
String Periodicity in the Scope of the ACM Programming
Contest

Raphael Arias

Supervisor: Jan Finis

Proseminar “Selected Fun Problems of the ACM Programming Contest”

Chair III Datenbanksysteme

Fakultät für Informatik, Technische Universität München

Email: arias@cs.tum.edu

1 Introduction

This paper is about an interesting problem posed in the Asia
Regional Round of the 31st ACM International Collegiate
Programming Contest. We will discuss the problem and
possible solutions, as well as their efficiency. Throughout the
paper we will explore interesting concepts which are related
to the solution of the problem.

2 Definitions and Notation

To understand this problem, we have to define some basic
concepts first. Throughout this paper we will assume Σ as
a finite alphabet. We will be examining strings of charac-
ters over this alphabet. Strings will have names (e.g. the
string s) and content, the notation being s = “abcd”. When
talking about a string s, we will refer to its length as |s|,
to a character at its position i as s[i] and to a substring
comprising the characters at positions i to j of s as s[i..j].

2.1 Levenshtein Distance

The Levenshtein Distance, also often referred to as the edit
distance is defined as the minimal number of change opera-
tions, that are needed to transform a String s into a String
t. The possible change operations are

• insertion of a character,

• deletion of a character and

• replacement of a character.

For instance, we might transform the String “period” into
“pearls” using 1 character insertion (ε 7→ a), 2 character
replacements (io 7→ ls) and 1 character deletion (d 7→ ε),
thus resulting in a Levenshtein distance of 4.

2.2 Periodicity

Sometimes strings can be periodic, that is, repetitive in some
kind of way. This can be very interesting in practical appli-
cations, for instance in the field of genetics. In this paper,
we introduce two concepts of periodicity.

2.2.1 Exact Period

The notion of an exact period is fairly simple: A string p is
an exact period of another string s, under the premise that
a natural number n exists, such that s = pn. In this case
pn represents the n-fold concatenation of the string p with
itself.
Example: The string “ol” is an exact period of the string
“ololololol”, because the latter one equals “(ol)5”.

2.2.2 k-Approximate Period

A k-approximate period of a string is a similar concept, only
that we now allow errors, small modifications of the string p
in every repetition of it. Formally we define a k-approximate
period of a string s as the string p if there exists a partition
of s into p1p2 . . . pn, such that for every pi the Levenshtein
distance to p is less than or equal to k, or formally:

(∃p1, . . . , pn ∈ Σ∗) [s = p1 . . . pn ∧ ∀i ∈ [n] : δ(p, pi) ≤ k] ,

where δ(p, pi) is the Levenstein distance between p and pi
and [n] = 0, . . . , n.

This might become clearer if we look at a simple example.
Consider the strings “abcadcbb” and “ab”. We know, that
the latter is a k-approximate Period of the former. But how
big is k in this case? If we divide s into [“ab”, “ca”, “dc”,
“bb”] we can calculate the Levenshtein distance between p =
“ab” and each substring pi. We get [0, 2, 2, 1], respectively.
Since our k is the maximum of these we obtain k = 2. How-
ever, if we had instead divided s into [“abc”, “ad”, “cb”, “b”],
we would have obtained [1, 1, 1, 1]. Now we have k = 1,
which is obviously better. We therefore have to be careful
as to how we divide our string. We will examine this more
closely in Section 3.2, after introducing the main problem in
the following section.

3 The Problem

The problem we are examining is called Period and consists
in the following: As input we are given two strings, s and p,
where 1 ≤ |s| ≤ 5000 and 1 ≤ |p| ≤ 50 The expected output
is the minimal k, such that p is a k-approximative period of
s. This corresponds to the following formula:

k = min {max {δ(p, pi) | i ∈ {1, . . . , n}}}

Clearly we have two important things to heed here. One
of them is finding the correct partition of s, such that k

becomes minimal. The other is calculating the Levenshtein
discance δ for each of the substrings pi. Since the latter is
the simpler problem, we will discuss it first.

3.1 The Levenshtein Distance

The concept of the Levenshtein distance is fairly simple and
has already been explained. However, there are a few inter-
esting characteristics of the Levenshtein distance that should
be pointed out.

3.1.1 Lower Bound

We shall see that there is a lower bound for the Levenshtein
distance.

Proposition 1. The distance between two strings s and t
is always at least the difference of their lengths.

δ(s, t) ≥ ||s| − |t||

This is best observed in an example: Consider the Strings
“dist” and “distance”. Even though they start exactly the
same (“dist” is a prefix of “distance”), you need at least
four character insertions to transform the former into the
latter.

3.1.2 Upper Bound

Similarly, there is also an upper bound for the Levenshtein
distance between two strings s and t.

Proposition 2. The Levenshtein distance between two strings
s and t can never exceed the length of the longer string.

δ(s, t) ≤ max{|s|, |t|}

To understand this, consider another example: The strings
“truth” and “lie” can be transformed into one another by
replacing three characters and either deleting (“truth” 7→
“lie”) or inserting (“truth” 7→“lie”) the rest. Even though
they have no characters in common, the distance cannot be
bigger than this.

3.2 Find All Possible Substrings

This is probably the trickiest part of the problem and before
we solve this, we will make an observations that might help
us.

We have to realize that there exists an upper bound for
the length of each substring pi.

Proposition 3. Each pi must have length strictly less than
double the length of p.

∀i ∈ {1, . . . , n} : |pi| < 2 · |p|

Proof. We arrive at this conclusion easily if we assume
a partition of s into p1 . . . pn where there is an i, for which
|pi| = 2 · |p|. Since trivially ||pi| − |p|| = |p|, with Proposi-
tion 1 we have δ(pi, p) ≥ |p| as a lower bound for the dis-
tance. If we now split pi up into two new substrings pi1 and
pi2 , both with length |p|, with Proposition 2 we obtain this
length as an upper bound for δ(pi1 , p) and δ(pi2 , p).

Evidently, we might not have improved, but we certainly
have not worsened.

4 Possible Solutions and Their Imple-
mentation

In this section we will discuss what the solution to this prob-
lem will look like and, evidently, present a practical imple-
mentation of the algorithms discovered.

4.1 Brute Force

Brute force solutions are often the most easy to implement
- but also the least elegant. For some problems it might
make sense to follow this approach, as more elegant solutions
might not be obvious or astonishingly complex. However, a
lot of problems are not fit to be solved in the brute force
manner since that approach is not practical for the given
problem size. In the following section we will closely examine
the given problem and draw a conclusion concerning the
practicality of a brute force approach in this case.

4.1.1 Arguments against this Approach

To answer this question, let us look at the input sizes we
are given. As we saw in the problem description in section
3, the size of s and p is bound:

1 ≤ |s| ≤ 5000, 1 ≤ |p| ≤ 50.

Having this and using Proposition 3, we also have an up-
per bound for the number of possibilities of dividing s into
substrings. However, as this number is not very small, it will
not help us much. We therefore construct a lower bound for
this number of possibilities to show that they are far too
many.

Proposition 4. The number of possibilities to divide a string
s of size 5000 into substrings with a maximum length of 99
(≤ 2 · 50) is more than 1.2 · 10208.

Proof. Since there are 5000 characters, there are 4999
places where we could place a separator. If we want to guar-
antee that no substring is longer than 99 characters, we can
just place more than 4900 separators and not consider possi-
bilities with less separators, which would only increase the fi-
nal result. For the possibilities to place 4901, 4902, . . . , 4999
separators we obtain:

4999∑
i=4901

(
4999

i

)
≈ 1.2 · 10208

Note again, that this is a lower bound. This seems to be a
sufficiently large number to reconsider our approach to this
problem. Bruteforcing this number of possible combinations
in order to find the minimal k will just take too long.

4.2 Dynamic Programming

Now that we have seen that brute force is not an option,
we have to look for alternatives. There has already been
extensive research on string algorithms and some on string
periodicity, the most notable in the former topic put forth
by Wagner and Fischer.

4.2.1 An Algorithm for the Levenshtein Distance

Fortunately, there is a very efficient algorithm to calculate
the Levenshtein distance using dynamic programming. It
was introduced by Wagner and Fischer in [2]. The principle
is fairly simple. Using the aforementioned example of the
two words s = “period” and t = “pearls” the algorithm
proceeds as follows:

p e a r l s

p
e
r
i
o
d

Figure 1: Empty table for δ(“period”,“pearls”).

1. Build a table of size |s| + 1 · |t| + 1 to store the edit
distances between all the prefixes of s and t. (See
Fig. 1). We will refer to cells of this table and their
neighbours using cardinal directions.

2. Initialize the table with the edit distances between ev-
ery prefix of s and t and the empty string, so

δ(u, ε) ∀u ∈ Σ∗.∃v ∈ Σ∗.s = uv,

as well as

δ(ε, u) ∀u ∈ Σ∗.∃v ∈ Σ∗.t = uv.

(See Fig. 2).

3. Iterate through the table. For each cell, check whether
the indexing characters are equal. If they are, copy the
value from the north western neighbour into this cell.
Otherwise choose the minimum of the north, north
western and western neighbours, increment it by one
and write the result.

4. The edit distance between s and t is in the south east
corner of the table when the algorithm finishes.

p e a r l s
0 1 2 3 4 5 6

p 1
e 2
r 3
i 4
o 5
d 6

Figure 2: Initialized table with Levenshtein distances for every
prefix and the empty string.

As you can see in Fig. 3, the result is 4, as we already
demonstrated in Section 2. For the proof of correctness of
this algorithm, see Wagner’s and Fischer’s paper [2].

4.2.2 A Modification to fit this Problem

Now that we know this algorithm for the Levenshtein dis-
tance, let us reconsider our approach to the solution of the
overall problem. As we have seen, the algorithm builds a

p e a r l s
0 1 2 3 4 5 6

p 1 0 1 2 3 4 5
e 2 1 0 1 2 3 4
r 3 2 1 1 1 2 3
i 4 3 2 2 2 2 3
o 5 4 3 3 3 3 3
d 6 5 4 4 4 4 4

Figure 3: Final table showing the results of the algorithm.

table and fills it with the edit distances between all the pre-
fixes of s and t. So actually, we are only missing the edit
distances between the smaller string p and all the suffixes of
our (now problem-specific) s:

δ(p, v) ∀v ∈ Σ∗.∃u ∈ Σ∗.s = uv.

So, why do we not simply build such a table for every
suffix v? This modification was introduced by Sim et al. [1]
and helps us solving the problem efficiently. According to
Sim et al.

ti = min
0≤h<i

{max{th, δ(p, s[h+ 1, i])}},

where ti the minimum value, such that p is a ti-approximate
period of s[1..i] and obviously 1 ≤ i ≤ |s|. t0 is initialized
to 0.

4.2.3 Implementation

First we need a slightly modified version of the Levenshtein
distance Dynamic Programming algorithm introduced in Sec-
tion 4.2.1. We modify it so instead of a numeric result it re-
turns the whole distance table built and obtain the function
levenshtein mod(a,b) (see Listing 1).

1 def levenshtein_mod(a, b):
2 D = [[0]] # distance between empty strings
3 # initialize lists:
4 [D.append([i]) for i, s in enumerate(a, 1)]
5 [D[0].append(j) for j, t in enumerate(b, 1)]
6

7 for j, s in enumerate(b, 1):
8 for i, t in enumerate(a, 1):
9 if s == t:

10 D[i].append(D[i-1][j-1])
11 else:
12 D[i].append(
13 min(
14 D[i-1][j] + 1,
15 D[i][j-1] + 1,
16 D[i-1][j-1] + 1
17)
18)
19 return D

Listing 1: Python implementation of Wagner’s and Fischer’s
Dynamic Programming Algorithm for the edit distance.

The next step is transforming the formula by Sim et al.
into an actual implementation. The programming language
Python is used for the implementation. The basic algorithm
is implemented in the function solve(s, p) (see Listing 2).

As you can see in Listing 2, there is a call to the function
distanceMatrix(s, p). This function basically calls our

1 def solve(s, p):
2 D = distanceMatrix(s, p)
3 t = [0] # t[0] = 0
4 for i in xrange(1, len(s)+1):
5 cmin = 6000 # current minimum
6 for h in xrange(0, i):
7 # i is never part of this
8 # h+1st table, last line, column i-h+1:
9 cmin = min(

10 cmin,
11 max(t[h], D[h][-1][i-h])
12)
13 t.append(cmin)
14 return t[len(s)]

Listing 2: Python code implementing the algorithm described
by Sim et al.

modified version of the Levenshtein distance function for
each suffix of s and combines the results into a 3-dimensional
list and returns it (see Listing 3).

1 def distanceMatrix(s, p):
2 D = []
3 for i in xrange(len(s)):
4 D.append(levenshtein_mod(p, s[i:]))
5 return D

Listing 3: Python implementation of the function that builds
the 3 dimensional list of distances.

4.3 An Alternative Approach: Evolu-
tionary Algorithms

In this section we will introduce an alternative approach to
solving this problem and the reasons why, ultimately, this
approach is not a viable one.

For this, we will give a (very brief) introduction to the
most basic concepts of Evolutionary Algorithms.

4.3.1 The Basic Concepts of Evolutionary Algorithms

As the name suggests, Evolutionary Algorithms are based
on the principle of evolution and borrow ideas from it. They
are an approach to optimization problems.

Figure 4: Simplified diagram of an evolutionary algorithm.

The general idea is having a initial population of “indi-
viduals” (solutions) to a given problem. The algorithm’s
purpose is to evolve this population into one that contains
the optimal solution to a problem. It accomplishes this us-
ing a selection mechanism, that applies a fitness function to

the individuals in the population pool. The fitness function
measures the fitness of the individual (“how good is the so-
lution for the given problem?”) in a way that is specific to
the problem and different for each case.

The next step is the most interesting: the evolutionary
step itself. This implies the individuals have to be replaced
or altered. Like in the biological form of evolution, this can
happen by mutation or recombination.

After the population has changed, the process is repeated
a finite number of times. By the end of the evolutionary
process, an optimal solution should be part of the popula-
tion.

4.3.2 Application to this Problem

After introducing the very simplified, basic idea, how do
we apply the principle of an evolutionary algorithm to this
concrete problem? We need to find a representation of the
solutions to our problem that would be viable individuals in
the population.

Our individuals in this case are, of course, the partitions
of s into substrings, as we need to find the optimal partition
for k to be minimal. The initial population pool can be
generated by uniformly selecting random partitions of s.

Now we are missing a fitness function and a selection
mechanism, as well as the reconfiguration (mutation and/or
recombination) of the individuals. The first part of this is,
again, quite simple: a solution (partition) P of s into sub-
strings pi is fit, if the k, such that p is a k-approximate
period of s is low.

The selection phase and the mutation mechanism are where
matters become more complicated. A possibility for the
mutation is the following: In a partition consisting of sev-
eral substrings, a substring can take or give characters from
or to its adjacent substrings. Additionally, a substring can
be split into two substrings to increase the amount of sub-
strings. The amount of substrings can also decrease if giving
or taking characters from a neighbour results in an empty
substring.

For the selection mechanism, we could select members
of the population, choosing candidates which have a better
fitness with a higher probability. These candidates could be
recombined and mutated, forming the next generation.

The problem with the evolutionary approach to this prob-
lem is, as one might have noticed, that the algorithm it yields
is non-deterministic. There is a great amount of randomness
involved and no estimate can be made of how long it takes
to find the optimal solution. In fact, one cannot even guar-
antee that an optimal solution will be found, using this type
of algorithm, which makes it unsuitable for an ACM prob-
lem. Also, simulating the evolution for a sufficiently large
population takes quite long.

The reasons pointed out in the previous paragraph are
the ones which led to reject the evolutionary approach as a
solution to this problem. Nevertheless the basic principles
are interesting to consider in a optimization problem.

5 Complexity Analysis

Of course, the quality of a solution must be verified. There-
fore we are going to examine the complexity of the algo-
rithms used with respect to time and space complexity.

5.1 Space Complexity

Space complexity analysis is an asymptotic analysis of the
amount of memory space necessary for the execution of an
algorithm. In this case, we examine the amount of memory
needed to compute the Levenshtein distance and to perform
the optimization after that.

5.1.1 Levenshtein Distance

The algorithm presented in Section 4.2.1 for two strings a
and b builds a table of size |a| · |b|.

5.1.2 Finding the Minimum k

For the solution of the problem we call the Levenshtein Dis-
tance algorithm for p each suffix of s. This means, we build
one table of size |p| · |s|, one of size |p| · (|s| − 1), one of
size |p| · (|s| − 2) etc. Therefore we obtain |s| tables with
different size corresponding to the following formula. Let
|s| = n, |p| = m

n∑
i=1

m · i =
1

2
mn(n+ 1) ∈ O(m · n2).

Additionally we build another list containing the values
for ti with size n+ 1. Since m · n2 + n+ 1 ∈ O(m · n2), we
can safely ignore this in an asymptotic analysis.

5.2 Time Complexity

When speaking about time or runtime complexity, we refer
to the asymptotic runtime of the examined algorithms rela-
tive to the input size. So in this case, how long will it take
us to compute k, once we are given s and p?

5.2.1 Levenshtein Distance

We saw that the table which has to be build in order to
check the edit distance between a and b has size |a| · |b|.
Then each cell in that table is visited and populated with a
value. This takes |a| · |b| time.

5.2.2 Finding the Minimum k

As we built a table of size O(m · n2) and visit each cell, the
runtime for this part is O(m · n2) as well. To calculate the
tis, we need some additional time in the loop. For each i
we have a loop for 0 ≤ h < i. The amount of iterations
therefore is:

n∑
i=1

i =
1

2
n(n+ 1) ∈ O(n2)

This does not increase the overall complexity, since

O(m · n2 + n2) ⊆ O(m · n2).

6 Conclusion

As we have seen, there are some solutions that are better
suited for this problem than others and why this is the case.
The Dynamic Programming approach has runtime benefits
over the other solutions and, unlike the evolutionary ap-
proach, is deterministic.

Nevertheless the evolutionary algorithm could yield some
solutions. With some small improvements they might not
even be very bad. There has been some research on String
algorithms with evolutionary elements, but that is beyond
the scope of this paper.

The Dynamic Programming algorithm discussed here is a
very elegant solution to this problem and possibly to other
optimization problems with similar constraints.

There are a few improvements to the proposed algorithm,
that make it a little more efficient, runtime- and space-
complexity-wise. For instance the distance function that
builds the tables could be written in a lazy manner, such
that cells in the table do not necessarily have to be calcu-
lated and stored. They would then be only computed and
stored when they are needed.

References
[1] J. S. Sim, C. S. Iliopoulos, K. Park, and W. F. Smyth. Approx-

imate periods of strings. Theor. Comput. Sci., 262(1-2):557–
568, July 2001.

[2] R. A. Wagner and M. J. Fischer. The string-to-string correc-
tion problem. J. ACM, 21(1):168–173, Jan. 1974.

	Introduction
	Definitions and Notation
	Levenshtein Distance
	Periodicity
	Exact Period
	k-Approximate Period

	The Problem
	The Levenshtein Distance
	Lower Bound
	Upper Bound

	Find All Possible Substrings

	Possible Solutions and Their Implementation
	Brute Force
	Arguments against this Approach

	Dynamic Programming
	An Algorithm for the Levenshtein Distance
	A Modification to fit this Problem
	Implementation

	An Alternative Approach: Evolutionary Algorithms
	The Basic Concepts of Evolutionary Algorithms
	Application to this Problem

	Complexity Analysis
	Space Complexity
	Levenshtein Distance
	Finding the Minimum k

	Time Complexity
	Levenshtein Distance
	Finding the Minimum k

	Conclusion

