VIKA TEAM

THAI SON NGUYEN - 2NDP JUN




INTRODUCTION




CONTENTS

» Our Approach

» Our Solution

 Data structures
« Algorithm
« Execution & Parallelism

- Conclusion



OUR APPROACH

* To build a program that:
« Handles an unlimited number of tfransactions & queries
* Runs as fast as possible

» Our approach:

* Minimize memory allocations / de-allocations (avoid
memory leaks)

« Use indexes as much as possible
« Parallelize every step



DATA STRUCTURES

Tables & Column Indexes Wiacked Takla Index C1 €2
} Block 1 ~-T1
Tables: E |
- Storing permanent data 2 P12
« Row oriented e
} Block n “-
Column Indexes: — —td rt—
. p Std:so
+ Indexing data belonged to live std:mem_move std:lower_bound
tfransactions std:upper_bound

« Sorted arrays of value-row_id pairs
« Predictable size



ALGORITHM

- Step 1: Read and put transactions and queries into
queues until seeing Flush operation

- Step 2: Concurrently process transactions
- Step 3. Concurrently build indexes

- Step 4: Concurrently validate queries and
corresponding transactions

- Step 5: Write results & clean dead transactions

* Then repeat these steps



EXECUTION & PARALLELISM

- Parallelizing steps #2,#3,#4 in Transactions Indexes
different manners

16 tables

« Processing tfransactions per
table (not so efficient)

 Building indexes by table =
columns (horizontal) 16 columns

- Parallelizing queries (vertical)

Queries

t_'_J
sallanb 9|



IMPROVEMENTS FOR DATA
SPECIFICATION

» Use max-min index for low-cardinality columns

 Index tuples that are belonged to a range of smali
transactions instead of indexing tuples of each such
transaction

* Try to find a good condifion which leads to a very
small number of matched tuples instead of
combining query conditions using set intersection



CONCLUSION

- Not yet taking advantages of new computer
architecture (SIMD instructions)

* Many thanks to the ACM Contests



THANK YOU




