Transaction Systems
Exercise Session 10

Linnea Passing
linnea.passing@tum.de
www-db.in.tum.de

June 27, 2016
Today’s Plan

- MVCC presentation
- Admin and exam
- Homework
- Escrow locking
- MVSR serial order
- No homework!
Admin and Exam

- Post-exam Review (Klausureinsicht): July 20, from 12:30pm, at this room. You will have to register and will get assigned a specific time
- Interest in resit (Wiederholungsprüfung)?
- Remaining lectures: June 27, July 4, (July 11)
- Remaining homeworks: 2
When specific knowledge about a red class/algorithm is needed in the exam, it will be provided. Beside classes and algorithms, you also need to know about e.g. ACID properties, page and object model, dirty read problem, relationships between classes, the MVCC version function, . . .

ch. 3 FSR (thus: Herbrand semantics, reads-from, . . .)
VSR
CSR (thus: conflict graph, . . .)
OCSR, COCSR, CMFSR, CMVSR, CMCSR
Interleaving Specifications
List of Classes and Algorithm (2/3)

ch. 4 2PL/C2PL/S2PL/SS2PL, deadlock prevention and resolution
- O2PL
- Altruistic Locking
- write-only and read-write tree locking
- BTO
- SGT
- BOCC, FOCC
- Hybrid protocols and TWR

ch. 5 MVSR (thus: MVSG, . . .)
- MCSR (thus: MVCG, . . .)
- MVTO
- MV2PL, 2V2PL
- MVSGT
- ROMV
List of Classes and Algorithm (3/3)

ch. 6 State-independent CT
 Return-value CT
 Commutativity-based reducibility, CSR
 Tree reducibility

ch. 7 2PL for flat object schedules
 layered 2PL, selective-layed 2PL
 Hybrid algorithms, Escrow locking

ch. 8 ... not included yet!
Homework
Escrow Locking

- Credits: Dr. Andrey Gubichev, 2013
Escrow locking

- For counter objects: there are bounds low, high and current possible value range sup, inf

- incr (x, D):
 if x.sup + D <= x.high then
 x.sup := x.sup + D; return ok
 else if x.inf + D > x.high then
 return no
 else wait fi fi;

- decr (x, D):
 if x.low <= x.inf - D then
 x.inf := x.inf - D; return ok
 else if x.low > x.sup - D then
 return no
 else wait fi fi;
Escrow locking

- When committing: adjust inf, sup
- When aborting: roll back inf, sup
- Commit of transaction t:

 for each operation $\text{incr}(x, D)$ executed by t do

 $x.inf := x.inf + D$
 od;

 for each operation $\text{decr}(x, D)$ executed by t do

 $x.sup := x.sup - D$
 od;

- Abort of transaction t:

 for each operation $\text{incr}(x, D)$ executed by t do

 $x.sup := x.sup - D$
 od;

 for each operation $\text{decr}(x, D)$ executed by t do

 $x.inf := x.inf + D$
Escrow Locking

- Credits: Dr. Andrey Gubichev, 2013
Consider two counting objects x and y, with initial values $x = 100$ and $y = 50$. Both counters have zero as lower bound and no upper bound. Apply the escrow locking method to the following schedule of three transactions, one of which aborts:

$$\text{decr}_1(x, 60) \quad \text{incr}_2(x, 20) \quad \text{incr}_1(x, 10) \quad \text{decr}_3(x, 50)$$

$$\text{decr}_2(y, 60) \quad \text{incr}_2(x, 20) \quad a_2 \quad \text{decr}_1(y, 10) \quad c_1 \quad c_3$$
MVSR Serial Order (1/2)

\[
\begin{align*}
\text{MVSR} & \quad x_0 \ll x_2 \\
& \quad y_0 \ll y_2 \\
& \quad r_2(y) \quad r_2(y_0) \\
& \quad r_2(y_2) \quad \lambda \geq 2 (\text{i}) \\
& \quad h(r_2(y)) = \Lambda_2(y) \\
& \quad h(r_3(x)) = \Lambda_2(x) \\
& \quad h(r_2(y)) = \ldots \Lambda_n(y_2) \\
& \quad \text{MVSR} \\
& \quad t_0 + t_2 + t_3
\end{align*}
\]
Example chapter 5 slide 12: How to find this order? Why must t_2 come before t_1?
No homework!