
Exercises for
Database Implementation

Elite Graduate Program Software Engineering

Florian Funke (florian.funke@in.tum.de)

Assignment 2

Excercise 1
Write a basic buffer manager that manages buffer frames and controls concurrent access
to these frames. The buffer manager should offer the following functionality:

BufferManager::BufferManager(const std::string& filename, uint64_t size)

Create a new instance that manages size frames and operates on the file filename.

BufferFrame& BufferManager::fixPage(uint64_t pageId, bool exclusive) A me-
thod to retrieve frames given a page ID and indicating whether the page will be
held exclusively by this thread or not. The method can fail if no free frame is
available and no used frame can be freed. The page ID is split into a segmentID
and the actual page ID. Pages are stored on disk in files with the same name as
the segment ID (e.g. 1).

void BufferManager::unfixPage(BufferFrame& frame, bool isDirty) Return a fra-
me to the buffer manager indicating whether it is dirty or not. If dirty, the page
manager must write it back to disk. It does not have to write it back immediately,
but must not write it back before unfixPage is called.

void* BufferFrame::getData() A buffer frame should offer a method giving access to
the buffered page.1 Except for the buffered page, BufferFrame objects can also
store control information (page ID, dirtyness, . . . ).

BufferManager::~BufferManager() Destructor. Write all dirty frames to disk and free
all resources.

Your buffer manager should have the following features:

• High performance. Release locks as early as possible.

• Concurrency: It should be able to handle concurrent method invocations efficiently
(e.g. using latches2). Requests to fixPage should block until the requested access
(exclusive or shared) can be fulfilled.

• Buffering: It should use a buffer of size frames to keep pages in memory as long
as possible. If no free frames are available, old frames should be reclaimed using
the 2Q strategy. Describe your 2Q implemantation in the README or in comments.

1Note that the pointer loses validity if unfixPage is called on the frame. A nicer, more robust way to
handle this might be to employ move semantics (see std::unique_ptr).

2e.g. pthread_rwlock_t

1



• The page size should be a (constant) multiple of the size of a virtual memory page
(4096 bytes on most systems).

Your buffer manager does not need to have the following advanced features3:

• Asynchronous flushing of pages to disk.

• Prefetching of pages that are likely to be accessed in the near future.

Excercise 2
Use the test program from the website to validate your implementation.

3But you may implement them, of course!

2


