Efficient Query Process -4 Set-Oriented Query Processing

Set-Oriented Query Processing

SIS INONTEA IS I Set-Oriented Query Processing

Motivation

During query processing, the DBMS tries to process whole sets of data
items at a time

e “manual” programming is usually record oriented
e e.g., compare two records

e easy to understand, but this does not scale

Consider: intersecting two lists
e breaking it down into record-level operators is inefficient
e compares each record with each other record

O(n?)

considering the complete lists in one step is more efficient

O(nlogn)

SeixOiziizd Query Prazsssig
Motivation (2)

Set-oriented processing has several advantages
e data can be pre-processed before processing
e sorting/hashing/index structures etc.
e amortizes over the set
e leads to more efficient algorithms
e easier to cope with memory limitations etc.

e easier parallelism

Algorithms tend to become more scalable, but also more involved.

SeixOiziizd Query Prazsssig
The Algebraic Model

Query processing is usually expressed by relational algebra

X
/ \
X Otitle="DB"
/ N [

students attend lectures

e operators consumes zero or more relations, and produce one output
relation

e inherently set (or rather: bag) oriented

SeixOiziizd Query Prazsssig
Implementing the Algebraic Model

Operators are specified in a query agnostic manner:

e intersect

> left
> right
> compare

Operator does not understand the query semantic. It only knows:
o Jeft will produce a result set
o right will produce a result set

® compare compares two elements

Note: a scalable implementation will need more (e.g., hashLeft,hashRight),
we ignore this for now.

SeixOiziizd Query Prazsssig
Implementing the Algebraic Model (2)

The algebraic operators define the abstract logic of query processing
primitives. The query specific parts are hidden in subscripts.

In particular:
e operators do not “know" the data types or byte size of input tuples
e they do not “understand” the content of a tuple

they only specify the data flow and the control flow

all query dependent operations are delegated to helper subscripts

keeps the operator itself very generic

Note: sometimes operators are hinted with query specific info (e..g, a fixed
tuple size) for performance reasons, but this is only a minor variation.

SIS INONTEA IS I Set-Oriented Query Processing

Implementing the Algebraic Model (3)

Example: intersectSorted(left,right,compare)

ty=next tuple from Jeft
n=right
while input is not exhausted
if n=Jeft
t;=next tuple from left else
tr=next tuple from right
c=compare(ty,t2)
ifc=0
store t; as result
else if c <0
n=left
else
n=right

The code is independent from the concrete query.

SIS INONTEA IS I Set-Oriented Query Processing

Operator Composition

e each operator produces a set (bag/stream) of result tuples
e operators consume zero or more input sets

e usually assume nothing about their input

e therefore can be combined in an arbitrary manner

o very flexible

SIS INONTEA IS I Set-Oriented Query Processing

Operator Interface
Option 1: Full Materialization

Every operator materializes its output. The input is always read from a
materialized state.

Advantages:
e easy to implement

e can handle surprises concerning intermediate result sizes
(dynamic plans)

e advanced techniques like parallelization, result sharing, etc. are simple

Disadvantages:
e materialization is expensive

e in particular if data is larger than main memory

Few systems use this approach, but some do (MonetDB).

SIS INONTEA IS I Set-Oriented Query Processing

Operator Interface (2)
Option 2: lterator Model

Each operator produces a tuple stream on demand. The input is iterated
over.

Advantages:

e data is pipelined between operators

e avoids unnecessary materialization

flexible control flow
e easy to implement

Disadvantages:

e millions of virtual function calls
e poor locality

The standard model. Widely used.

SIS INONTEA IS I Set-Oriented Query Processing

Operator Interface (2)

The iterator model usually offers the following interface:

e open
e next

e close

Repeated calls to next produce the output stream.

Internally, operators maintain a complex state to offer the iterator interface.

SeixOiziizd Query Prazsssig
Operator Interface (3)

How to pass data from one operator to the other?
e the data itself is opaque
e as a consequence, it cannot be passed (easily) by value

Alternative 1: pass tuple pointers
e the real data resides on a page/in the buffer

e operators are only passed pointers to the data

Alternative 2: not at all
e there is a global data space (“registers”)
e subscript functions operate on these registers

e the operators never touch the data directly

Alternative 2 is more generic, and can cope better with computed columns.

SeixOiziizd Query Prazsssig
Operator Interface (4)

Option 3: blockwise processing
Each operator produces a tuple stream, but not tuple-by-tuple but as a
stream of larger chunks.

Advantages:
e far fewer function calls

e better code and data locality

Disadvantages:
e additional materialization overhead
e consumes memory bandwidth

e control flow not as flexible

SIS INONTEA IS I Set-Oriented Query Processing

Operator Interface (5)

Option 5: pushing tuples up
Each operator pushes produced tuples towards the consuming operators.

Advantages:

e operator logic is concentrated in a few loops

good code and data locality

pipelining etc. still possible
support for DAG-structured plans

Disadvantages:
e some restrictions in control flow

e code generation more involved

SIS INONTEA IS I Set-Oriented Query Processing

Examples - Full Materialization

scan(R)
// no-op, all operators read their input
return R

select(R,p)
R’'=new temporary relation
foreacht ¢ R
if p(t)
append t to R’
return R’

cross(Ry,R»)
R’=new temporary relation
for each t1 € R;
for each t, € R,
append t; ot to R’
return R’

SIS INONTEA IS I Set-Oriented Query Processing

Examples - Iterator Model

class Scan
in,tid, limit

Scan::open(R)
in=R
tid=0
limit=|R)|

Scan::next()
if tid>limit
return false
load tuple t from in at position tid
tid=tid+1
return true

SIS INONTEA IS I Set-Oriented Query Processing

Examples - Iterator Model (2)

class Select
in,p

Select::open(in,p)
this.in=in
this.p=p

Select::next(in,p)
while in.next()
if p()
return true
return false

SIS INONTEA IS I Set-Oriented Query Processing

Examples - Iterator Model (3)

class Cross
left, right,step
Cross::open(left,right)
this. left=left
this.right=right
step—=true

Cross.next()
while true

if step

if not /eft.next()
return false

right.open()
step=false

if right.next()
return true

step=true

SIS INONTEA IS I Set-Oriented Query Processing

Examples - Blockwise Processing

class Scan
in, tid limit

Scan::open(R)
in=R
tid=0
limit=|R|

Scan::next()
C=min(limit-tid,1000)
R’'=tuple array of size C
for i=0..C -1
load tuple R'[i] from in at position tid+i
tid=tid+C
return R’

SeixOiziizd Query Prazsssig
Examples - Blockwise Processing (2)

class Select
in,p
Select::open(in,p)
this.in=in, this.p=p

Select::next(in,p)
while true

R'=in.next()

if [R'] = 0
return R/

w=0

for i=0..|R'| -1
R'[w] = R'[i]
w=w+ p(Rw])

R’.length=w

if |R'| >0
return R’

SIS INONTEA IS I Set-Oriented Query Processing

Examples - Blockwise Processing (3)

class Cross
left,right,c;,li, R, cr.Ir,Rr

Cross::open(left,right)
this. left=left
this.right=right
step—true
CL:/L:CR:I’RZO

Cross.next()
R’'=tuple array of size 1000, w=0

SIS INONTEA IS I Set-Oriented Query Processing

Examples - Blockwise Processing (4)

while true
while CrR = IR
c=c +1
if CL > /[_
R =left.next()
if |[R.|=0
R’ length=w, return R’
Cc = 0, /L:’R[_|
Rr=right.next()
if |[Rr| =0

right.rewind()
CrR = 0, /R:|RR’
RI[W] = RL[CL] o RR[CR]
cr=cr+1l,w=w+1
if w=|R/|
return R’

SIS INONTEA IS I Set-Oriented Query Processing

Examples - Push

class Scan
consumer,R

Scan::open(consumer,R)

this.consumer=consumer
this. R=R

Scan::produce()
for each t in R
consumer.consume(t)

SeixOiziizd Query Prazsssig
Examples - Push (2)

class Select
in,consumer, p

Select::open(in,consumer, p)
this.in=in, this.consumer=consumer, this.p=p

Select::produce()
in.produce()

Select::consume(t)
if p(t)
consumer.consume(p)

SeixOiziizd Query Prazsssig
Examples - Push (3)

class Cross
left, right,consumer,t;

Cross::open(left, right,consumer)
this.left=left, this.right=right, this.consumer=consumer

Cross::produce()
left.produce()

Cross::consumeFromLeft(t)
tp =t
right.produce()

Cross::consumeFromRight(t)
consumer.consume(t, o t)

SeixOiziizd Query Prazsssig
Additional Functionality

We ignored the close function so far

e releases allocated resources

Other functionality implemented or used by operators:
e rewind/rebind
® memory management

e spooling intermediate results

SIS INONTEA IS I Set-Oriented Query Processing

Implementing Subscripts

The operators are query independent, but the subscripts are not

cover the query-specific parts of the query

attribute access (e.g., x.a)

predicates (e.g., a=b)

computations (e.g., sum(amount* (1+tax)))

Must be implemented, too
o different for every query
e but usually relatively simple

e complexity much lower than for operators

SeixOiziizd Query Prazsssig
Implementing Subscripts (2)

Option 1: interpreter objects

Subscripts are assembled from interpreter objects.
o very flexible
e easy to implement
e widely used

e but: many virtual function calls

Val AccessInt::eval(char* ptr)
return *((int*)(ptr+ofs));

Val CompareEqlnt::eval(char* ptr)
return left->eval(ptr).intValue==right->eval(ptr).intValue

SeixOiziizd Query Prazsssig
Implementing Subscripts (3)

Option 2: virtual machines

Subscripts are compiled into instructions for a virtual machine.
e more efficient than interpreter objects
e but also more complex
e requires a compiler to byte code

while (true) switch ((+-+op)->cmd) {
case Cmd::Accesslnt:
reglop->out]=*((*int)(ptr+op->val);
break;
case Cmd::CompareEqInt:
reglop->out]=reg[op->inl].intValue==reg[op->in2].intValue;
break;

SeixOiziizd Query Prazsssig
Implementing Subscripts (4)

Option 3: pre-compiled fragments

Subscripts are expressed as combination of pre-compiled fragments.
e each fragment performs a number of operations
e quite efficient (vectorization)

e but usually only applicable for column stores

CompareEqInt(unsigned len,int* coll,int* col2,bool* result)
for (unsigned index=0;index!=len;++index)
result[index]=col1[index]==col2[index]

SeixOiziizd Query Prazsssig
Implementing Subscripts (5)

Option 4: generated machine code

Subscripts are at runtime compiled into native machine code.
e the most efficient alternative

but also the most difficulty
e portability is an issue

we will look at this in the Section Code Generation

movq 72(%rsp), %rax

movl (%rax,%r12,4), %r13d
movq 120(%rsp), %rax
movl (%rax,%r12,4), %edi
cmpl %r13d,%edi

SIS INONTEA IS I Set-Oriented Query Processing

Pipelining

As mentioned, most approaches try to avoid copying data between
operators

this is called pipelining
operators that do materialize their input are called pipeline breakers

operators are consume their input completely before processing are
called full pipeline breakers

some binary operators are pipeline breakers on only one side

This behavior has implications regarding other operators.

SeixOiziizd Query Prazsssig
Pipelining (2)

Some effects of different pipeline behavior
o if a pipeline break is between source and sink the original data is no
longer accessible
» relevant for lazy attribute access/TID join/string representations etc.
> the system must plan defensively
o if a full pipeline breaker is between two operators both are decoupled

» the full pipeline break breaks the plan into fragments
» can be executed independent from each other
> relevant for scheduling

The code generation must know the pipeline behavior of operators.

SIS INONTEA IS I Set-Oriented Query Processing

Parallelization

How can we exploit multiple cores during query processing?
e inter-query parallelism is simple
e intra-query parallelism is much harder

e independent parts of the query can be executed in parallel (see: full
pipeline breaker)

e parallelizing individual operators is more difficult

e usual strategy: partition the input

We will discuss this later in more detail.

	The Classical Architecture
	Efficient Query Processing
	Set-Oriented Query Processing

