ACM SIGMOD Programming Contest 2018

Quickstep Team™ @ University of Wisconsin-Madison

Jianqiao Zhu, Zuyu Zhang, Dylan Bacon, Jignesh M. Patel (advisor)
{jianqgiao, zuyu, dbacon, jignesh}@cs.wisc.edu

4 N\
1. Contest Overview e Use existence maps to figure out containment

relationship among columns.

Task: Evaluate as fast as possible batches of e Build various indexes on each relation (primary
SPJA (Selection-Projection-Join-Aggregation) key index, foreign key index, count vector index)
queries on a set of immutable relations. based on relation size.

_ /

Each query involves up to 4 relations. Aggregate

functions are always SUM without GROUP BY. ..
4. Optimizer

Testing machine configuration:

2x Intel Xeon E5-2660 v2 (2.2 GHz), 20 cores / 40 L o
hyperthreads, 256 GB DDR3 RAM e Some of the optimization rules: filter pushdown,

early projection, range propagation, predicate
simplification, semi-join elimination, common

T — T — aggregate-expression elimination.
2. Our Approach e Heuristic-based join order optimization.
))))] e Identify the shape of multi-relation joins
The main /dels 1gn %hﬂosf)ph}&‘lﬁ th?t ho S}llng}l? (}ilata (multi-way join, linear join, star join) and apply
SITEAE | £, gorlt m wins. 1hus irom oe o3y corresponding specialized operators.
level perspective we build a system with clearly _ Y.

abstracted modules to address this complexity of
supporting a rich collection of indexes, specialized .
operators, and parallel execution strategies. 5. Execution

System Architecture: e Build a scheduler that supports dynamic task
DAG spawning to fully utilize CPU resources.

e ~20 optimization passes.

_ Y,

{ Data J Query '—» Parser Inter-query Inter-operator Intra-operator
— L= Batch Start parallelism parallelism parallelism
/l/ [peoomoonnocno0 > Optimizer - / 1 S‘w
: Evaluate One Query n | Aggregate i Aggregate
Preprocessor @iz Spawr - Operator Subtask
Statistic: Yy Evaluati Parse — Optimize — o .
T (.) VEILEL Generate Execution Plan v ~~e ¥
& i Execution Main Task [2NN g
Indexes > Twe 4 Generator v v
,,//‘/ GLsl B e 2P ecaes i S Print Tuple “~<_[Aggregate
' ask Barrier) ependen ETSUE Operator Finalization
Compressed | 77T — Execute v ind IR TN T
(=22 51 Results N |
Storage [T “ "j - Batch Complete --e

Implement a collection of relational operators.

Some regular operators are: select, hash join,

e No “silver bullet” operator / index -- need to sort merge join, index scan, index lookup join.
implement a rich collection of them and design
proper rules to choose.

Key Mechanisms:

When applicable, fuse multiple binary joins and
the top-level aggregation into one multi-relation

e Apply aggressive operator fusion to avoid the join-aggregate operator. Example operators are
cost of materializing intermediate results. multiway-join-aggregate and linear-join-aggregate.
\ / \\; //,
3. Preprocessing 6. Contest Workload and Results
e Calculate min/max values of each column. Dataset Small Medium Large X-Large
Meanwhile compress the column if pOSSible Size 9.4 MB 89.5 MB 3.9GB 6.6 GB
(simply truncating the leading zeros). # Relations 14 12 29 34
e Build existence bitmap for each column, and use # Queries e 3 & e
it to count the number of unique values in the # Batches g 2l 3 20
column. ET’_(.GCUHO” 0.027 0.133 0.547 1.475
‘ ime (s)
\ NG /

* This work was supported in part by CRISP, one of six centers in JUMP, a Semiconductor Research Corporation (SRC) program sponsored by DARPA, and grant FA8650-15-C-7562 also from DARPA.

