactions

• Save each transaction in
column-store

• Group small-sized
transactions into one

Relation1 = [T1,T2,T3-8, …]

R1

R2

…

Rn

Small Txs

10

Simple Bloom Filter

Row1

:
40 20 10

Row2

:
40 22 10

1 0 1 0 0 1 : BF(Row1)
1 0 1 1 0 0 : BF(Row2)

h(3, 10)

h(2, 20)h(1, 40)

• Construct bloom filters for each row

• [40, 20, 10] ⇒ {(1, 40), (2, 20), (3, 10)}

• Only a single hash function is used for performance issues

11

Validation Requests
• Validation requests are given in DNF

• e.g. (Relation 1: Q1 ∧ Q2 ∧ Q3) ∨ (Relation 2: Q4 ∧ Q5)

• Independently process each conjunction

• Optimizations:

• Check if queries are within [min, max] range

• Reorder queries

• Utilize bloom filters for equal queries
12

Reordering Queries

Reorder queries in the following order:

1. Query with = operator having the widest range of values

2. Queries with = operators

3. Queries with other operators

 Original: (c1 < v1) ∧ (c2 == v2) ∧ (c3 == v3) ∧ (c4 >= v4)

Reordered: (c2 == v2) ∧ (c3 == v3) ∧ (c1 < v1) ∧ (c4 >= v4)

13

BF(Row1): 0 0 0 0 0 1 0 0 1 0 1 0 …

Validation: C1 = 24 ∧ C7 = 56 ∧ C12 = 2

h(1, 24) h(7, 56)

Bloom Filter

h(12, 2)

14

X

BF(Row1): 0 0 0 0 0 1 0 0 1 0 1 0 …

BF(Row2): 1 1 0 0 1 1 0 0 0 0 0 0 …

BF(Row3): 0 1 0 0 0 1 0 1 0 0 1 0 …

Validation: C1 = 24 ∧ C7 = 56 ∧ C12 = 2

h(1, 24)

• Using AVX SIMD bitwise AND (VANDPS)

h(7, 56)

Bloom Filter

h(12, 2)

AND

15

Test Scores

column store
threading

bloom filter
input buffer … optimizations …

Thank you

