
T H A I S O N N G U Y E N – 2 N D J U N

VIKA TEAM

INTRODUCTION

• About Us?

2

CONTENTS

• Our Approach
• Our Solution
•  Data structures
•  Algorithm
•  Execution & Parallelism

• Conclusion

3

OUR APPROACH

•  To build a program that:
•  Handles an unlimited number of transactions & queries
•  Runs as fast as possible

•  Our approach:
•  Minimize memory allocations / de-allocations (avoid

memory leaks)
•  Use indexes as much as possible
•  Parallelize every step

4

DATA STRUCTURES

•  Tables & Column Indexes

•  Tables:
•  Storing permanent data
•  Row oriented

•  Column Indexes:
•  Indexing data belonged to live

transactions
•  Sorted arrays of value-row_id pairs
•  Predictable size

5

ALGORITHM

•  Step 1: Read and put transactions and queries into
 queues until seeing Flush operation
•  Step 2: Concurrently process transactions
•  Step 3: Concurrently build indexes
•  Step 4: Concurrently validate queries and

 corresponding transactions
•  Step 5: Write results & clean dead transactions

•  Then repeat these steps

6

EXECUTION & PARALLELISM

•  Parallelizing steps #2,#3,#4 in
different manners

•  Processing transactions per
table (not so efficient)

•  Building indexes by table
columns (horizontal)

•  Parallelizing queries (vertical)

7

IMPROVEMENTS FOR DATA
SPECIFICATION

•  Use max-min index for low-cardinality columns
•  Index tuples that are belonged to a range of small

transactions instead of indexing tuples of each such
transaction
•  Try to find a good condition which leads to a very

small number of matched tuples instead of
combining query conditions using set intersection

8

CONCLUSION

•  Not yet taking advantages of new computer
architecture (SIMD instructions)

•  Many thanks to the ACM Contests

9

THANK YOU

10

