
Query Optimization
Exercise Session 2

Andrey Gubichev

April 28, 2014

Homework

I Find all professors whose lectures attended at least two
students

I No Group By in TinyDB

select p.name

from Professoren p, Vorlesungen v,

Hoeren h1, Hoeren h2

where p.persnr=v.gelesenvon

and v.vorlnr=h1.vorlnr

and v.vorlnr=h2.vorlnr

and h1.matrnr<>h2.matrnr;

Logical optimization: preliminary

Cardinality and Selectivity

Selectivity of a predicate, selectivity of a join

I example of a predicate with (very) high selectivity

I (now: with joins)

I example of a predicate with (very) low selectivity

I (now: with joins)

I independent and correlated conditions

Logical optimization: preliminary

Cardinality and Selectivity
Selectivity of a predicate, selectivity of a join

I example of a predicate with (very) high selectivity

I (now: with joins)

I example of a predicate with (very) low selectivity

I (now: with joins)

I independent and correlated conditions

Logical optimization: preliminary

Cardinality and Selectivity
Selectivity of a predicate, selectivity of a join

I example of a predicate with (very) high selectivity

I (now: with joins)

I example of a predicate with (very) low selectivity

I (now: with joins)

I independent and correlated conditions

Logical optimization: preliminary

Cardinality and Selectivity
Selectivity of a predicate, selectivity of a join

I example of a predicate with (very) high selectivity

I (now: with joins)

I example of a predicate with (very) low selectivity

I (now: with joins)

I independent and correlated conditions

Logical optimization: preliminary

Cardinality and Selectivity
Selectivity of a predicate, selectivity of a join

I example of a predicate with (very) high selectivity

I (now: with joins)

I example of a predicate with (very) low selectivity

I (now: with joins)

I independent and correlated conditions

Logical optimization: preliminary

Cardinality and Selectivity
Selectivity of a predicate, selectivity of a join

I example of a predicate with (very) high selectivity

I (now: with joins)

I example of a predicate with (very) low selectivity

I (now: with joins)

I independent and correlated conditions

Logical optimization: preliminary

Cardinality and Selectivity
Selectivity of a predicate, selectivity of a join

I example of a predicate with (very) high selectivity

I (now: with joins)

I example of a predicate with (very) low selectivity

I (now: with joins)

I independent and correlated conditions

Logical optimization

I |Students| = 1000

I |Lectures| = 100

I |Attends| = 5000

I fs,l = 0.001

I fa,l = 0.01

Find the students that attend the
course ’Ethik’

I SQL query

I canonical transformation, compute
cardinalities

I push down selections, compute
cardinalities

Logical optimization

select distinct s.name

from Vorlesungen v, Hoeren h, Studenten s

where v.titel=’Ethik’

and v.vorlnr=h.vorlnr

and v.matrnr=s.matrnr

Cost Estimation

The goal of optimization is to minimize the cost function

Reminder: Cout

Cout(T) =

{
0 if T is a leaf Ri

|T | + Cout(T1) + Cout(T2) if T = T1 ./ T2

./

./

R1 R2

R3

I |R1| = 100

I |R2| = 200

I |R3| = 100

I f1,2 = 0.1

I f2,3 = 0.0001

./

R1 ./

R2 R3

That’s why we need join ordering!

Cost Estimation

The goal of optimization is to minimize the cost function

Reminder: Cout

Cout(T) =

{
0 if T is a leaf Ri

|T | + Cout(T1) + Cout(T2) if T = T1 ./ T2

./

./

R1 R2

R3

I |R1| = 100

I |R2| = 200

I |R3| = 100

I f1,2 = 0.1

I f2,3 = 0.0001

./

R1 ./

R2 R3

That’s why we need join ordering!

Cost Estimation

The goal of optimization is to minimize the cost function

Reminder: Cout

Cout(T) =

{
0 if T is a leaf Ri

|T | + Cout(T1) + Cout(T2) if T = T1 ./ T2

./

./

R1 R2

R3

I |R1| = 100

I |R2| = 200

I |R3| = 100

I f1,2 = 0.1

I f2,3 = 0.0001

./

R1 ./

R2 R3

That’s why we need join ordering!

Cost Estimation

The goal of optimization is to minimize the cost function

Reminder: Cout

Cout(T) =

{
0 if T is a leaf Ri

|T | + Cout(T1) + Cout(T2) if T = T1 ./ T2

./

./

R1 R2

R3

I |R1| = 100

I |R2| = 200

I |R3| = 100

I f1,2 = 0.1

I f2,3 = 0.0001

./

R1 ./

R2 R3

That’s why we need join ordering!

Cost Estimation

The goal of optimization is to minimize the cost function

Reminder: Cout

Cout(T) =

{
0 if T is a leaf Ri

|T | + Cout(T1) + Cout(T2) if T = T1 ./ T2

./

./

R1 R2

R3

I |R1| = 100

I |R2| = 200

I |R3| = 100

I f1,2 = 0.1

I f2,3 = 0.0001

./

R1 ./

R2 R3

That’s why we need join ordering!

Physical Optimization

the step after logical optimization
I choosing indexes or table scan

I index vs table scan: 10% selectivity threshold
I clustered index
I non-clustered index

I choosing types of joins
I nested loop join
I block nested loop join
I (index nested loop join)
I merge join
I hash join

Physical Optimization

I Courses(ID,Title,Room,Time)

I Exercises(ID,CID,TID,Room)

I Tutors(ID,Name)

select C.Name, T.Name, E.Room

from Courses C, Tutors T, Exercises E

where C.ID = E.CID and T.ID = E.TID

and C.Room like ’02.09.%’

and E.Room not like ’02.09.%’;

I non-clustered index on Courses.Room

I a) clustered indexes on Exercises.TID, Tutors.ID

I b) only clustered index on Tutors.ID

Physical Optimization

I Courses(ID,Title,Room,Time)

I Exercises(ID,CID,TID,Room)

I Tutors(ID,Name)

select C.Name, T.Name, E.Room

from Courses C, Tutors T, Exercises E

where C.ID = E.CID and T.ID = E.TID

and C.Room like ’02.09.%’

and E.Room not like ’02.09.%’;

I non-clustered index on Courses.Room

I a) clustered indexes on Exercises.TID, Tutors.ID

I b) only clustered index on Tutors.ID

Physical Optimization

I Courses(ID,Title,Room,Time)

I Exercises(ID,CID,TID,Room)

I Tutors(ID,Name)

select C.Name, T.Name, E.Room

from Courses C, Tutors T, Exercises E

where C.ID = E.CID and T.ID = E.TID

and C.Room like ’02.09.%’

and E.Room not like ’02.09.%’;

I non-clustered index on Courses.Room

I a) clustered indexes on Exercises.TID, Tutors.ID

I b) only clustered index on Tutors.ID

Query Graphs

select v.titel

from Vorlesungen v, Professoren p

where v.gelesenvon = p.persnr

and p.name = ’Kant’

and v.sws = 2;

Query Graphs

select r.a, s.c

from R r, S s, T t, U u

where r.a = s.a

and r.b = t.b

and r.b = u.b;

Query Graphs

select r.a, s.c

from R r, S s

where r.a + s.a = 7;

Query Graphs

select r.a, s.c

from R r, S s, T t, U u

where (r.a + s.b) = (t.b + u.a);

Search space

Search space is defined by:

I Query graph type

(chain, star, tree, clique,cycle, grid)

I Join tree class (left-deep, zig-zag, bushy)

I Cost function class

Search space

Search space is defined by:

I Query graph type (chain, star, tree, clique,cycle, grid)

I Join tree class

(left-deep, zig-zag, bushy)

I Cost function class

Search space

Search space is defined by:

I Query graph type (chain, star, tree, clique,cycle, grid)

I Join tree class (left-deep, zig-zag, bushy)

I Cost function class

Search space

select *

from R1, R2, R3, R4

where R1.a = R2.b

and R2.c = R3.d

and R3.e = R4.f

I What kind of query graph is it?

I Let’s allow cross-products ⇒ the shape of the query graph
does not matter

I Count left-deep trees

I Count zig-zag trees

I Count bushy trees

Search space

select *

from R1, R2, R3, R4

where R1.a = R2.b

and R2.c = R3.d

and R3.e = R4.f

I What kind of query graph is it?

I Let’s allow cross-products ⇒ the shape of the query graph
does not matter

I Count left-deep trees

I Count zig-zag trees

I Count bushy trees

Search space

select *

from R1, R2, R3, R4

where R1.a = R2.b

and R2.c = R3.d

and R3.e = R4.f

I What kind of query graph is it?

I Let’s allow cross-products ⇒ the shape of the query graph
does not matter

I Count left-deep trees

I Count zig-zag trees

I Count bushy trees

Roadmap

Good optimizer deals with the following issues:

I Cost Model
I Cost Function Done
I Selectivity estimation, statistics Homework

I Logical Optimization
I Search Space Done
I Algorithms for Optimal Plan finding Rest of the course

I Physical Optimization
I Enhancing the logical plan with physical operators Seen

Homework: Task 1 (5 points)

Consider the TPC-H benchmark (http://www.tpc.org/tpch/) and
the query:

select *

from lineitem l, orders o, customers c

where l.l_orderkey=o.o_orderkey

and o.o_custkey=c.c_custkey

and c.c_name=’Customer#000014993’.

Do canonical translation and logical optimization.

http://www.tpc.org/tpch/

Homework: Task 2 (10 points)

Given |R1|, |R2|, and sizes of domains |R1.x | and |R2.y | and the
information if R1.x and/or R2.y are keys of R1 and R2

I How can we estimate the selectivity of σR1.x=c , where c is a
constant?

I How can we estimate the selectivity of onR1.x=R2.y?

NB: we can not assume that we know the size of onR1.x=R2.y (the
other way round, we estimate the join size using the selectivity
estimation. But how to estimate the selectivity?)

Homework: Task 3 (10 points)

I Given are two relations R and S, with sizes 1,000 and 100,000
pages respectively.

I Each page has 50 tuples.

I The relations are stored on a disk, the average access time for
the disk is 10 ms and the transfer speed is 10,000 pages/sec.

I Question 1: How long does it take to perform the Nested
Loops Join of R and S?

I Question 2: How long does it take to perform the Block
Nested Loops Join with a block size of 100 pages?

I Assume that CPU costs are negligible and ignore I/O costs for
the join output.

Info

I Slides and exercises: www3.in.tum.de/teaching/ss14/queryopt

I Send any comments, questions, solutions for the exercises etc.
to Andrey.Gubichev@in.tum.de

I Exercises due: 9 AM, May 5, 2014

