
1 / 34

Efficient Query Processing Set-Oriented Query Processing

Set-Oriented Query Processing

2 / 34

Efficient Query Processing Set-Oriented Query Processing

Motivation
During query processing, the DBMS tries to process whole sets of data
items at a time

• “manual” programming is usually record oriented
• e.g., compare two records
• easy to understand, but this does not scale

Consider: intersecting two lists
• breaking it down into record-level operators is inefficient
• compares each record with each other record
• O(n2)

• considering the complete lists in one step is more efficient
• O(n log n)

3 / 34

Efficient Query Processing Set-Oriented Query Processing

Motivation (2)

Set-oriented processing has several advantages
• data can be pre-processed before processing
• sorting/hashing/index structures etc.
• amortizes over the set
• leads to more efficient algorithms
• easier to cope with memory limitations etc.
• easier parallelism
• ...

Algorithms tend to become more scalable, but also more involved.

4 / 34

Efficient Query Processing Set-Oriented Query Processing

The Algebraic Model

Query processing is usually expressed by relational algebra

B

B

students attend

σtitle=“DB”

lectures

• operators consumes zero or more relations, and produce one output
relation

• inherently set (or rather: bag) oriented

5 / 34

Efficient Query Processing Set-Oriented Query Processing

Implementing the Algebraic Model
Operators are specified in a query agnostic manner:

• intersect
I left
I right
I compare

Operator does not understand the query semantic. It only knows:
• left will produce a result set
• right will produce a result set
• compare compares two elements

Note: a scalable implementation will need more (e.g., hashLeft,hashRight),
we ignore this for now.

6 / 34

Efficient Query Processing Set-Oriented Query Processing

Implementing the Algebraic Model (2)

The algebraic operators define the abstract logic of query processing
primitives. The query specific parts are hidden in subscripts.

In particular:
• operators do not “know” the data types or byte size of input tuples
• they do not “understand” the content of a tuple
• they only specify the data flow and the control flow
• all query dependent operations are delegated to helper subscripts
• keeps the operator itself very generic

Note: sometimes operators are hinted with query specific info (e..g, a fixed
tuple size) for performance reasons, but this is only a minor variation.

7 / 34

Efficient Query Processing Set-Oriented Query Processing

Implementing the Algebraic Model (3)
Example: intersectSorted(left,right,compare)

t1=next tuple from left
n=right
while input is not exhausted

if n=left
t1=next tuple from left else
t2=next tuple from right

c=compare(t1,t2)
if c = 0

store t1 as result
else if c < 0

n=left
else

n=right

The code is independent from the concrete query.

8 / 34

Efficient Query Processing Set-Oriented Query Processing

Operator Composition

• each operator produces a set (bag/stream) of result tuples
• operators consume zero or more input sets
• usually assume nothing about their input
• therefore can be combined in an arbitrary manner
• very flexible

9 / 34

Efficient Query Processing Set-Oriented Query Processing

Operator Interface
Option 1: Full Materialization

Every operator materializes its output. The input is always read from a
materialized state.

Advantages:
• easy to implement
• can handle surprises concerning intermediate result sizes

(dynamic plans)
• advanced techniques like parallelization, result sharing, etc. are simple

Disadvantages:
• materialization is expensive
• in particular if data is larger than main memory

Few systems use this approach, but some do (MonetDB).

10 / 34

Efficient Query Processing Set-Oriented Query Processing

Operator Interface (2)
Option 2: Iterator Model

Each operator produces a tuple stream on demand. The input is iterated
over.

Advantages:
• data is pipelined between operators
• avoids unnecessary materialization
• flexible control flow
• easy to implement

Disadvantages:
• millions of virtual function calls
• poor locality

The standard model. Widely used.

11 / 34

Efficient Query Processing Set-Oriented Query Processing

Operator Interface (2)

The iterator model usually offers the following interface:
• open
• next
• close

Repeated calls to next produce the output stream.

Internally, operators maintain a complex state to offer the iterator interface.

12 / 34

Efficient Query Processing Set-Oriented Query Processing

Operator Interface (3)
How to pass data from one operator to the other?
• the data itself is opaque
• as a consequence, it cannot be passed (easily) by value

Alternative 1: pass tuple pointers
• the real data resides on a page/in the buffer
• operators are only passed pointers to the data

Alternative 2: not at all
• there is a global data space (“registers”)
• subscript functions operate on these registers
• the operators never touch the data directly

Alternative 2 is more generic, and can cope better with computed columns.

13 / 34

Efficient Query Processing Set-Oriented Query Processing

Operator Interface (4)

Option 3: blockwise processing
Each operator produces a tuple stream, but not tuple-by-tuple but as a
stream of larger chunks.

Advantages:
• far fewer function calls
• better code and data locality

Disadvantages:
• additional materialization overhead
• consumes memory bandwidth
• control flow not as flexible

14 / 34

Efficient Query Processing Set-Oriented Query Processing

Operator Interface (5)

Option 5: pushing tuples up
Each operator pushes produced tuples towards the consuming operators.

Advantages:
• operator logic is concentrated in a few loops
• good code and data locality
• pipelining etc. still possible
• support for DAG-structured plans

Disadvantages:
• some restrictions in control flow
• code generation more involved

15 / 34

Efficient Query Processing Set-Oriented Query Processing

Examples - Full Materialization
scan(R)

// no-op, all operators read their input
return R

select(R,p)
R ′=new temporary relation
for each t ∈ R

if p(t)
append t to R ′

return R ′

cross(R1,R2)
R ′=new temporary relation
for each t1 ∈ R1

for each t2 ∈ R2
append t1 ◦ t2 to R ′

return R ′

16 / 34

Efficient Query Processing Set-Oriented Query Processing

Examples - Iterator Model

class Scan
in,tid,limit

Scan::open(R)
in=R
tid=0
limit=|R|

Scan::next()
if tid≥limit

return false
load tuple t from in at position tid
tid=tid+1
return true

17 / 34

Efficient Query Processing Set-Oriented Query Processing

Examples - Iterator Model (2)

class Select
in,p

Select::open(in,p)
this.in=in
this.p=p

Select::next(in,p)
while in.next()

if p()
return true

return false

18 / 34

Efficient Query Processing Set-Oriented Query Processing

Examples - Iterator Model (3)
class Cross

left,right,step
Cross::open(left,right)

this.left=left
this.right=right
step=true

Cross.next()
while true

if step
if not left.next()

return false
right.open()
step=false

if right.next()
return true

step=true

19 / 34

Efficient Query Processing Set-Oriented Query Processing

Examples - Blockwise Processing

class Scan
in,tid,limit

Scan::open(R)
in=R
tid=0
limit=|R|

Scan::next()
C=min(limit-tid,1000)
R ′=tuple array of size C
for i=0...C − 1

load tuple R ′[i] from in at position tid+i
tid=tid+C
return R ′

20 / 34

Efficient Query Processing Set-Oriented Query Processing

Examples - Blockwise Processing (2)
class Select

in,p
Select::open(in,p)

this.in=in, this.p=p

Select::next(in,p)
while true

R ′=in.next()
if |R ′| = 0

return R ′

w=0
for i=0...|R ′| − 1

R ′[w] = R ′[i]
w = w + p(R ′[w])

R ′.length=w
if |R ′| > 0

return R ′

21 / 34

Efficient Query Processing Set-Oriented Query Processing

Examples - Blockwise Processing (3)

class Cross
left,right,cL,lL,RL,cR ,lR ,RR

Cross::open(left,right)
this.left=left
this.right=right
step=true
cL = lL = cR = rR = 0

Cross.next()
R ′=tuple array of size 1000, w=0

22 / 34

Efficient Query Processing Set-Oriented Query Processing

Examples - Blockwise Processing (4)
while true

while cR = lR
cL = cL + 1
if cL ≥ lL

RL=left.next()
if |RL| = 0

R ′.length=w , return R ′

cL = 0, lL=|RL|
RR=right.next()
if |RR | = 0

right.rewind()
cR = 0, lR=|RR |

R ′[w] = RL[cL] ◦ RR [cR]
cR = cR + 1, w = w + 1
if w = |R ′|

return R ′

23 / 34

Efficient Query Processing Set-Oriented Query Processing

Examples - Push

class Scan
consumer,R

Scan::open(consumer,R)
this.consumer=consumer
this.R=R

Scan::produce()
for each t in R

consumer.consume(t)

24 / 34

Efficient Query Processing Set-Oriented Query Processing

Examples - Push (2)

class Select
in,consumer, p

Select::open(in,consumer, p)
this.in=in, this.consumer=consumer, this.p=p

Select::produce()
in.produce()

Select::consume(t)
if p(t)

consumer.consume(p)

25 / 34

Efficient Query Processing Set-Oriented Query Processing

Examples - Push (3)

class Cross
left,right,consumer,tL

Cross::open(left,right,consumer)
this.left=left, this.right=right, this.consumer=consumer

Cross::produce()
left.produce()

Cross::consumeFromLeft(t)
tL = t
right.produce()

Cross::consumeFromRight(t)
consumer.consume(tL ◦ t)

26 / 34

Efficient Query Processing Set-Oriented Query Processing

Additional Functionality

We ignored the close function so far
• releases allocated resources

Other functionality implemented or used by operators:
• rewind/rebind
• memory management
• spooling intermediate results

27 / 34

Efficient Query Processing Set-Oriented Query Processing

Implementing Subscripts

The operators are query independent, but the subscripts are not
• cover the query-specific parts of the query
• attribute access (e.g., x.a)
• predicates (e.g., a=b)
• computations (e.g., sum(amount*(1+tax)))
• ...

Must be implemented, too
• different for every query
• but usually relatively simple
• complexity much lower than for operators

28 / 34

Efficient Query Processing Set-Oriented Query Processing

Implementing Subscripts (2)
Option 1: interpreter objects

Subscripts are assembled from interpreter objects.
• very flexible
• easy to implement
• widely used
• but: many virtual function calls

Val AccessInt::eval(char* ptr)
return *((int*)(ptr+ofs));

Val CompareEqInt::eval(char* ptr)
return left->eval(ptr).intValue==right->eval(ptr).intValue

29 / 34

Efficient Query Processing Set-Oriented Query Processing

Implementing Subscripts (3)
Option 2: virtual machines

Subscripts are compiled into instructions for a virtual machine.
• more efficient than interpreter objects
• but also more complex
• requires a compiler to byte code

while (true) switch ((++op)->cmd) {
case Cmd::AccessInt:

reg[op->out]=*((*int)(ptr+op->val);
break;

case Cmd::CompareEqInt:
reg[op->out]=reg[op->in1].intValue==reg[op->in2].intValue;
break;

...
}

30 / 34

Efficient Query Processing Set-Oriented Query Processing

Implementing Subscripts (4)

Option 3: pre-compiled fragments

Subscripts are expressed as combination of pre-compiled fragments.
• each fragment performs a number of operations
• quite efficient (vectorization)
• but usually only applicable for column stores

CompareEqInt(unsigned len,int* col1,int* col2,bool* result)
for (unsigned index=0;index!=len;++index)

result[index]=col1[index]==col2[index]

31 / 34

Efficient Query Processing Set-Oriented Query Processing

Implementing Subscripts (5)
Option 4: generated machine code

Subscripts are at runtime compiled into native machine code.
• the most efficient alternative
• but also the most difficulty
• portability is an issue
• we will look at this in the Section Code Generation

...
movq 72(%rsp), %rax
movl (%rax,%r12,4), %r13d
movq 120(%rsp), %rax
movl (%rax,%r12,4), %edi
cmpl %r13d,%edi
...

32 / 34

Efficient Query Processing Set-Oriented Query Processing

Pipelining

As mentioned, most approaches try to avoid copying data between
operators
• this is called pipelining
• operators that do materialize their input are called pipeline breakers
• operators are consume their input completely before processing are

called full pipeline breakers
• some binary operators are pipeline breakers on only one side

This behavior has implications regarding other operators.

33 / 34

Efficient Query Processing Set-Oriented Query Processing

Pipelining (2)

Some effects of different pipeline behavior
• if a pipeline break is between source and sink the original data is no

longer accessible
I relevant for lazy attribute access/TID join/string representations etc.
I the system must plan defensively

• if a full pipeline breaker is between two operators both are decoupled
I the full pipeline break breaks the plan into fragments
I can be executed independent from each other
I relevant for scheduling

• ...

The code generation must know the pipeline behavior of operators.

34 / 34

Efficient Query Processing Set-Oriented Query Processing

Parallelization

How can we exploit multiple cores during query processing?
• inter-query parallelism is simple
• intra-query parallelism is much harder
• independent parts of the query can be executed in parallel (see: full

pipeline breaker)
• parallelizing individual operators is more difficult
• usual strategy: partition the input

We will discuss this later in more detail.

	The Classical Architecture
	Efficient Query Processing
	Set-Oriented Query Processing

