
Query Optimization
Exercise Session 5

Andrey Gubichev

May 19, 2014

Homework: Task 1

I Give an example query qraph with join selectivities for which
the greedy operator ordering (GOO) algorithm does not give
the optimal (with regards to Cout) join tree. Specify the
optimal join tree.

I For that example perform the IKKBZ-based heuristics

MVP

R1

1000

R2

100

R4

100

R3

500

0.005

0.001

0.02

0.05

MVP

R1

1000

R2

100

R4

100

R3

500

0.005

0.001

0.02

0.05

Query graph to Weighted
Directed Join Graph:

I nodes = joins

I physical edges between
”adjacent” joins (share one
relation)

I virtual edges - everywhere
else

I WDJG is a clique

MVP

R1

1000

R2

100

R4

100

R3

500

0.005

0.001

0.02

0.05

v12 v23

v14 v34

MVP

Annotations:

I edge weight wu,v = |onu |
|uuv |

I the cost of a node = the
cost of the join Cout

v12 v23

v14 v34

MVP

R1

1000

R2

100

R4

100

R3

500

0.005

0.001

0.02

0.05

v12

500
v23

50

v14

5000

v34

1000

5

0.5

0.5 5

50

10

0.1 2

Effective spanning tree (informally)

ESP corresponds to an ”effective” execution plan (no extra joins).
Three conditions:

1. T is binary

2. For every non-leaf node vi , for every edge vj → vi there is a
common base relation between vi and the subtree with the
root vj

3. For every node vi = R on S with two incoming edges vk → vi
and vj → vi
3.1 R or S can be present at most in one of the subtrees vk or vj
3.2 unless the subtree vj (or vk) contains both R and S

MVP (informally)

Construct an effective spanning tree in two steps:

Step 1 (Choose an edge to reduce the cost of an expensive
operation)
Start with the most expensive node, find the incoming edge
that can reduce the cost the most. Update the cost of the
node. Add the edge to the ESP, check the conditions. Repeat
until

I no more edges can reduce any cost
I no more join nodes to consider

Step 2 (Find edges causing minimum increase to the result of
joins)
Similar to Step 1, but start with the cheapest node.

MVP (informally)

Construct an effective spanning tree in two steps:

Step 1 (Choose an edge to reduce the cost of an expensive
operation)
Start with the most expensive node, find the incoming edge
that can reduce the cost the most. Update the cost of the
node. Add the edge to the ESP, check the conditions. Repeat
until

I no more edges can reduce any cost
I no more join nodes to consider

Step 2 (Find edges causing minimum increase to the result of
joins)
Similar to Step 1, but start with the cheapest node.

MVP - example

We start with a graph without
virtual edges.
Two cost lists:

I for the Step 1:
Q1 = v14, v34, v12, v23

I for the Step 2: Q2 = ∅

v12

500
v23

50

v14

5000

v34

1000

5

0.5

0.5 5

50

10

0.1 2

MVP - example

v12

500
v23

50

v14

5000

v34

1000

5

0.5

0.5 5

50

10

0.1 2

Start with v14,

MVP - example

v12

500
v23

50

v14

3000

v34

1000

5

0.5

0.5 5

50

10

0.1 2

Start with v14, select the edge v12 → v14.
After v12 is executed, |R1 on R2| = 500
We replace R1 by R1 on R2 in v14 = R1 on R4:
v14 = (R1 on R2) on R4

cost(v14) = 500 ∗ 100 ∗ 0.05 + 500 = 3000

MVP - example

v12

500
v23

50

v14

3000

v34

1000

0.5

50

10

0.1 2

v12

v14

Add edge to EST.
Add new edge v14 → v23.
Consider v14, no incoming edge with weight < 1:
Q1 = v34, v12, v23.
Q2 = v14

MVP - example

v12

500
v23

50

v14

3000

v34

150

0.5

50

10

0.1 2

v12

v14

Consider v34, one incoming edge with weight < 1:
Recompute cost: cost(v34) = 50 ∗ 100 ∗ 0.02 + 50 = 150
Q1 = v12, v34, v23.
Q2 = v14

MVP - example

v12

500
v23

50

v14

3000

v34

150

50

10

v12 v23

v34v14

Remove edges, add to EST.
Q1 = v12, v34, v23.
Q2 = v14

MVP - example

v12

500
v23

50

v14

3000

v34

150

50

10

v12 v23

v34v14

v12: no incoming edge with the weight < 1
Q1 = v34, v23.
Q2 = v12, v14

MVP - example

v12

500
v23

50

v14

3000

v34

150

50

10

v12 v23

v34v14

v34,v23: no incoming edges with the weights > 1
Q1 = ∅.
Q2 = v23, v34, v12, v14
End of Step 1.

MVP - example

v12

500
v23

50

v14

3000

v34

150

50

10

v12 v23

v34v14

Step 2: try to increase the cost of the EST as little as possible.
v23: one incoming edge, does not violate the EST conditions. Add
it and stop.

MVP - example

v12

500
v23

50

v14

3000

v34

150

50

10

v12 v23

v34v14

MVP - example

v12 v23

v34v14

v34

v23

v14

v12

See also

C.Lee, C.Shih and Y.Chen. Optimizing large join queries using a
graph-based approach. In IEEE Transactions on Knowledge and
Data Engineering, 2001.

Overview Dynamic Programming Strategy

I generate optimal join trees bottom up

I start from optimal join trees of size one (relations)

I build larger join trees by (re-)using those of smaller sizes

DP: Generating Linear Trees

DPsizeLinear(R)
Input: a set of relations R = {R1, . . . ,Rn} to be joined
Output:an optimal left-deep (right-deep, zig-zag) join tree
B = an empty DP table 2R → join tree
for each Ri ∈ R
B[{Ri}] = Ri

for each 1 < s ≤ n ascending {
for each S ⊂ R,Ri ∈ R : |S | = s − 1 ∧ Ri 6∈ S {
if ¬cross products ∧¬S connected to Ri continue
p1 = B[S], p2 = B[{Ri}]
if p1 = ε continue
P = CreateJoinTree(p1, p2);
if B[S ∪ {Ri}] = ε ∨ C (B[S ∪ {Ri}]) > C (P)
B[S ∪ {Ri}] = P

}
}
return B[{R1, . . . ,Rn}]

DPsize

I iterate over subsets of the set of relations, the size is
increasing

I S1, S2: S1 ∩ S2 = ∅, S1 is connected to S2

DPsize - example

R2

10

R1

10

R3

10

R4

10

0.1

0.5

0.6
0.2

Bushy vs. Linear trees
I Linear: add one more relation every time, i.e. add R to

optimal T1 to get optimal T = T1 on R
I Bushy: consider all pairs of optimal T1 and T2 to find optimal

T = T1 on T2

B
20

A

10

C

20

D

10

0.01

0.5

0.01

DPsub

I Iterate over subsets in the integer order

I Before a join tree for S is generated, all the relevant subsets
of S must be available

DPsub: Integer Enumeration

Enumerate {R1,R2,R3,R4} in Integer order.

NB

The ability to build the DP table is crucial for passing the exam!

Homework: Task 1 (10 points)

Create the DP table (manually) for the relations A, B, C with
cardinalities |A| = 10, |B| = 20, |C | = 100 and selectivities
fAB = 0.5, fBC = 0.1 (cost function Cout). Mark the final table
entries. Enumerate subsets in the integer order. Consider cross
products.

Homework: Task 2 (20 points)

I Using the program from the last exercise as basis, implement
Greedy Operator Ordering. Print the partial steps together
with their costs (e.g., P = R1 on R2200,Q = P on R3400), as
well as the final join tree.

I Load the TPC H data set. (You can use our snapshot of the
data set, the loadtpch-* script loads the data). Then, execute
the following SQL query using the program implemented
above:
select *
from lineitem l, orders o, customers c
where l.l orderkey=o.o orderkey and o.o custkey=c.c custkey
and c.c name=’Customer#000014993’.

http://www.tpc.org/tpch/default.asp
http://www-db.in.tum.de/teaching/ss13/qo/tpch.7z

Info

I Slides and exercises: www3.in.tum.de/teaching/ss13/qo

I Send any comments, questions, solutions for the exercises etc.
to Andrey.Gubichev@in.tum.de

I Exercises due: 9 AM, May 26, 2014

